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Droplet-based microfluidics has emerged as a powerful technology for the miniaturization and 

automation of biochemical assays. The replacement of surfactants by nanoparticles as 

interfacial stabilizers has gained increasing interest. However, the stabilization mechanism of 

droplets by nanoparticles in microchannels is poorly understood, drastically hindering the 

development of practical applications. Current methods for droplet stabilization involve a trade-

off between low droplet production throughput and waste of large number of nanoparticles. 

Here, we introduce a modification to the droplet production junction that reduces the droplet 

stabilization time by an order of magnitude, and at the same time significantly reduces the 

particle waste. Our results show that the limiting step in the kinetics of stabilization is the initial 

time where both phases come into contact and offer a guideline for the design of particle-

stabilized droplet production devices. 

 

1. Introduction 

Droplet-based microfluidics is an efficient technology to generate, manipulate and analyze at 

ultra-high throughput droplets carried by an immiscible phase inside microchannels.[1] Droplets 

are used as miniaturized and isolated microreactors for controlled and high-fidelity 

(bio-)chemical reactions, with applications in single cell analysis and sequencing, cell selection 

and molecular diagnostics.[2-4] 
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Surfactants are commonly used for droplet stabilization in microfluidics, but particle-stabilized 

droplets –so-called Pickering emulsions– have been gaining increasing interest owing to their 

intrinsic interfacial properties: nanoparticles irreversibly adsorb to the droplet interface and 

provide a rigid interface preventing droplet break-up in narrow constrictions; they prevent 

cross-talk between droplets; they are chemically tunable allowing for the introduction of 

additional functionalities to the droplet interface opening potential applications with cell types 

which viability depends on their adhesion to a suitable substrate.[5-11] 

However, Pickering emulsions introduce new challenges that need to be addressed to achieve a 

full optimization of these systems within droplet-based microfluidics technology. For instance, 

the surface chemistry of particles is critical as it controls several independent properties such 

as the emulsion stability, rheological properties and biocompatibility.[12-14] 

From an engineering perspective, Pickering emulsions also have a limited throughput of 

production: the typical timescale required to stabilize them (~600 ms) is significantly higher 

than the needed for surfactant stabilized emulsions (~35 ms or less).[15-18] 

The bottle-neck in the throughput lies in the stabilization time of the emulsion, which relates to 

the inability of the nanoparticles to quickly and efficiently reach the interface. A method 

typically used to reduce the droplet stabilization time scale consists of increasing the 

concentration of particles in the continuous phase to a large excess. However, the excess of 

particles leads to their undesired loss, and it also affects the flow properties of the Pickering 

emulsion.[19] 

Another alternative is to introduce the particles in the droplets phase to minimize its waste. 

However, such an “Inside-Out” approach for the fabrication of Pickering emulsions is not 

suitable for most of “lab-on-chip” applications where the biochemical material inside droplets 

should replicate the one use in bulk experiments.[20] 

In a microfluidic device, mixing is dominated by molecular diffusion due to the laminar flow 

conditions imposed by the small dimensions of the system. Hence, the large time scale observed 

for stabilization of droplets with particles in microchannels is most likely limited by diffusion-

controlled transport of particles from the continuous phase to the droplet interface.[21,22] 

Considering this, we propose a new design for droplet production where we aim to promote the 

adsorption of particles to the oil-water interface by increasing the confinement of particles near 

it: we take as reference the widely used “flow-focusing” droplet production method with cross-

flow junction and we fashion a simple design modification where the continuous phase is 

separated –by function– in two streams, one for particle delivery and the second one for droplet 

production.[23,24] 
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We compare quantitatively both methods and demonstrate that our design modification reduces 

the droplet-stabilization time by one order of magnitude and at the same time significantly 

reduces the excess of particles required to stabilize the emulsion. Our experimental results 

therefore lead to design rules for a reliable emulsification using nanoparticles in microfluidics. 

 

2. Results and Discussion 

We first study the influence of experimental conditions on the stability of Pickering emulsions 

in microfluidics. We produce one microfluidic device design that allow us to test a standard 

flow-focusing production method (MI) and a modified version (MII) (Figure 1a). 

We produce monodispersed water-in-oil emulsions stabilized by particles with both 

configurations. For quantitative comparisons between MI and MII we consider as controlled 

parameters the ratio between the oil and aqueous flow rate 𝜆 = 𝑄𝑝 𝑄𝑤⁄ , the fluorinated oil flow 

rate Qp and the concentration of fluorinated silica nanoparticles cp (w/v). For MII, Qp is divided 

in two streams: Qp
* which co-flows with Qw before the droplet production junction, and contains 

a concentration of fluorinated silica nanoparticles cp
* (w/v); and Qo which does not contain 

particles and joins the system at the cross-flow junction while diluting the particles 

concentration by a factor 𝑐𝑝 = 𝑐𝑝
𝑄𝑝

𝑄𝑝
. Due to the laminar flow conditions imposed by the 

system dimensions, a long neck of Qp
* is formed in the incubation channel (as shown 

schematically in Figure 1a). Non-adsorbed particles will diffuse towards the particle-free 

fluorinated oil stream (Qo) with enough given time. Additionally, we test two subcases of MII, 

by varying the fluorinated oil used for the stream Qo: one subcase with HFE-7500 (MIIη↓, ‘low’ 

viscosity) and another with the more viscous FC-40 (MIIη↑, ‘high’ viscosity). 

Downstream of the production junction, droplets are incubated for a time of 𝜏 =

(𝐿ℎ𝜔𝑜) (𝑄𝑝 + 𝑄𝑤)⁄  in a channel of fixed length (L = 2 mm), width (ωo = 100 µm) and depth 

(h = 50 µm). During this time droplets remain separated from each other by the continuous 

phase until they reach a channel expansion (of width 6ωo) where they are exposed to stochastic 

collisions and accelerations that favor coalescence (Figure 1b).[25] 

For each experimental condition, we measure the droplet volume (V) and monitor the impact 

of the experimental condition on coalescence. Quantitatively, we measure at least twenty 

thousand droplets and define the emulsion stability parameter against coalescence (α) which 

indicates the fraction of droplets that did not coalesce inside the expansion chamber, e.g. α > 

0.999 indicates less than one coalescence event for one thousand droplets.[17] 
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In order to have a normalized reference of the particles available in the system, we estimate the 

concentration ccp (w/v) of particles needed to hexagonally close-pack a monolayer at the 

interface of a droplet of volume V (if all the particles in the continuous phase were to adsorb) 

and we define particles in excess as ε = cp / ccp. The parameter ε then indicates how many times 

in excess there are particles available in the continuous phase with respect to the needed to 

cover the droplets interface (Figure 1c). 

 

2.1. Counterintuitive effect of droplet incubation time on Pickering emulsions 

stabilization 

We investigate the effect of τ on droplet stability against coalescence for both production 

methods by fixing λ, cp and cp
* to a value of 2.5, 2 mg mL-1 and 12 mg mL-1 respectively. Since 

the incubation channel dimensions are fixed, we vary τ through the total flow rate (Qt = Qp + 

Qw) from Qt = 70 µL min-1 (τ = 8.6 ms) to Qt = 20 µL min-1 (τ = 30 ms). 

We observe an increase of V with increasing τ for both MI and MII methods (Figure 2b). The 

droplet size is determined by the competition between the local shear stress, stretching 

interfaces and the resistance to deformation given by the capillary pressure, characterized by 

the dimensionless capillary number 𝐶𝑎 = 𝜂𝑢 𝛾⁄ .[26] For constant viscosity (η) and surface 

tension (γ), Ca solely depends on the flow rate Qt (=u·ωo·h). Consequently, V decreases for 

larger Ca (or Qt). Droplet sizes depend on the two production methods. Using similar total oil 

flow rates, the droplets produced within M1 are consistently smaller droplets than within MII; 

in addition, higher oil viscosities produce smaller droplets. Qualitatively, this latter point is 

expected from the increase of the capillary number. Yet, the former observation indicates that 

the external oil flow only partly contributes to the shear at the interface, most likely because the 

oil flow at the junction did not have sufficient time to fully develop. This minor effect on the 

volume has however some important implication on other parameters: increasing V for fixed λ 

and cp leads to a decrease in surface per unit volume: ccp decreases and ε therefore increases. 

The increase of ε with the incubation time observed in Figure 2a, is therefore consistent with 

the corresponding increase in droplet volume. 

For these experiments, α is larger than 0.98 (Figure 2c) for all cases, corresponding to an 

emulsion with less than 2% of coalescence events. An excess of particles between 8 and 11 

times the needed to cover the droplet interface prevents coalescence even for short incubation 

times (between 8 to 30 ms). In order to analyze the robustness of the stabilization process, we 

tested the system under more stringent conditions by measuring the stability for lower particle 
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concentration. We reduce cp to 1 mg mL-1 and measure α as a function of τ while monitoring V 

and ε as previously. 

We investigate the effect of τ on droplet stability against coalescence for both production 

methods by fixing λ, cp and cp
* to a value of 2.5, 1 mg mL-1 and 12 mg mL-1 respectively. As 

previously, we vary τ through the total flow rate (Qt = Qp + Qw) from Qt = 70 µL min-1 (τ = 8.6 

ms) to Qt = 20 µL min-1 (τ = 30 ms). 

We observe again an increase of V with increasing τ for both MI and MII methods (Figure 2e). 

All the previous observations remain: the droplet size differs between the two production 

methods and with different viscosities and increasing τ correlates with an increase of ε as 

previously observed (Figure 2d). However, under these more stringent conditions, α now 

displays values much smaller than 0.98 for MI (Figure 2f), corresponding to unstable emulsions. 

In contrast, for both MII methods, α displays values larger than 0.99: an excess of particles 

between 4 and 5 is still able to prevent coalescence in our improved design. Remarkably, for 

case MIIη↑, τ does not seem to have any influence on droplet stability against coalescence, 

obtaining highly stable emulsions (α > 0.999) even for τ values as low as 8.6 ms and presenting 

a small decrease on stability (α = 0.997) for τ > 30 ms. 

A striking result we still need to highlight is the shape of α, which shows a decay as a function 

of τ and in some cases a non-monotonous behavior (Figure 2f). Naively, we would expect that 

increasing incubation time would yield more stable emulsions. However, our results show the 

opposite: droplet coalescence increases with increasing τ which indicates that under the studied 

conditions additional processes are dominating the dynamic stabilization of the Pickering 

emulsion against coalescence. 

The decay of α observed for all cases coincides with a notable change in V, which seems to be 

related to a transformation of the droplet production mode from “dripping” to “squeezing” when 

Qt reaches 40 µL min-1. This is observable on the production snapshots shown on Figure 2g, 

where the droplets produced transition from circular shape (Qt > 40 µL min-1) to plug-like shape 

(Qt < 40 µL min-1) inside the incubation channel.[27] 

Furthermore, the behavior in MI at cp = 1 mg mL-1 is informative: for low τ values, α increases 

with increasing τ, reaches a maximum at 15 ms (Qt = 40 µL min-1) and then decreases with 

higher τ values. This behavior suggests a competition between two processes affecting droplet 

coalescence in MI at low cp: for small droplets produced through dripping mode, longer τ allows 

further particle adsorption which yields more stable Pickering emulsions; while for larger 

droplets produced in squeezing mode, an additional process linked to the production mode 

and/or the size of the droplets produced dominates the Pickering emulsion stability.  
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In order to unravel the later mechanism, we want to summarize its possible origins: The stability 

of Pickering emulsions against coalescence relies on the adsorbed particles at the interface 

preventing the dispersed fluids from contacting each other.[28] When the droplet surface is not 

fully covered by absorbed particles, the drainage of the liquid films of the continuous phase 

between two approaching droplets becomes the rate-determining step for droplet contact and 

fusion.[29] An increase in droplet size increases the level of droplet confinement in the 

microfluidic device. Previous studies have found that geometrical droplet confinement results 

in additional hydrodynamic wall forces, which promotes coalescence due to an increased rate 

of film drainage between approaching droplets.[30,31] Additionally, smaller Qt increases the 

residence time of droplets in the coalescence chambers, giving more time for film drainage to 

occur.[32] 

However, even though this effect could explain the decreasing stability with increasing droplet 

size for each individual case, it does not explain the differences between MI and MII: for cp= 1 

mg mL-1, MII produces significantly more stable Pickering emulsions than MI, despite of 

producing always larger droplets than MI. This suggests that our improved method promotes 

particle adsorption. 

From these experiments, we conclude that: for a fixed particle concentration, Pickering 

emulsions stability against coalescence in a microfluidic device is not necessarily improved by 

increasing the droplet incubation time. Additional processes –apparently related to droplet 

volume– are able to dominate the dynamic stabilization of Pickering emulsions. Additionally, 

the droplet production design MII bears a clear advantage for Pickering stabilization over the 

standard method of production MI, where the subcase MIIη↑ yields the best result, producing 

Pickering emulsions with α > 0.999 for τ as low as 8.6 ms.  

 

2.2. The early stage of droplet production is key for Pickering emulsion stabilization  

In order to gain a better understanding on the role of droplet confinement on Pickering emulsion 

stability, we set new experimental conditions where we fix τ and modify V by varying λ. From 

our previous experiment, we select the data point where MI experienced maximum stability: τ 

is 15 ms (Qt =40 µL min-1), cp is 1 mg mL-1 (Figure 3, left panel) or 2 mg mL-1 (Figure 3, right 

panel) and cp
* is 12 mg mL-1. 

We increase λ from 0.8 to 3. An increase of λ implies a decrease of the aqueous flow (Qw) with 

respect to the particle dispersion flow (Qp), which favors an increase of ε (more particles 

available per volume of water). 
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We then monitor α and V as a function of ε. For both cp values and methods, V decreases and α 

increases with increasing ε. The production of smaller droplets is a direct result of decreasing 

Qw. Additionally, V(MIIη↓) >V(MIIη↑) >V(MI) remains as a result of the inherit differences 

between the droplet production conditions highlighted in the previous section. 

The increase of α is consistent with an increase of particles in excess, as well as a decrease of 

the droplet volume (less confined droplets). Interestingly, for ε values between 4 and 5, we 

obtain a range for which the two cp cases overlap presenting significantly different droplet size: 

for cp = 1 mg mL-1 (Figure 3, left panel), V varies between 150 and 280 pL; for cp = 2 mg mL-1 

(Figure 3, right panel), V varies between 330 and 400 pL. We then compare the effect of droplet 

confinement on α for the same ε values. 

For all cases, we obtained V and α for ε = 4 by interpolating our data points using an exponential 

fit: for MI, the smaller droplet (167 pL) presents a smaller α value (0.899) in comparison to the 

significantly more confined case (V = 332 pL, α = 0.982); for MII, in both cases α remains 

above 0.99, and we observe a minor decrease on stability for larger droplets at cp = 2 mg ml-1. 

Because these two observations are at odds, we cannot explain them from the same physical 

origin, e.g. the effect of confinement: additional effects control the stabilization of the system. 

The higher stability for larger droplets observed for MI could be a result of the initial 

emulsification step: the dilution of particles in MI from cp* to cp occurs off-chip. For λ1 = 2.5 

and cp1 = 1 mg mL-1 (Figure 3, central panel), the oil stream (Qp1 = 28.6 µL min-1) has a smaller 

local concentration of particles, than the similar data point at λ2= 1 and cp2 = 2 mg mL-1 (Qp2 = 

20 µL min-1). We hypothesize that a higher local concentration of particles at the droplet 

formation junction is favoring particle adsorption, and consequently improving the emulsion 

stability.  

This hypothesis is consistent with our data. Indeed, the higher local concentration of particles 

at the production explains the difference found so far between our new method MII and the 

standard method MI. For MII, the dilution from cp
*= 12 mg mL-1 to cp1 = 1 mg mL-1 (or cp2 = 2 

mg mL-1) occurs inside the chip at the flow-focusing point. Qp1
* (or Qp2

*) co-flows with the 

aqueous phase when it reaches the flow-focusing point, where the stream of particle-free oil 

Qo1 = 26.2 µL min-1 (or Qo2 = 16 µL min-1) generates enough stress to break the aqueous stream 

into droplets. The local particle concentration during droplet formation is 12 mg mL-1 

(significantly more than method MI), increasing the adsorption of particles to water-oil 

interface. Furthermore, particle adsorption at the droplet-formation step would be aided by the 

shear-stress provided by the cross-flow –which also controls the droplet size– hinting at this 
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effect –rather than droplet confinement– as the one dominating the dynamic stabilization of 

Pickering droplets when the local particle concentration is constant. 

Overall, we deduce that droplet formation is a critical step on Pickering emulsion stabilization 

(in a microfluidic chip): the adsorption of particles to the interface –aided by high local particle 

concentration and shear stress provided by the cross-flow– during droplet formation have a 

greater impact on stability than the bulk particle concentration and incubation time given to 

droplets downstream the microchannel. 

 

2.3. Improving the stabilization by hydrodynamically targeting particles to the interface  

We further test the influence of the local particle concentration and of the two production 

methods by designing a new set of experimental conditions: Here we aim to reduce the droplet 

size variations between production methods while keeping a substantial difference of the local 

particle concentration at the moment of droplet formation. We use the co-flow/flow-focusing 

combination for method MI (Figure 4a), with cp in both oil streams: Qp
* (co-flow) and Qp 

(cross-flow). We fix the oil-aqueous ratio (λ =2.7) as well as Qw /Qp
* (4.28). 

We vary cp
* (off-chip) between 1.3 and 6.5 mg mL-1, obtaining cp values between 0.11 and 0.55 

mg mL-1. We monitor α as a function of ε for different incubation times (τ) by changing both L 

(from 5 to 20 mm) and Qt (from 40 to 80 µL min-1). The droplet volume (Figure 4b) remains 

similar for both methods (MI and MII) and decreases with increasing Qt, likewise our previous 

observations. For all cases, α increases with increasing ε (Figure 4c). The increase of incubation 

length (L) does not affect the stability of the systems significantly. Only a minor increase on 

the stability is observed for the standard production method (MI) when L reaches 20 mm. When 

the total flow rate (Qt) increases, an increase of α is observed for MI and MIIη↓, when L = 5 

mm. For the studied range of ε (from 1 to 6), MI could not reach α > 0.999 with incubation 

times as large as 150 ms; while MIIη↑ reached it even for values as small as ε = 1.5 and τ = 

18.75 ms. These results confirm the importance of the droplet formation step over final droplet 

stability. During this step most of the particles adsorb to the water-oil interface. This adsorption 

strongly depends on the local concentration of particles, as well as the viscous stress provided 

by the oil stream at the flow-focusing junction (which would be stronger for the more viscous 

oil (FC40) used in MIIη↑). When insufficient number of particles are adsorbed during the 

formation step, very large incubation times are needed to obtain a stable system. In practice, 

our results bring a new design rule for droplet production in the presence of particles: 

maximizing the local particle concentration during droplet production, in addition to the viscous 
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stress provided by the cross-flowed oil, is the most efficient mean to stabilize a Pickering 

emulsion in microfluidics. 

 

3. Conclusion 

In summary, we analyzed quantitatively the dynamics of stabilization of interfaces by 

nanoparticles in microfluidics. Our analysis revealed the crucial role of the flow profiles at the 

production junction on the stabilization kinetics. From our measurements, we determined 

design rules for the effective stabilization of Pickering emulsions in microfluidics. The critical 

parameters for an efficient stabilization are the nanoparticle concentration near the aqueous 

interface and the shear stress provided by the cross-flow during droplet formation. We control 

the former by adding a co-flow of particles dispersion with the aqueous phase, and the later by 

increasing the velocity or the viscosity of the cross-flow oil. These design rules allow us to 

significantly increase the droplet production throughput with a minimal amount of particle 

waste. Taking these guidelines, new designs could be implemented and adapted to the 

requirements of each technological application. 

 

4. Experimental Section 

 

4.1 Fluorinated silica nanoparticles synthesis 

Pristine silica nanoparticles (Si-NPs) (δ= 65 nm, Figure 5a) are synthesized in house following 

the protocol described by Hartlen et al. [33] Surface fluorination is performed as reported before: 

First, Si-NPs are dispersed in absolute ethanol (99%) at 10 mg ml-1; Then, Ammonium 

hydroxide solution (30%) is added until a concentration of 2% v/v is reached; Finally, 

1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES) is added to obtain a final concentration 

of 70 mg ml-1.[13] 

The reaction is left mixing at 250 rpm for two days. Then, the dispersion is centrifuged at 15000 

rpm for 1 h during three washing cycles. After removing the supernatant, the particles are 

desiccated overnight in a vacuum chamber at room temperature. Finally, the particles are re-

dispersed in HFE7500 (3M) using a sonication bath (15 min) followed by vortex mixing. 

 

4.2 Determination of ccp 

The concentration needed (ccp) to hexagonally close-pack a monolayer of particles at the droplet 

surface (S) was estimated: first, the number of particles needed at the interface (ncp) was 
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calculated assuming a 90◦ contact angle at the aqueous-oil interface and a hexagonal packing 

density of 0.9069. 

𝑛𝑐𝑝 =
0.9069𝑆

𝜋 (
𝛿
2)

2  

Then, ccp was calculated as 

𝑐𝑐𝑝 =
𝜋

3

𝛿3

2

𝜌𝑝𝑛𝑐𝑝

𝜆𝑉
 

Where δ is the particle diameter, and ρp is the particle density, estimated as 0.165 g cm-3 through 

titration with sodium hydroxide as introduced by Sears, (see supporting information).[34]  

 

4.3 Microfluidic device fabrication and experimental design 

The microfluidic device was designed and molded in PDMS using soft-litography techniques 

of replica molding of a SU-8 master with a pattern depth of h= 50 μm (Figure 5b).[5,35] 

The PDMS was treated under oxygen plasma and bounded to a glass slide. The device channels 

were made hydrophobic by surface treatment with a commercial coating agent (Aquapel, PPG 

Industires). The microfluidic inlets were connected to syringes through Peek tubing of 0.75 mm 

inner diameter and the flow rates were controlled using syringe pumps (Nemesys, Cetoni). 

The device was designed to test stability against droplet coalescence for two different 

production methods, which are achieved by selective puncture of the device inlets (Figure 5c): 

The first method (MI) consists in a standard flow-focusing production, where the particles are 

dispersed in the continuous phase (HFE-7500) and pre-diluted at the required concentration 

(cp); in the second method (MII) the aqueous phase (deionized water) co-flows with a 

concentrated dispersion of particles (cp
*) before reaching the droplet production junction where 

it meets (cross-flow) a stream of particle-free oil that dilutes cp
* down to cp. Additionally, two 

different oils are tested for the cross-flow in MII: HFE-7500 (MIIη↓), with a viscosity of 0.77 

cSt and FC-40 (MIIη↑) with a viscosity of 2.2 cSt. 

After production, the droplets are incubated in a channel of fixed width (ω= 100 μm) which 

keeps them separated for a time proportional to a length (L). The incubation channel ends with 

an abrupt expansion of 600 μm that leads to a set of nine consecutive coalescence chambers of 

800 μm length each (Figure 5d). This coalescence chamber was divided into sections with the 

aim of introducing larger random collisions between droplets, this helped to identify small 

differences on stability between emulsion conditions that seemed similarly stable at first 

(Figure 5e). However, even though effective as a reference to compare different systems 

stability against coalescence, reaching high stability (α > 0.999) does not guarantee full 
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coverage of the droplets interface by particles. We empirically verified droplet coverage after 

emulsion collection by an optical readout (Figure 5f): upon drying, the volume of the droplet 

decreases. As the particles do not desorb from the surface, a buckling pattern is observed at the 

interface, characteristic of a layer of irreversibly adsorbed particles.[36,37] 

For all the experiments, at least 1500 frames were recorded at a frame rate of 20 fps. The images 

were processed with Image-J software where the area of each droplet was extracted for the first 

coalescence chamber (Figure 5d (red)), and the apparent diameter (D) calculated as the median 

value of the droplet population distribution.[38] The droplet volume (V) and surface (S) was 

calculated using a nodoid shape approximation, which it has been shown to accurately describe 

a droplet confined in a microchannel.[39] The stability against coalescence (α) is the total number 

of non-coalesced droplets (n(1)), divided by the total amount of droplets described before by 

Baret et al.[17]  

𝛼 =
𝑛(1)

∑(𝑖)
 

Here i indicates the coalescence level, e.g. i = 3 corresponds to droplets which size is three 

times the original droplet size. We calculate α with data extracted from the last coalescence 

chamber (Figure 5d (green)). 

 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the author. 
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Figure 1. (a) Schematic representation of a standard droplet production method (MI) and a new 

droplet production design (MII). (b) Incubation channel and coalescence chamber dimensions. 

(c) Schematic representation of particle concentration (cp) vs. concentration needed (ccp) to 

hexagonally close-pack a monolayer of particles at the droplet interface. 
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Figure 2. Comparison of methods MI and MII (Qo being (η↓) HFE7500 and (η↑) FC40) on the 

effect of τ on α, V (droplet volume) and ε. λ, L and cp* are kept constant, cp is also kept constant 

at: (a-c) 2 mg/ml and (d-g) 1 mg/ml, where we show snapshots of droplet production and the 

last segment of coalescence chambers for three data points (Qt= 70, 40 and 20 μL min-1). The 

error bars in c and f are calculated as the square root of the number of coalescenced event 

detected. Due to the significant differences in the values of a, the data for MI are shown as an 

inset in f.   
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Figure 3. Comparison of methods MI and MII (Qo being (η↓) HFE7500 and (η↑) FC40), for a 

fixed incubation time (τ = 15 ms). Stability (α) is monitored as a function of ε, which is varied 

along with V by increasing λ from 0.8 to 3. α and V(pL) values are calculated for ε = 2, 4 and 8 

(an exponential decay fit is used to interpolate the data). cp is kept constant at: 1 mg ml-1 (left, 

production snapshot for MI and MIIη↓ at λ = 2.5) and 2 mg ml-1 (right, production snapshot for 

MI and MIIη↓ at λ=1). 
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Figure 4. (a) Schematic representation of experimental conditions for method MI and MII (Qo 

is (η↓) HFE7500, (η↑) FC40). (b) V variation as a function of Qt for MI and MII, the error bars 

represent the standard deviation and the crosses the maximum and minimum values. (c) α 

variation as a function of ε for L between 5 and 20 mm and Qt between 40 and 80 μL min-1. 
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Figure 5. (a) TEM imaging of Fluorinated silica nanoparticles. (b) Profilometer measurements 

for the determination of the SU-8 master pattern depth. (c) Operation modes for droplet 

production with the same microfluidic pattern: for method MI, the central inlet is not pierced. 

(d) Coalescence chamber design divided into nine segments, droplet size is extracted from the 

first chamber, α value is extracted from the last chamber. (e) Stability parameter calculated in 

each chamber section. (f) Empirical observation of buckling pattern at the collected droplets 

interface upon drying. 

 


