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Motivated by recent controllability results for the bilinear Schrödinger equation based

on the existence of conical intersections, in this paper we identify two physically

interesting families of parameter-dependent Hamiltonians that admit residual and

prevalent subfamilies for which all double eigenvalues are conical. In order to obtain

such a result we exploit a characterization of conical intersections in terms of a

transversality condition which allows to apply a suitable transversality theorem.
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Conicity of eigenvalues intersections

I. INTRODUCTION

Consider a family of Hermitian matrices, smoothly depending on a finite number of

parameters; it is well known that the corresponding eigenvalues are smooth real functions

of these parameters. It may happen that the graphs of some of these functions intersect;

since intersection points carry important topological information, and are often associated

with many physically interesting phenomena, they have attracted great interest in both the

mathematics and the physics community, in particular for what concerns their classification

and the problem of their occurrence and detection3,11–13,16,31,33. This kind of problems have

also been addressed in the general case of self-adjoint operators acting on separable Hilbert

spaces5,22,32.

In mathematical physics, a special role is played by conical intersections (also known as

generic coalescing points, diabolic points), which may be encountered in several applications

in molecular dynamics, physical chemistry, solid-state physics (e.g. the well-known Dirac-

points in graphene), optics (e.g. systems of ultracold Fermi atoms in optical lattices). For an

account of several applications related to conical intersections, see e.g. Ref. 14 and references

therein.

Recently, conical intersections have been proved to be useful in control theory, namely for

the population transfer problem and controllability issues concerning bilinear Schrödinger

equations2,4,6,7,9, that is, equations of the form

i
∂ψ

∂t
=

(
H0 +

m∑

k=1

ukHk

)
ψ,

where ψ is a unit vector in some separable complex Hilbert space H, Hi are self-adjoint oper-

ators on H for i = 0, . . . , m, and H(u1, . . . , um) = H0+
∑m

k=1 ukHk is the control-dependent

(or parameter-dependent) Hamiltonian. By following the same approach, controllability

results for nonlinear control-dependent Hamiltonians have been obtained in Ref. 8.

It is worth asking if eigenvalues intersections are “typically” conical, or if this feature is

“pathological”. In other words, given a family of parameter-dependent self-adjoint operators,

we wish to investigate if “almost every” element in this family has only conical eigenvalues

intersections. This problem is well defined in a finite dimensional setting, as it is possible

to endow the family with a natural measure; in this case, one has to check whether the set

of parameter-dependent self-adjoint operators admitting only conical intersections has full
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Conicity of eigenvalues intersections

measure. In an infinite dimensional setting, in absence of an appropriate choice of measure,

a natural generalization of the concept of full measure set still appears to be possible: it is

the notion of prevalent set17, roughly speaking a set such that each of its translations has

full measure, for some compactly supported measure. Alternatively, one may consider some

topological notion replacing the property of being full-measure: a subset of a Baire space

X is said to be residual if it contains a countable intersection of open and dense subsets

of X , while a generic property is a property that holds on a residual subset of X . It is

worth noting that, although the latter notion is much more used in the literature to describe

properties that hold “almost everywhere” on functional spaces, in a finite dimensional space

residual sets are not necessarily of full measure and, vice versa, it is possible to exhibit full

measure sets which are not residual.

In order to determine if eigenvalues intersections are conical for “almost every” parameter-

dependent self-adjoint operators (in the previous senses), we first establish some criteria for

a double eigenvalue to be conical. For a self-adjoint operator H(·) smoothly depending on

three real parameters, the conicity of an eigenvalues intersection is equivalent to the non-

degeneracy of a three-dimensional matrix, which depends on the eigenstates corresponding

to the degenerate eigenvalue and on the linearization of the operator with respect to the

parameters; this result is proved in Proposition IV.3. Furthermore, whenever the parameter-

dependent self-adjoint operator takes values in a Banach manifold, the conicity of an eigen-

values intersection can be characterized (roughly speaking) in terms of the transversality of

H(·) to the submanifold of self-adjoint operators with multiple eigenvalues (Proposition V.1).

The issue of “measuring” the set of parameter-dependent Hamiltonians having only conical

intersections is thus translated in the problem of measuring the set where the map H(·) is
transversal to that manifold. Powerful tools to obtain this kind of results are the Transver-

sal Density Theorem1 and the Parametric Transversality Theorem21: they provide sufficient

conditions that guarantee that the set of points where a map is transversal is, respectively,

residual (on a Banach manifold) or of full-measure (on a finite dimensional manifold). An

analogous result18 can be used to establish properties that hold true on prevalent subsets of

(possibly) infinite dimensional Banach manifolds.

We focus on two physically interesting cases. In Section VA, we consider control-affine

Hermitian matrices; we prove that, for every fixed n-dimensional Hermitian matrix H0, the

set of triples (H1, H2, H3) ∈ (iu(n))3 such that all double eigenvalues of the parameter-
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Conicity of eigenvalues intersections

dependent operator H0 +
∑3

j=1 ujHj correspond to conical intersections is residual and

of full Lebesgue measure. In Section VB we are concerned with operators of the form

(−i∇ + u3A)2 + u1V1 + u2V2, that represent the Hamiltonians of particles in a controlled

electromagnetic field. We prove that, generically with respect to the control operators

A, V1, V2, all double eigenvalues are conical, and the corresponding set of control operators

is prevalent.

Note that classical transversality results require the space where such operators live to

be second countable. This property is usually not satisfied for spaces of linear operators

acting on infinite dimensional spaces (even for the space of bounded operators on an Hilbert

space). Thus, checking the genericity or the prevalence on larger operator spaces, compared

to the physically interesting ones, is not only pointless (for a subset of a Banach manifold,

the property of being residual or prevalent is not preserved if one restricts to a submanifold)

but also technically more involved.

We finally remark that in this paper we only consider the three-input case. For the two-

input case, if all the operators in the family have real-valued components with respect to

a fixed basis, the genericity of conical intersections is investigated in Ref. 6. Otherwise, if

the operator does not depend on more than two control inputs, eigenvalues intersections

are usually absent as a consequence of the fact that the set of operators admitting (double)

eigenvalues intersections is a manifold of codimension three in the space of self-adjoint oper-

ators (see e.g. Refs. 3 and 33). In addition, it is easy to see with the methods developed in

this paper that, when more than three controls are available, eigenvalues intersections are

generically not isolated (hence not conical).

The structure of the paper is the following: in Section II, we state the notations we

are using throughout the paper; in Section III, we introduce the notions of genericity and

prevalence and state the problem we are concerned with; Section IV is devoted to the

definition and the main properties of conical intersections; finally, the main results and their

proofs are provided in Section V. Some technical results on the regularity properties of

perturbed self-adjoint operators are illustrated in Appendix A.
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Conicity of eigenvalues intersections

II. NOTATIONS AND GENERAL SETTING

We use bold letters (e.g., u) to denote elements of R3, and regular fonts for the corre-

sponding components (e.g., ui for the i-th component of u). Throughout this paper, we

consider operators acting on a separable complex Hilbert space H, with scalar product 〈·, ·〉
and norm ‖ · ‖. To avoid possible ambiguities, we denote the Euclidean norm on finite di-

mensional spaces other than H by | · |. The set of the linear operators on H is denoted by

L(H); the subspace B(H) of bounded operators in L(H) is endowed with the operator norm

induced from the one of H, still denoted as ‖ · ‖. Given a linear operator A ∈ L(H), D(A)

denotes its domain; D(A) is naturally endowed with the norm of the graph of A, defined as

‖ψ‖D(A) = ‖Aψ||+ ‖ψ‖, ψ ∈ D(A).

We introduce the following notions of “relative boundedness” between linear operators

in H.

Definition II.1 (A-smallness and A-boundedness) Let A and B be two densely defined

operators with domains D(A) ⊂ D(B). We say that B is A-bounded if there exist a, b > 0

such that ‖Bψ‖ ≤ a‖Aψ‖+ b‖ψ‖ for every ψ ∈ D(A). B is said to be A-small if for every

α > 0 there exists β > 0 such that ‖Bψ‖ ≤ α‖Aψ‖+ β‖ψ‖ for every ψ ∈ D(A).

These notions are also referred to as Kato boundedness and Kato smallness or infinitesimal

smallness with respect to A, see e.g. Ref. 27.

Given a self-adjoint operator A onH, we denote the space of A-bounded operators, which

coincide with the continuous linear operators from D(A) to H, by B(D(A),H). We endow

the space of A-bounded operators with the operator norm from D(A) to H, denoted as

‖B‖A = sup
ψ∈D(A)

‖Bψ‖
‖ψ‖D(A)

for every A-bounded operator B. The subspace of self-adjoint operators in B(D(A),H) is

denoted by Bsa(D(A),H). Similarly, B(H,D(A)) denotes the space of continuous linear

operators from H to D(A). The natural norm on this space ‖ · ‖B(H,D(A)) is equivalent to the

norm ‖A · ‖+ ‖ · ‖, therefore, with a little abuse of notation, in the following we set

‖B‖B(H,D(A)) = ‖AB‖+ ‖B‖.
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Conicity of eigenvalues intersections

Bsa(H,D(A)) is the subspace of self-adjoint operators contained in B(H,D(A)).

In this paper, we are concerned with families of C1 operator-valued functions23 (parameter-

dependent Hamiltonians) H : R3 → Bsa(D(H(0)),H) such that H(u)−H(0) is H(0)-small.

In particular, for every ū ∈ R3,

lim
u→ū

‖H(u)−H(ū)‖H(0) = 0,

lim
u→ū

‖∂iH(u)− ∂iH(ū)‖H(0) = 0, i = 1, 2, 3,

where here and in the following ∂i denotes the derivative with respect to ui, i = 1, 2, 3. It is

easy to see that, under this assumption, the norms ‖ · ‖H(u) are equivalent for every u ∈ R3,

namely there exist two continuous positive functions C1, C2 : R
3 → R such that

C1(u)‖ · ‖H(u) ≤ ‖ · ‖H(0) ≤ C2(u)‖ · ‖H(u). (1)

Remark II.2 Any operator-valued function H(·) polynomial with respect to its argument

satisfies the assumption here above, provided that all its coefficients are self-adjoint and

H(0)-small operators. This is a simple consequence of Ref. 27, Theorem X.12.

Under these assumptions, the spectrum and the spectral projections of H(u) possess

some regularity properties with respect to u, which will be discussed in Section A.

III. GENERICITY AND PREVALENCE FOR CONICAL

INTERSECTIONS: STATEMENT OF THE PROBLEM

Here below, σ(H(u)) denotes the spectrum of the operator H(u). We say that two (or

more) eigenvalues intersect at ū ∈ R
3, and that ū is an eigenvalues intersection, if their

values coincide at ū. In particular, we are interested in conical intersections, which are

defined as follows (see also Refs. 6 and 9)24.

Definition III.1 Consider a C1 operator-valued function H : R3 → Bsa(D(H(0)),H) such

that H(u)−H(0) is H(0)-small. We say that ū ∈ R3 is a conical intersection between two

eigenvalues if there exist an open neighborhood U ⊂ R3 of ū, an interval I ⊂ R and two con-

tinuous eigenvalues λ± : U → R such that λ−(ū) = λ+(ū), σ(H(u)) ∩ I = {λ−(u), λ+(u)},
and there exists a constant c > 0 such that, for any unit vector v ∈ R3 and t > 0 small
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Conicity of eigenvalues intersections

enough, we have that

λ+(ū+ tv)− λ−(ū+ tv) > ct .

To measure the possibility that double eigenvalues intersections are conical we will make use

of the notions of prevalent and residual set given below1,17.

Definition III.2 Let A be a Banach space and S ⊂ A.

• We say that S is prevalent in A if there exists a nontrivial measure defined on the

Borel sets of A and supported on a compact subset of A such that all translations

a+ S, for a ∈ A, are of full measure.

• We say that S is residual in A if it contains the union of a countable family of open

and dense subsets of A.25 A property which is satisfied on a residual subset of A is

said to be generic in A.

It has been shown in Ref. 17, Fact 6 that a subset of a finite-dimensional space is prevalent

if and only if it is of full Lebesgue measure. Let us also remark that prevalence and genericity

are independent notions; for instance, given a sequence of open and dense subsets of R whose

Lebesgue measures tend to zero, their intersection is residual but not prevalent (having zero

Lebesgue measure), while its complement is prevalent but not residual. Finally, we recall

that countable intersections of prevalent (resp. residual) subsets of A are prevalent (resp.

residual).

Typical problems we are concerned with in this paper are of the following type.

Problem. Let A be a Banach space and consider a family

{Ha : R
3 → Bsa(D(H0(0)),H) : a ∈ A}

of parameter-dependent self-adjoint operators such that Ha(·) is C1 for every a ∈ A and

Ha(u) − H0(0) is H0(0)-small for every pair (a,u) ∈ A × R3. Is it true that there exists a

residual and/or prevalent subset S of A such that, for a belonging to S, all double eigenvalues

intersections of the operator Ha(·) are conical?

To study this problem we will take advantage of transversal density results.

7
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Conicity of eigenvalues intersections

Definition III.3 Let X, Y be C1 Banach manifolds (that is, manifolds modeled on Banach

spaces) and W a submanifold of Y . We say that a C1 function f : X → Y is transversal to

W at x ∈ X if either f(x) /∈ W or f(x) ∈ W and

(i) the inverse image (f ′
x)

−1(Tf(x)W ) splits in TxX, that is, it is closed and it admits a

closed complement in TxX,

(ii) the image f ′
x(TxX) contains a closed complement to Tf(x)W in Tf(x)Y .

If f is transversal to W at any x ∈ X, then we simply say that f is transversal to W .

In Ref. 18, the author has shown that the assumptions of the classical Transversal Density

Theorem (Ref. 1, Theorem 19.1), guaranteeing that a given (transversality) property is

generic, also ensure that such a property is satisfied on a prevalent set. In a finite dimensional

setting this fact actually corresponds to the well-known Parametric Transversality Theorem

(Ref. 21, Theorem 6.35). These results are resumed below in a setting suitable for our

purposes.

Theorem III.4 (1,18) Let A, Y be C1 Banach manifolds, U ⊂ R3 open and ev : A×U → Y

be a C1 map. Let W be a C1 submanifold of Y . Assume that:

• W has codimension three in Y ;

• A is second countable;

• the map ev is transversal to W .

Then the set AW of elements a ∈ A such that ev(a, ·) is transversal to W is residual and

prevalent in A.

In Section V we will show that, under suitable assumptions, the conicity of an eigenvalues

intersection is equivalent to the transversality of the map Ha(·) to a certain manifold W of

codimension three. In view of Theorem III.4, and provided that A is second countable, a

positive answer to the problem stated above may thus be obtained by checking the transver-

sality of (a,u) 7→ Ha(u) to W . See Sections VA and VB for the application of this scheme

to physically interesting examples.
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Conicity of eigenvalues intersections

IV. PROPERTIES OF CONICAL INTERSECTIONS

Conical intersections have a characterization in terms of the nondegeneracy of a particular

matrix, that we call the conicity matrix, whose definition is given here below. A similar

characterization has been obtained in Ref. 13, Theorem 4.5.

Definition IV.1 Let H : R3 → Bsa(D(H(0)),H) be a C1 map such that H(u) − H(0) is

H(0)-small for every u. Given two orthonormal elements ψ1, ψ2 ∈ D(H(0)), the conicity

matrix of H(·) at u ∈ R3 associated with ψ1, ψ2 is defined as

Mu(ψ1, ψ2) =




〈ψ1, ∂1H(u)ψ2〉 〈ψ1, ∂1H(u)ψ2〉∗ 〈ψ2, ∂1H(u)ψ2〉 − 〈ψ1, ∂1H(u)ψ1〉
〈ψ1, ∂2H(u)ψ2〉 〈ψ1, ∂2H(u)ψ2〉∗ 〈ψ2, ∂2H(u)ψ2〉 − 〈ψ1, ∂2H(u)ψ1〉
〈ψ1, ∂3H(u)ψ2〉 〈ψ1, ∂3H(u)ψ2〉∗ 〈ψ2, ∂3H(u)ψ2〉 − 〈ψ1, ∂3H(u)ψ1〉


 .

Remark IV.2 By simple computations it is easy to see that for every u and every or-

thonormal pair ψ1, ψ2 ∈ D(H(0)), detMu(ψ1, ψ2) is purely imaginary and the function

(ψ1, ψ2) 7→ detMu(ψ1, ψ2) is invariant under unitary transformations of the argument.

The following result characterizes conical intersections in terms of the conicity matrix.

Proposition IV.3 Let H : R3 → Bsa(D(H(0)),H) be a C1 map such that H(u)−H(0) is

H(0)-small for every u. Assume that λ1 and λ2 are two discrete eigenvalues of H(u) with

λ1(ū) = λ2(ū), and that λ1(ū) = λ2(ū) is a double eigenvalue of H(ū). Let {ψ1, ψ2} be

an orthonormal basis of the eigenspace associated with the double eigenvalue. Then ū is a

conical intersection if and only if Mū(ψ1, ψ2) is nonsingular.

Proof. Taking advantage of Proposition A.8, one can easily adapt the proof of Ref. 9,

Proposition 3.4 to prove that, if ū is a conical intersection, then Mū(ψ1, ψ2) is nonsingular.

Let us then prove the converse implication. By contradiction, we assume that ū is not

conical. Let I be a small interval such that σ(H(ū)) ∩ I = {λ1(ū)} and denote with PI(u)

the spectral projection on I of H(u), i.e., the orthogonal projection onto the sum of the

eigenspaces of H(u) associated with the eigenvalues in I. For u belonging to a sufficiently

small neighborhood of ū, we consider the self-adjoint operator H̃(u) = S(u)−1H(u)S(u),

9
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Conicity of eigenvalues intersections

where S(u) : PI(ū)H → PI(u)H is the map from the eigenspace relative to λ1(ū) to the

range of PI(u) defined as

S(u) = PI(u)
(
id + PI(ū)

(
PI(u)− PI(ū)

)
PI(ū)

)−1/2∣∣
PI(ū)H

.

It is possible to prove that S(u) is an isometric transformation continuously differentiable

with respect to u (see e.g. Ref. 30, Section 105). H̃(u) is represented by a C1 Hermitian

2-dimensional matrix, with eigenvalues λ1(u) and λ2(u); moreover, {ψ̃1, ψ̃2}, with ψ̃i =

S(ū)−1ψi, form an orthonormal basis of the eigenspace of H̃(ū) relative to λ1(ū) = λ2(ū).

In particular, the conicity matrix for H̃(·) at ū with respect to {ψ̃1, ψ̃2} coincides with that

of H(·) at ū with respect to {ψ1, ψ2}. Indeed,

∂iH̃(u) = −S(u)−1∂iS(u)S(u)
−1H(u)S(u) + S(u)−1∂iH(u)S(u) + S(u)−1H(u)∂iS(u)

= −S(u)−1∂iS(u) H̃(u) + S(u)−1∂iH(u)S(u) + H̃(u)S(u)−1∂iS(u),

so that ∂iH̃(ū) = S(ū)−1∂iH(ū)S(ū), since H̃(ū) = λ1(ū)id.

Without loss of generality, we assume H̃(u) traceless for every u. Indeed, the transfor-

mation H̃(u) 7→ H̃(u) − 1
2
tr(H̃(u))id preserves the difference between the eigenvalues and

leads to the same conicity matrix.

Set, for every unit vector v in R3, rv(t) = ū+ tv. Since ū is not conical, for every ε > 0

there exists a unit vector vε = (vε1, v
ε
2, v

ε
3) such that

∣∣∣
d

dt
λ1(rvε

(t))|
t=0+

∣∣∣ ≤ ε.

Also, the absolute value of each matrix element of H̃(u) is bounded by |λ1(u)|, and by con-

tinuous differentiability of both H̃ and λ1 along rvε
(·) (Proposition A.7), one deduces that, in

the usual matrix norm induced by the Euclidean norm,
∥∥ d
dt
H̃(rvε

(t))|
t=0+

∥∥ = ‖∇H̃(ū)·vǫ‖ ≤
Cǫ, for some positive C.

We now multiply on the left the conicity matrix of H̃(·) at ū by an orthonormal matrix

having vǫ as first row; the resulting matrix has the same determinant as the original one.

In particular, the first row of the resulting matrix is

(
〈ψ1,∇H̃(ū) · vǫψ2〉, 〈ψ1,∇H̃(ū) · vǫψ2〉∗, 〈ψ2,∇H̃(ū) · vǫψ2〉 − 〈ψ1,∇H̃(ū) · vǫψ1〉

)
,

so that, by the estimates done above and the arbitrariness of ǫ, we get the proof. �

The following result shows a robustness property of conical intersections. The proof may

be obtained by following the same arguments as in Ref. 9, Theorem 4.10 and is thus omitted.
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Conicity of eigenvalues intersections

Theorem IV.4 Let H : R3 → Bsa(D(H(0)),H) be a C1 map such that H(u) − H(0) is

H(0)-small for every u, and let ū be a conical intersection for H(·) between the eigenvalues

λ1 and λ2. Let U be an open neighborhood of ū. Then, for every ε > 0 there exists δ > 0

such that, for every Ĥ(·) satisfying the same assumptions of H(·) and such that

‖H(u)− Ĥ(u)‖H(0) ≤ δ,

‖∂iH(u)− ∂iĤ(u)‖H(0) ≤ δ, i = 1, 2, 3,

for u ∈ U , there exists û ∈ R
3, with |ū − û| ≤ ε, that is a conical intersection of Ĥ(·)

between λ1 and λ2.

V. MAIN RESULTS

In the following, we consider a C1 mapK defined from a Banach space Y to Bsa(D(K(0)),H),

such that K(q) − K(0) is K(0)-small for every q ∈ Y . We are interested in establishing

the genericity and prevalence of conical intersections for parameter-dependent self-adjoint

operators belonging to the class

F = {K(q) : q ∈ Y}.

We also assume that the family F satisfies the following condition, called Second Strong

Arnold Hypothesis10,32.

Second Strong Arnold Hypothesis (SAH2): Assume that, for some q0 ∈ Y, λ is

an eigenvalue of K(q0) of multiplicity greater or equal than two. Then there exist two

orthonormal eigenstates ψ1, ψ2 of K(q0) pertaining to λ such that the three linear functionals

on Y

f11 − f22 : p 7→ 〈ψ1, K
′
q0
(p)ψ1〉 − 〈ψ2, K

′
q0
(p)ψ2〉

f12 : p 7→ 〈ψ1, K
′
q0(p)ψ2〉

f21 : p 7→ 〈ψ2, K
′
q0(p)ψ1〉

are linearly independent. Equivalently, the linear map Φ = (f11 − f22,Re(f12), Im(f12)) is

surjective from Y to R3.

We call M the subset of Y such that the operators in K(M) have double eigenvalues.

For every interval I and every open set U in Y , we denote by MI,U the subset of elements
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Conicity of eigenvalues intersections

in U such that the corresponding operators have an eigenvalue in I of multiplicity two,

isolated from the rest of the spectrum. Under some additional regularity assumptions on

the spectrum of the operators, SAH2 guarantees that M has codimension three in Y . In

particular if, for any q ∈ Y , K(q) only admits point spectrum with no finite accumulation

points, then, for a sufficiently small interval I and a sufficiently small open set U , the set

MI,U is a smooth submanifold of codimension three32.

The conicity of eigenvalues intersections corresponds to a geometric property in the space

of parameters, as the following result shows.

Proposition V.1 Assume that the family F satisfies SAH2, and that all of its elements

have purely discrete spectrum without finite accumulation points. Consider a C1 map q :

U → Y, with U ⊂ R
3 open, and set H(u) = K(q(u)). Assume that H(u) has an isolated

double eigenvalue λ at u = ū, and set q̄ = q(ū). Consider a neighborhood U of q̄ in Y and

an interval I containing λ, small enough so that MI,U is a submanifold of codimension three

in Y. Then ū is a conical intersection for H(·) if and only if for every direction v ∈ R
3 the

vector qv =
∑3

i=1 vi∂iq(ū) is not tangent to MI,U at q̄, that is, the map q(·) is transversal

to MI,U at ū.

Proof. If there exists some v ∈ R3 such that qv is tangent to MI,U at q̄, then ū cannot be

a conical intersection. Indeed, if a curve γ in MI,U satisfies γ(0) = ū and γ̇(0) = qv, then

‖K(γ(t))−K(q(ū+ tv))‖D(K(0)) = o(t).

Thanks to Proposition A.6, we get that the distance between the eigenvalues intersecting at

ū is of order o(t) along the line t 7→ ū+ tv.

Let us now prove the converse statement. Denote by λ1(u) and λ2(u) the two eigenvalues

of H(u) crossing at ū, with λ1(ū) = λ2(ū) = λ.

Under the assumptions of the proposition, we can deduce the following facts. Possibly

reducing I (still containing λ in its interior) and the neighborhood U of q̄, K(q) contains

exactly two eigenvalues in I, counted with their multiplicity, for every q ∈ U . Denoting with

M(q) the sum of the eigenspaces of K(q) associated with the eigenvalues in I, and with

PI(q) the orthogonal projection on M(q), we have that, possibly reducing U ,

‖PI(q)− P̄‖ < 1 ∀q ∈ U ,
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Conicity of eigenvalues intersections

where P̄ = PI(q̄); moreover, PI(·) is C1 in U , by Proposition A.4.

Define the map S(q) :M(q̄) →M(q)

S(q) = PI(q)
(
id + P̄ (PI(q)− P̄ )P̄

)−1/2∣∣
M(q̄)

.

As in the proof of Proposition IV.3, we can see that S(q) is an isometric transformation and

it is differentiable with respect to q. Therefore the map

h(q) = S(q)−1K(q)S(q)

is a differentiable map from U to the space of self-adjoint operators on M(q̄), and the

eigenvalues of h(q) are the same as the eigenvalues of K(q) in I. Moreover, it is easy to see

that MI,U ⊂ h−1({µ id : µ ∈ R}), where id denotes the identity on M(q̄).

Let us now assume that the intersection between the eigenvalues λ1 and λ2 is not conical,

that is there exists a unit vector v ∈ R3 such that

λ2(ū+ tv)− λ1(ū+ tv) = o(t).

We claim that qv is tangent to MI,U at q̄. To prove that, we consider the curve h(q(ū+ tv))

in the space of self-adjoint operators onM(q̄). Choosing {ψ1, ψ2} as the orthonormal basis of

M(q̄) for which SAH2 holds true, we represent h(q(ū+ tv)) as the curve of two dimensional

Hermitian matrices

N(t) =



 a(t) c(t)

c∗(t) b(t)



 ,

for some complex-valued functions a(·), b(·), c(·) satisfying a(0) = b(0) = λ and c(0) = 0.

Since the eigenvalues of N(t) coincide with those of H(ū + tv) contained in I, it holds
√

(a(t)− b(t))2 + 4|c(t)|2 = o(t). Therefore, we conclude that Ṅ(0) belongs to {µ id : µ ∈
R}.

Reasoning as in Proposition IV.3, we obtain that h′q̄(·) = S−1(q̄)K ′
q̄(·)S(q̄). Since the

family F satisfies the condition SAH2, the map h is transversal to {µ id : µ ∈ R} in the

space of self-adjoint operators on M(q̄). Then we can conclude that

(h′q̄)
−1({µ id : µ ∈ R}) = Tq̄MI,U

(see e.g. Ref. 1, Corollary 17.2) and, in particular, qv is tangent to MI,U at q̄. �

Note that, if Y is second countable and if all the elements of F have purely discrete

spectrum without finite accumulation points, then the set M is the countable union of

13
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Conicity of eigenvalues intersections

manifolds of the form MI,U , as defined above. Hence, from the previous result, the fact

that the family of prevalent and residual sets is closed under countable intersection, and

by Theorem III.4, we deduce the following criterion discussing the possibility, for an ele-

ment of a family of parameter-dependent self-adjoint operators, that all double eigenvalues

intersections are conical.

Theorem V.2 Assume that the family F satisfies SAH2, and that all of its elements have

purely discrete spectrum without finite accumulation points. Let A be a Banach space,

U ⊂ R3 open and ev : A × U → Y be a C1 map. Furthermore, suppose that A,Y are

second countable and that the map ev(·) is transverse to the manifolds of double eigenvalues

MI,U defined above. Then, for a residual and prevalent set of elements a ∈ A, all dou-

ble eigenvalues intersections of the parameter-dependent operator Ha(·) = K(ev(a, ·)) are

conical.

A. Finite-dimensional case

In this section, we consider finite dimensional parameterized Hamiltonians of the form

H(u) = H0 + u1H1 + u2H2 + u3H3 where, for i = 0, . . . , 3, Hi is a n-dimensional Hermitian

matrix. In this context, genericity and prevalence have to be intended with respect to the

Hamiltonians Hi, i = 1, 2, 3.

In the notations of the preceding section, we have that F = iu(n), that is, F is the set of

Hermitian n×n matrices, and we choose Y = F and K the identity on Y . All the conditions

on F ,A,Y in Theorem V.2 are satisfied, and in particular, for sufficiently small I ⊂ R and

U ⊂ Y , the set MI,U of double eigenvalues is a submanifold of codimension 3 in iu(n).

Lemma V.3 Fix H0 ∈ iu(n). We define the map ev : (iu(n))3 × (R3 \ {0}) → iu(n) as

ev(H1, H2, H3,u) = H(u),

with H(u) = H0 + u1H1 + u2H2 + u3H3. Then ev is transversal to the manifolds MI,U .

Proof. If ev(H1, H2, H3,u) /∈ MI,U , then the thesis trivially holds. Assume then that

H(ū) = ev(H1, H2, H3, ū) ∈ U has a double eigenvalue λ ∈ I for ū 6= 0.

14
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Conicity of eigenvalues intersections

The differential of ev at (H1, H2, H3, ū) along the direction (δH1, δH2, δH3, δu) is given

by

ev′(H1,H2,H3,ū)
(δH1, δH2, δH3, δu) =

3∑

j=1

(ūjδHj + δujHj) .

Let us consider the three directions vl = (ū1σl, ū2σl, ū3σl, 0, 0, 0) ∈ (iu(n))3 × R3, where we

introduce Pauli-like operators σl, l = 1, 2, 3 as follows

σ1 = 〈ϕ2, ·〉ϕ1 + 〈ϕ1, ·〉ϕ2 σ2 = i〈ϕ1, ·〉ϕ2 − i〈ϕ2, ·〉ϕ1 σ3 = 〈ϕ1, ·〉ϕ1 − 〈ϕ2, ·〉ϕ2,

and ϕ1 and ϕ2 define an orthonormal basis of the eigenspace of H(ū) relative to λ. We now

consider the eigenvalues of

H(ū) + ǫ ev′
(H1,H2,H3,ū)

(α1v1 + α2v2 + α3v3)

= H(ū) + ǫ|ū|2
3∑

j=1

αjσj .

It is easy to check that the degenerate eigenvalues split and their difference is equal to

2ǫ|ū|2|α|. Therefore, span{ev′(H1,H2,H3,ū)
(vl) : l = 1, 2, 3} is a three dimensional space having

trivial intersection with TH(ū)MI,U . Since the codimension of MI,U is 3, we conclude that

the map ev is transversal to MI,U . �

We are now able to state the main result of this section.

Theorem V.4 Let H0 ∈ iu(n). With each (H1, H2, H3) ∈ (iu(n))3, we associate the

parameter-dependent operator H(u) = H0+
∑3

j=1 ujHj. Then the set of triples (H1, H2, H3)

such that all double eigenvalues of H(·) correspond to conical intersections is residual and

of full Lebesgue measure.

Proof. We consider separately the two cases in which H0 admits or does not admit double

eigenvalues.

Thanks to Lemma V.3 we can apply Theorem V.2 with U = R3 \ {0} and deduce that,

for a residual and prevalent (hence full measure) subset of (iu(n))3, all double eigenvalues of

H(u) with u 6= 0 correspond to conical intersections. This is enough to conclude the proof

in the case where H0 has no double eigenvalues.

Let us now consider the case where H0 has a double eigenvalue λ, and let ψ1 and ψ2 define

an orthonormal basis of the eigenspace relative to λ. Consider the real-valued multi-linear

15
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Conicity of eigenvalues intersections

map

F (H1, H2, H3) = det




Re (〈ψ1, H1ψ2〉) Im (〈ψ1, H1ψ2〉) (〈ψ2, H1ψ2〉 − 〈ψ1, H1ψ1〉)
Re (〈ψ1, H2ψ2〉) Im (〈ψ1, H2ψ2〉) (〈ψ2, H2ψ2〉 − 〈ψ1, H2ψ1〉)
Re (〈ψ1, H3ψ2〉) Im (〈ψ1, H3ψ2〉) (〈ψ2, H3ψ2〉 − 〈ψ1, H3ψ1〉)


 .

By Proposition IV.3, u = 0 is a conical intersection for H0 +
∑3

j=1 ujHj if and only if

F (H1, H2, H3) 6= 0. Moreover, being F continuous, we obtain that F−1(R \ {0}) is an open

subset of (iu(n))3. This subset is nonempty because the map

H ∈ iu(n) 7→
(
Re (〈ψ1, Hψ2〉) , Im (〈ψ1, Hψ2〉) , 〈ψ2, Hψ2〉 − 〈ψ1, Hψ1〉

)
∈ R

3

is surjective. The density comes directly from multi-linearity. Also, the set F−1(R\{0}) has
full measure in (iu(n))3. Since H0 possesses at most countably many double eigenvalues,

the set of triples (H1, H2, H2) ∈ (iu(n))3 for which all double eigenvalues intersections at the

origin are conical is then the intersection of residual and full measure subsets of (iu(n))3.

Further intersecting with the subset of (iu(n))3 provided in the first part of the proof, we

obtain a residual and full measure set of matrices (H1, H2, H2) ∈ (iu(n))3 such that all

double eigenvalues of H(u) with u ∈ R3 correspond to conical intersections. This concludes

the proof of the theorem. �

B. Infinite dimension: the case of electromagnetic Hamiltonians

In quantum mechanics, infinite dimensional Hamiltonians are usually obtained by quanti-

zation of classical Hamiltonians, that is, sums of kinetic and potential energy. In particular,

a charged particle moving in the three dimensional space under the action of an electromag-

netic field (E,B) is described by the following Hamiltonian

H = (−i∇ +A)2 + V

= (−i∇ +A) · (−i∇ +A) + V

= −∆− i(∇A+A∇) + |A|2 + V (2)

where A : R3 → R
3 is the vector potential and V : R3 → R is the scalar potential, and they

satisfy the relations E = −∇V and B = ∇×A. Here the operator −i (∇A+A∇) acts on

the elements of its domain as follows:

−i (∇A+A∇)ψ = −i div(Aψ)− iA · ∇ψ.
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Conicity of eigenvalues intersections

The class of Hamiltonians of the form (2) covers many relevant physical systems, therefore it

is a good candidate for the class F in which to study the occurrence of conical intersections.

Notice that the Hamiltonian (2) can be written as H = −∆+W +HA, where we set HA =

−i (∇A+A∇) and W = V + |A|2. Formally, H = L2(Ω,C) where Ω is a given Lipschitz

bounded domain in R3, the class F under consideration consists of the Hamiltonians of the

form −∆+W +HA, where ∆ : D(∆) → L2(Ω,C) denotes the Dirichlet Laplacian on Ω with

D(∆) = H1
0 (Ω,C) ∩ H2(Ω,C), W is a scalar continuous real-valued function on its closure

Ω̄, that should be thought as a multiplication operator, and A is a C1 vector-valued real

function from Ω̄ to R3. Using the fact that ‖∇ψ‖ = |〈ψ,∆ψ〉|1/2 ≤ 1
2
(ε‖∆ψ‖ + 1

ε
‖ψ‖) for

any ε > 0, one gets

‖HAψ‖ = ‖div(A)ψ+2A·∇ψ‖ ≤ ε‖A‖L∞(Ω)‖∆ψ‖+(‖div(A)‖L∞(Ω)+
1

ε
‖A‖L∞(Ω))‖ψ‖. (3)

As a consequence, self-adjoint operators of the form HA are ∆-small. In particular the

elements of F belong to Bsa(D(∆), L2(Ω)). Similarly it can be shown that each HA is form-

bounded with respect to −∆ (as a quadratic form, see Ref. 27, Chapter X for the definition)

with a relative bound that can be chosen smaller than one. Thus Ref. 28, Theorem XIII.68

ensures that the Hamiltonians of the form −∆ + V +HA have compact resolvent, so that

their spectrum is purely discrete with a finite number of eigenvalues in each compact subset

of R.

Before stating the main result of this section, we observe that the operator HA plays a

crucial role in the existence of conical intersections for controlled Hamiltonians belonging

to F . Indeed, controlled Hamiltonians of the form H(u) = −∆ + V (u), u ∈ R3, do

not admit conical intersections: this can be seen as a consequence of the fact that the

terms 〈ψj , ∂iH(u)ψk〉, with i = 1, 2, 3, computed with respect to an appropriately chosen

orthonormal basis of eigenfunctions {ψj(u)}j∈N of −∆ + V (u), are real and thus the first

two columns of each conicity matrix are equal.

On the other hand, examples of conical intersections for controlled Hamiltonians belong-

ing to the family F defined above are not difficult to find, as shown below.26

Example. Consider the Hamiltonian H(u) = (−i∇ + u3A)2 + u1V1 + u2V2, where

V1(x) = x22 + x23, V2(x) = x2x3, A = (0,−x3/2, x2/2)T ,

x = (x1, x2, x3) ∈ Ω = (0, 1)× (0,
√
3)× (0,

√
5),

17

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
15

57
6



Conicity of eigenvalues intersections

with Dirichlet boundary conditions. We claim that H(0) (representing the potential well

in Ω) admits conical intersections of eigenvalues. Indeed eigenvalues and eigenfunctions of

H(0) take the form

λj1,j2,j3 = π2
(
j21 +

j22
3

+
j23
5

)
,

ψj1,j2,j3(x) =
2
√
2

4
√
15

sin(j1πx1) sin
(j2πx2√

3

)
sin

(j3πx3√
5

)
,

where j1, j2, j3 are strictly positive integers. Then, for instance, λ1,1,3 = λ1,2,2 corresponds

to a double eigenvalue. A direct computation shows that the associated conicity matrix is

nonsingular.

We then have the following result.

Theorem V.5 Let (−i∇ + Ā)2 + V̄ ∈ F and U = {u ∈ R
3 : u21 + u22 6= 0 and u3 6= 0}.

Then, for a residual and prevalent set of triples (V1, V2,A) in (C(Ω̄,R))2×C1(Ω̄,R3), all the

double eigenvalues of

H(u) = (−i∇ + Ā+ u3A)2 + V̄ + u1V1 + u2V2

with u ∈ U ∪ {0} correspond to conical intersections.

The proof of Theorem V.5 is based on an application of Theorem V.2. To this end, we

set Y = C(Ω̄,R)× C1(Ω̄,R3) and define the surjective map K : Y → F as

K(V,A) = −∆+HA + |A|2 + V.

We recall that Y , endowed with the norm ‖(V,A)‖Y = ‖V ‖∞ + ‖A‖∞ +
∑3

k=1 ‖∇Ak‖∞ for

(V,A) ∈ Y , is a Banach space. Note that, in this context, the assumption that Ω is bounded

is crucial. Indeed, the space of continuous (or C1) functions on an unbounded domain of R3

is not second countable. On the other hand, if Ω is bounded, then Y is separable and thus

second countable (the two notions are equivalent on metric spaces).

It is easy to see that K is differentiable as a map from the Banach space Y to

Bsa(D(∆), L2(Ω)), with K ′
(V,A)(δV, δA) = HδA + 2A · δA+ δV ; indeed

‖K(V + δV,A+ δA)−K(V,A)− (HδA + 2A· δA+ δV )‖B(D(∆),L2(Ω)) = o(‖(δV, δA)‖Y)

and, because of (3), HδA+2A ·δA+δV is a bounded linear map from Y to B(D(∆), L2(Ω)).

The continuity of (V,A) 7→ K ′
(V,A) being evident, we conclude that K is C1.
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Conicity of eigenvalues intersections

In order to apply Theorem V.2 to the family F and the function K defined above, we

will use the following preliminary result.

Lemma V.6 Every element of F satisfies SAH2 for any multiple eigenvalue. Moreover,

the restriction Φ|{(V,0):V ∈C(Ω̄,R)}, where Φ is the map defined in the statement of SAH2, has

rank at least two.

Proof. Let us consider H̄ = −∆ + V + |A|2 + HA ∈ F , and assume that λ is a multiple

eigenvalue of H̄ . By contradiction, assume that there exist three complex scalars a, b, c and

two eigenstates ψ1, ψ2 of H̄ relative to the eigenvalue λ such that the functional

a(f11 − f22) + bf12 + cf21 (4)

is identically zero, where fij(δV, δA) = 〈ψi, (HδA + 2A · δA+ δV )ψj〉. Notice that this fact

does not depend on the particular choice of the orthonormal eigenstates ψ1, ψ2. Indeed, a

transformation of the basis (ψ̃1, ψ̃2)
T =M(ψ1, ψ2)

T , whereM is an invertible two-by-two ma-

trix, induces a linear invertible transformation (a, b, c) 7→ (ã, b̃, c̃) so that the functional (4)

becomes ã(f̃11 − f̃22) + b̃f̃12 + c̃f̃21, where f̃ij = 〈ψ̃i, (HδA + 2A · δA+ δV )ψ̃j〉.
Integrating by parts the terms of the kind 〈ψi, HδAψj〉 taking into account the boundary

conditions on the eigenfunctions, we can write the functional (4) as

(δV, δA) 7→
∫

Ω

(δV + 2A · δA)Θ− iδA · Ξ, (5)

where

Θ = a|ψ1|2 − a|ψ2|2 + bψ∗
1ψ2 + cψ1ψ

∗
2,

Ξ = a(ψ∗
1∇ψ1 − ψ1∇ψ∗

1 − ψ∗
2∇ψ2 + ψ2∇ψ∗

2) + b(ψ∗
1∇ψ2 − ψ2∇ψ∗

1) + c(ψ∗
2∇ψ1 − ψ1∇ψ∗

2).

Since we are assuming that the functional (5) is zero then, by arbitrariness of δV and δA,

Θ and Ξ must be identically zero on Ω. We assume without loss of generality that a ∈ R

and consider separately the cases b = c∗ and b 6= c∗.

If b = c∗ then, up to replacing ψ1 with eiθψ1 in (4) for a suitable constant phase θ ∈ R,

we can assume b = c ∈ R. Furthermore, it is easy to see that a rotation of the basis

(ψ1, ψ2)
T 7→ R(ψ1, ψ2)

T , R ∈ SO(2), induces a rotation of the corresponding coefficients a

and b = c in (4) (more precisely the vector of coefficients (a, b)T is mapped to R2(a, b)T ). As a

consequence we assume without loss of generality that b = c = 0. From Θ = 0 we obtain that
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Conicity of eigenvalues intersections

|ψ1| ≡ |ψ2| on Ω. Denoting ψj = |ψ|eiθj , j = 1, 2, it turns out that Ξ = 2ia|ψ|2∇(θ1 − θ2).

Then ∇(θ1 − θ2) = 0 wherever |ψ| 6= 0, and in particular θ1 − θ2 is constant on an open set.

Up to a constant phase change of the eigenfunctions, ψ1 − ψ2 is an eigenfunction which is

null on an open set, which implies, by the unique continuation property20, that ψ1 ≡ ψ2,

which is a contradiction. We can then conclude that the functional (4) cannot be zero if

a ∈ R and b = c∗.

Let now b 6= c∗. By the unique continuation property, we have that ψ1 and ψ2 are different

from zero on an open and dense subset Ω′ ⊂ Ω. Since Θ−Θ∗ = (b−c∗)ψ∗
1ψ2+(c−b∗)ψ1ψ

∗
2 ≡ 0

we then obtain that the difference between the phases of ψ1 and ψ2 is constant on Ω′ and, in

particular, it can be set to zero. This leads to Im(b) = −Im(c). Let us then set b = β + ir,

c = γ − ir, for some β, γ, r ∈ R, with β 6= γ (otherwise we are back to the previous case).

Let us write ψ1 = φ1e
iζ and ψ2 = φ2e

iζ , for some real-valued nonnegative functions φ1, φ2

and ζ . Then by computations it follows from Ξ = 0 that

(β− γ)(φ1∇φ2−φ2∇φ1) + 2i
(
r(φ1∇φ2−φ2∇φ1) + a(∇ζ)(φ2

1−φ2
2) + (γ+ β)(∇ζ)φ1φ2

)
= 0.

By taking the real part of the previous expression we get that φ1∇φ2−φ2∇φ1 = φ2
1∇(φ2/φ1) =

0 on Ω′, that is ψ1 = ψ2 almost everywhere on Ω, contradicting the linear independence of

ψ1, ψ2. Then SAH2 is verified.

The proof of the second statement follows similar arguments and is thus omitted. �

All the assumptions on F ,A,Y in Theorem V.2 are satisfied, and in particular, for

sufficiently small I ⊂ R and U ⊂ Y , we can define the manifolds MI,U of double eigenvalues.

Let us now consider controlled Hamiltonians in F of the kind

(−i∇+ Ā+ u3A)2 + V̄ + u1V1 + u2V2,

where V̄ , V1, V2 ∈ C(Ω̄,R) and Ā,A ∈ C1(Ω̄,R3).

Lemma V.7 Let (V̄ , Ā) ∈ Y and U as in Theorem V.5, and consider the map ev :

(C(Ω̄,R))2 × C1(Ω̄,R3)× U → Y defined as

ev(V1, V2,A,u) = (V̄ + u1V1 + u2V2, Ā+ u3A).

Then ev is transversal to the manifolds MI,U .
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Conicity of eigenvalues intersections

Proof. Let us recall that K(V,A) = (−i∇ +A)2 + V , and, in particular,

K(ev(V1, V2,A,u)) = (−i∇+ Ā+ u3A)2 + V̄ + u1V1 + u2V2.

If ev(V1, V2,A,u) /∈ MI,U (that is, we recall, either ev(V1, V2,A,u) /∈ U or the Hamil-

tonian H(u) = K(ev(V1, V2,A,u)) has no double eigenvalues in the interval I), then the

thesis trivially holds.

Assume then that H(ū) = K(ev(V1, V2,A, ū)) has a double eigenvalue λ ∈ I for some

ū ∈ U and (V1, V2,A) with ev(V1, V2,A, ū) ∈ U , and that ψ1, ψ2 are two orthonormal

eigenstates of H(ū) pertaining to λ. Without loss of generality, we assume that ū1 6= 0.

Lemma V.6 ensures that the rank of the map

(δV, δA) 7→
(
f11(δV, δA)− f22(δV, δA), f12(δV, δA), f21(δV, δA)

)
,

where fij(δV, δA) = 〈ψi, (HδA + 2A · δA+ δV )ψj〉, is three, and its restriction to the space

{(δV, 0) : δV ∈ C(Ω̄,R)} has rank at least two. Then, setting K(δA) = HδA+2(Ā+ū3A)·δA,

we can find three functions δZ, δW ∈ C(Ω̄,R) and δA ∈ C1(Ω̄,R3) such that the matrix




〈ψ1, δZψ2〉 〈ψ1, δZψ2〉∗ 〈ψ2, δZψ2〉 − 〈ψ1, δZψ1〉
〈ψ1, δWψ2〉 〈ψ1, δWψ2〉∗ 〈ψ2, δWψ2〉 − 〈ψ1, δWψ1〉

〈ψ1,K(δA)ψ2〉 〈ψ1,K(δA)ψ2〉∗ 〈ψ2,K(δA)ψ2〉 − 〈ψ1,K(δA)ψ1〉




is nonsingular. In particular, by Proposition IV.3, v = 0 is a conical intersection for the

Hamiltonian

H̃(v) = H(ū) + v1δZ + v2δW + v3K(δA).

We now define the C1 map q̃ : R3 → Y as q̃(v) = (V̄ + ū1V1 + ū2V2 + v1δZ + v2δW, Ā +

ū3A + v3δA). It is easy to see that K(q̃(v)) = H̃(v), and, in particular, v = 0 is a conical

intersection for K(q̃(v)). Then, thanks to Proposition V.1, for every v ∈ R3

q̃v =
3∑

j=1

vj ∂j q̃(0) = (v1δZ + v2δW, v3δA)

is not tangent to MI,U . Since the codimension of MI,U in Y is three, then Y = {q̃v : v ∈
R3}+ Tq̃(0)MI,U .
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Conicity of eigenvalues intersections

To conclude the proof of the lemma it is enough to show that {q̃v : v ∈ R3} ⊂
Im(ev′

(V1,V2,A,ū)
). For this purpose we consider the variations in (C(Ω,R))2 × C1(Ω̄,R3)×R3

w1 = (δZ/ū1, 0, 0, 0, 0, 0),

w2 = (δW/ū1, 0, 0, 0, 0, 0),

w3 = (0, 0, δA/ū3, 0, 0, 0),

for which we have

ev′(V1,V2,A,ū)(w1) = (δZ, 0),

ev′(V1,V2,A,ū)(w2) = (δW, 0),

ev′(V1,V2,A,ū)(w3) = (0, δA).

This concludes the proof of the lemma. �

We are ready to prove the main result of this section.

Proof of Theorem V.5. As in the proof of Theorem V.4, we first consider eigenvalues

intersections occurring outside the origin. Namely, thanks to Lemma V.7, we can apply

Theorem V.2 and conclude that, generically and for a prevalent subset of (C(Ω̄,R))2 ×
C1(Ω̄,R3), all double eigenvalues of H(u) with u ∈ U correspond to conical intersections.

Assume now that u = 0 is a double eigenvalues intersection for H(u). Proceeding as in

the proof of Theorem V.4 we have that u = 0 corresponds to a conical intersection if and

only if F (V1, V2,A) 6= 0, where

F (V1, V2,A) = det




Re (〈ψ1, V1ψ2〉) Im (〈ψ1, V1ψ2〉) (〈ψ2, V1ψ2〉 − 〈ψ1, V1ψ1〉)
Re (〈ψ1, V2ψ2〉) Im (〈ψ1, V2ψ2〉) (〈ψ2, V2ψ2〉 − 〈ψ1, V2ψ1〉)
Re (〈ψ1, KAψ2〉) Im (〈ψ1, KAψ2〉) (〈ψ2, KAψ2〉 − 〈ψ1, KAψ1〉)


 ,

with KA = HA+2Ā ·A and ψ1, ψ2 orthonormal eigenstates of H(0) pertaining to the double

eigenvalue. We have to show that the set F−1(R \ {0}) is both residual and prevalent in

(C(Ω̄,R))2 × C1(Ω̄,R3).

We have that F−1(R\{0}) is open. Density comes from Lemma V.6 (which in particular

implies that F is not identically zero) and multi-linearity of F . The set F−1(R \ {0}) is

therefore residual.

To conclude the proof we pick q̄ ∈ (C(Ω̄,R))2 × C1(Ω̄,R3) such that F (q̄) 6= 0 and

we consider the measure µ on (C(Ω̄,R))2 × C1(Ω̄,R3) supported on the one-dimensional
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Conicity of eigenvalues intersections

set {tq̄ : t ∈ [0, 1]} and induced by the Lebesgue measure on [0, 1]. Since it is easy to

see that, for any q ∈ (C(Ω̄,R))2 × C1(Ω̄,R3), F (q + tq̄) is a nonzero polynomial of degree

three in the variable t (having therefore at most three zeros on [0, 1]), it turns out that

µ(−q + F−1(R \ {0})) = 1. We thus obtain that F−1(R \ {0}) is prevalent. We conclude as

in the proof of Theorem V.4.

�

VI. CONCLUSION

In this paper we study the possibility that eigenvalues intersections for parameter-

dependent self-adjoint operators are conical. In particular we show that, for two important

families of parameter-dependent Hamiltonians, the subfamilies of Hamiltonians admitting

only conical intersections are both residual and prevalent. The main interest of this result

relies on the fact that recent papers (in particular Ref. 9) have shown the possibility of

exploiting the presence of conical intersection to obtain constructive approximate controlla-

bility results.
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Appendix A: Regularity properties of perturbed self-adjoint operators

In this section, we inspect some regularity properties of the spectrum and the spectral

projections of parameter-dependent self-adjoint operators. Before focusing on operators

satisfying the assumptions of Section II, we establish some regularity properties in a more

general framework. Some of the results presented here are proved in Ref. 9 (by classical

means, see also Ref. 19), therefore their proofs are omitted.

Here below, ρ(A) and σ(A) denote, respectively, the resolvent set and the spectrum of an

operator A, and R(A, ζ) = (A− ζ)−1 the resolvent of A at ζ ∈ C.

We begin with the following technical lemma.
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Conicity of eigenvalues intersections

Lemma A.1 (9) Let A,B be two self-adjoint operators with B A-bounded and ζ ∈ ρ(A).

Then the following inequality holds

‖BR(A, ζ)‖ ≤
(
1 + (|ζ |+ 1) ‖R(A, ζ)‖

)
‖B‖A. (A1)

In the following results, we analyze the behavior of the eigenvalues and the spectral pro-

jections under small perturbations of the operator. In particular, Lemma A.3 provides some

estimates on the variation of the eigenvalues. For a similar result, see Ref. 19, Chapter 7,

Theorem 3.6.

Lemma A.2 (9) Let A1 be a self-adjoint operator and I ⊂ R be a nondegenerate and

bounded interval whose boundary points belong to the resolvent set of A1. Then for every

ǫ > 0 there exists a δ > 0 such that, if ‖A1 − A2‖A1
≤ δ, then

i) σ(A2) ∩ ∂I = ∅ and if σ(A1) ∩ I is made of r eigenvalues, counted with multiplicity,

then the same holds for σ(A2) ∩ I.

ii) Calling PA1

I and PA2

I the spectral projections on I of A1 and A2, respectively, it holds

‖PA1

I − PA2

I ‖ ≤ ǫ.

Lemma A.3 (9) Let A1 be a self-adjoint operator and I ⊂ R be a nondegenerate, possibly

unbounded, interval whose boundary points belong to the resolvent set of A1. Assume that

that σ(A1) ∩ I is discrete and without finite accumulation points. If δ > 0 is small enough

and A2 is a self-adjoint operator satisfying ‖A2 − A1‖A1
≤ δ, then the eigenvalues of A2

contained in I are close to those of A1, in the following sense. Up to appropriately indexing

on a subset of Z the eigenvalues (counted with multiplicity) in σ(Aj) ∩ I, for j = 1, 2, and

denoting them with µi(Aj) we have |µi(A1)− µi(A2)| ≤ ǫ(1 + |µi(A1)|), where ǫ = e
δ

1−δ − 1.

For parameterized families of self-adjoint operators, we can prove some properties con-

cerning the differentiability of the spectral projections associated with separated portion of

the spectrum, as the following result shows (see also Refs. 19 and 30 for similar arguments).

Proposition A.4 Let Y be a Banach space with norm ‖ · ‖Y and K(·) be a C1 function

from Y to Bsa(D(K(0)),H). Assume moreover that K(q) − K(0) is K(0)-small for every

q ∈ Y. Then, for every q0 ∈ Y and every nondegenerate interval I ⊂ R whose boundary
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Conicity of eigenvalues intersections

points belong to the resolvent set of K(q0), there exists a neighborhood U of q0 in Y such

that the spectral projection PI(q) on I associated with the self-adjoint operator K(q) is well

defined as a function from U to Bsa(H,D(K(0))) and C1 at q0.

Proof. First of all, we recall that K(·) is C1 if it is Fréchet differentiable and its differ-

ential q 7→ K ′
q(·), which takes values in the space of bounded linear operators from Y to

Bsa(D(K(0)),H), is continuous, that is, for every q̂ ∈ Y

lim
‖q−q̂‖Y→0

sup
p∈Y

‖K ′
q(p)−K ′

q̂(p)‖K(0)

‖p‖Y
= 0.

By hypothesis and Lemma A.2, there exists a closed path Γ in C encircling I such that, for

q in a small enough neighborhood U of q0 all the elements of σ(K(q)) in the interior of Γ

belong to I. Then, PI(q) is given by Riesz formula

PI(q) = −(2πi)−1

∮

Γ

Rζ(q) dζ,

where Rζ(q) denotes the resolvent R(K(q), ζ). The boundedness of PI(q) in the norm ‖ ·
‖B(H,D(K(0))) is a consequence of (A1) and of the equivalence of the graph norms of K(0) and

K(q).

Let us now prove Fréchet differentiability. We claim that the Fréchet differential of PI(q)

at q0 is given by the operator-valued function

p 7→ −(2πi)−1

∮

Γ

Rζ(q0)K
′
q0
(p)Rζ(q0)dζ.

First of all we notice that, as a consequence of (A1), the integrand is bounded as an operator

from Y to B(H,D(K(0))) and, since the corresponding bound varies continuously for ζ ∈ Γ,

the integral is bounded too. Take ζ belonging to the resolvent set of K(q0); thanks to (A1),

possibly shrinking U we can write

Rζ(q) = Rζ(q0)
(
id + (K(q)−K(q0))Rζ(q0)

)−1

= Rζ(q0)

∞∑

k=0

(
(K(q0)−K(q))Rζ(q0)

)k

for every q in U . Then, from

Rζ(q)− Rζ(q0)− Rζ(q0)(K(q0)−K(q))Rζ(q0) = Rζ(q0)
∞∑

k=2

(
(K(q0)−K(q))Rζ(q0)

)k
,

and since, possibly shrinking U again, we can assume that

‖K(q)−K(q0)‖K(0) ≤ 2‖K ′
q0‖K(0)‖q − q0‖Y ,
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we have that there exists a constant Ĉ > 0, uniform with respect to ζ ∈ Γ, such that

‖Rζ(q)−Rζ(q0)− Rζ(q0)(K(q0)−K(q))Rζ(q0)‖ ≤ Ĉ‖q − q0‖2Y . (A2)

Setting ∆ = Rζ(q0 + p)− Rζ(q0)−Rζ(q0)K
′
q0
(p)Rζ(q0), we can write

‖∆‖B(H,D(K(0))) = ‖∆‖+ ‖K(0)∆‖. (A3)

Splitting K ′
q0(p) as the sum of K(q0 + p)−K(q0) and K

′
q0(p)−K(q0 + p)+K(q0), using the

triangular inequality and applying (A2), we see that the first term in the right-hand side

of (A3) is o(‖p‖Y). The same computations plus the fact that ‖K(0)Rζ(q0)‖ is bounded

prove that also the second term is o(‖p‖Y). This proves the claim.

In order to prove the continuity of the differential of PI at q0 it is enough to show the

continuity of the operator-valued linear map q 7→ Rζ(q)K
′
q(·)Rζ(q) at q0, for ζ ∈ Γ. This is

a simple consequence of the continuity of q 7→ K ′
q(·), the Second Resolvent Identity

Rζ(q0)−Rζ(q1) = Rζ(q1)(K(q1)−K(q0))Rζ(q0),

and equation (A1). �

Remark A.5 Let λ(q) be a simple isolated eigenvalue of K(q), for every q in some domain

U ⊂ Y. As a straightforward corollary of Proposition A.4 we obtain that λ(·) is C1 in U .
Analogously, there exists a C1 function φ : U → D(K(0)) such that φ(q) is an eigenstate of

K(q) corresponding to λ(q), for every q ∈ U .

We now focus on parameter-dependent self-adjoint operators that satisfy the hypotheses

stated in Section II. In particular, in the next results H : R3 → Bsa(D(H(0)),H) is a C1

map such that H(u)−H(0) is H(0)-small for every u.

Proposition A.6 Assume that, for u belonging to some bounded domain U ⊂ R3 and for

some open bounded interval I, σ(H(u)) ∩ I is made of m eigenvalues, counted with their

multiplicity. Then σ(H(u)) ∩ I = {µi(u) : i = 1, . . . , m}, where every µi is Lipschitz

continuous.

Proof. Applying the Mean-Value inequality, we get

‖H(u)−H(u′)‖H(0) ≤ sup
t∈[0,1]

‖∇H(tu+ (1− t)u′)‖H(0)|u− u′|,
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Conicity of eigenvalues intersections

where ∇H = (∂1H, ∂2H, ∂3H). Noticing that ‖∇H(·)‖H(0) is bounded on U , using the

equivalence of the norms (1) and applying Lemma A.3, we get the thesis. �

The last part of the section focuses on parametrized curves in the space of parameters; the

regularity results proved here below concern the regularity with respect to t of eigenvectors

and eigenstates of H(u(t)), for some sufficiently regular curve u : R → R3.

Proposition A.7 Consider a C1 curve γ : (t−, t+) → R3, with t− < t+, and assume that λ̄ is

a degenerate discrete eigenvalue of multiplicity m of H(γ(t̄)), for t̄ ∈ (t−, t+). Then, possibly

shrinking (t−, t+) around t̄, there exist m C1 functions Λl : (t−, t+) → R, l = 1, . . . , m, such

that Λl(t) is an eigenvalue of H(γ(t)).

Proof. The proof is inspired from that of Ref. 28, Theorem XII.13. Thanks to Proposi-

tion A.6, we know that there exists an interval I such that σ(H(u)) ∩ I is composed by m

eigenvalues, counted with multiplicity, for every u in a neighborhood U of γ(t̄); by Propo-

sition A.4, the spectral projection PI(u) is C1 on U . For every u ∈ U , we define the map

S(u) : PI(γ(t̄))H → PI(u)H as

S(u) = PI(u)
(
id + PI(γ(t̄))

(
PI(u)− PI(γ(t̄))

)
PI(γ(t̄))

)−1/2∣∣
PI(γ(t̄))H

.

It is a C1 isometric transformation from the eigenspace relative to λ̄ to the range of PI(u),

which is the sum of the eigenspaces relative to the eigenvalues contained in σ(H(u)) ∩ I

(see e.g. Ref. 30, Section 105). In particular, t 7→ S(γ(t))−1H(γ(t))S(γ(t)) is a C1 family

of symmetric m dimensional operators acting on PI(γ(t̄))H, having the same eigenvalues of

H(γ(t)) in I. We can then apply Ref. 19, Theorem 6.8 and get the proof. �

We remark that the smoothness of the operator is not sufficient to guarantee any regu-

larity of the eigenstates and the eigenprojectors in presence of eigenvalues intersections, not

even in the finite dimensional Hermitian case. Following Ref. 29, we consider the C∞ matrix

H(x) = e−1/x2


cos(1/x) sin(1/x)

sin(1/x) − cos(1/x)


 , x 6= 0,

with H(0) = 0. Its eigenvalues are λ(x) = ±e−1/x2 , therefore they are smooth, while its

(normalized) eigenvectors are


cos(1/(2x))

sin(1/(2x))


 and


− sin(1/(2x))

cos(1/(2x))


, which do not have limit

for x→ 0.
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Conicity of eigenvalues intersections

If the difference between the intersecting eigenvalues grows linearly with respect to the

parameters (as in the case of conical intersections), then the eigenvectors can be chosen

continuous. This is the thesis of the following proposition (see also Ref. 15, Theorem 6 for

a related result).

Proposition A.8 Let γ : (t−, t+) → R
3 be a C1 curve with γ̇(t) 6= 0 for every t ∈ (t−, t+),

and assume that there exists an interval I such that for every t ∈ (t−, t+) σ(H(γ(t))) ∩ I is

composed by two eigenvalues λ1 and λ2. Assume moreover that there exists t̄ ∈ (t−, t+) such

that λ1(γ(t̄)) = λ2(γ(t̄)) and

|λ2(γ(t))− λ1(γ(t))| ≥ C|t− t̄|,

for some C > 0.

Then the projector Pi(γ(·)) relative to λi, i = 1, 2, may be extended continuously on the

whole (t−, t+). Moreover, calling H lin(t) = H(γ(t̄))+ (t− t̄)∇H(γ(t̄)) · γ̇(t) the linearization

of H(γ(t)) around t̄, and P lin
1 (t), P lin

2 (t) its projectors relative to the eigenvalues in I, we

have that

lim
t→t̄

Pi(γ(t)) = lim
t→t̄

P lin
i (t), i = 1, 2,

where the limits above hold in the operator norm.

The proof of Proposition A.8 is a straightforward adaptation of that of Ref. 9, Proposi-

tion 3.1.

REFERENCES

1R. Abraham and J. Robbin. Transversal mappings and flows. An appendix by Al Kelley.

W. A. Benjamin, Inc., New York-Amsterdam, 1967.

2R. Adami and U. Boscain. Controllability of the Schrödinger equation via intersection

of eigenvalues. In Proceedings of the 44th IEEE Conference on Decision and Control,

December 12-15, pages 1080–1085, 2005.

3A. A. Agrachev. Spaces of symmetric operators with multiple ground states. Funct. Anal.

Appl., 45(4):241–251, 2011.

4N. Augier, U. Boscain, and M. Sigalotti. Adiabatic ensemble control of a continuum of

quantum systems. SIAM Journal on Control and Optimization, pages 4045–4068, 2018.

28

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
15

57
6



Conicity of eigenvalues intersections

5G. Besson. Propriétés génériques des fonctions propres et multiplicité. Comment. Math.
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