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Abstract

Downsizing of devices opens the question of how to tune not only their electronic properties, but also
of how to influence ‘mechanical’ degrees of freedom such as translational and rotational motions.
Experimentally, this has been meanwhile demonstrated by manipulating individual molecules with
e.g. current pulses from a Scanning Tunneling Microscope tip. Here, we propose a rotational version
of the well-known Anderson-Holstein model to address the coupling between collective rotational
variables and the molecular electronic system with the goal of exploring conditions for unidirectional
rotation. Our approach is based on a quantum—classical description leading to effective Langevin
equations for the mechanical degrees of freedom of the molecular rotor. By introducing a time-
dependent gate to mimic the influence of current pulses on the molecule, we show that unidirectional
rotations can be achieved by fine tuning the time-dependence of the gate as well as by changing the
relative position of the potential energy surfaces involved in the rotational process.

1. Introduction

Gaining control over molecular-scale collective mechanical degrees of freedom, such as translations and
rotations, poses a big challenge to current state of the art nanoscale manipulation techniques. It therefore
represents a major advance in the field that individual molecular rotors as well as collective rotations in
molecular assemblies have been experimentally demonstrated [1-8]. The propagation of angular momentum in
such assemblies may open the door, e.g. to the implementation of molecular scale analog computing devices,
such as the Pascaline or more recent mechanical computers [9].

A crucial condition for realizing single-molecule gears is the ability to induce unidirectional rotations, which
can be achieved, e.g. by using current pulses [6, 10-12], voltage pulses [ 13, 14] or mechanical way[15, 16]ina
scanning tunneling microscope (STM) [17-19]. Meanwhile, diverse milestones have been achieved such as step-
by-step molecular rotation [20], controlling the rotational direction of a molecular rotor [21], and collective
rotation effects [22, 23], among others [24—27]. However, the underlying physical mechanisms leading to
unidirectional molecular rotation are not well understood, since they involve in general terms a delicate
interplay between collective mechanical and electronic degrees of freedom. On the theoretical side, a
combination of model-based approaches [28—34], catching the basic physics of the problem with more
advanced first-principles methodologies able to provide atomistic, system-specific information is required.
Some of the problems here include, e.g. the computation of the potential energy surface(s) (PES) necessary to
describe the excitation of molecular motion and the definition of one or more collective degrees of freedom—
through an appropriate coarse-graining procedure—to describe the rotational dynamics [35].

In this study, we approach the problem of unidirectional rotation getting inspiration from the well-known
Anderson-Holstein model (AHM) [36—38], which describes an electronic system linearly coupled to a harmonic
optical phonon mode. In general terms, changes in the occupation of the relevant electronic states lead in the
AHM to alinear shift of the equilibrium position of the vibrational mode PES. We aim at extending the AHM

©2019 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Sketch of the setup. The STM tip is probing the molecule on top of the substrate and triggers its rotational motion.

idea by going beyond the linear coupling regime and, more importantly, by considering a non-harmonic,
periodic potential energy surfaces associated with a collective rotational degree of freedom rather than with the
linear displacement of the standard AHM. Our basic assumption is that the movement of the tip of a Scanning
Tunneling Microscope (STM) can act as an effective time-dependent electrical gate for a molecule deposited on
the substrate, being able to generate a current-induce rotation. The setup we are envisioning is displayed in
figure 1: a single molecule adsorbed on a metallic substrate is electrically addressed by the STM tip. This gate is
able to change the average occupation of the relevant electronic state coupled to the collective rotational variable
(s) and it may thus trigger a (possibly) unidirectional rotation of the molecule. Specifically, we can design two
PESs with a given separation of minima and choose an appropriate switching of the gate to make the molecule
rotate one-way. To address this problem, we use a quantum—classical approach to the problem, by considering
the rotational degrees of freedom as classical variables, whose dynamics is governed by a generalized Langevin
equation, while, on the other hand, the electronic system is treated within the nonequilibrium Green function
(NEGF) technique exploiting methods developed in the context of current-induced forces [39-45].

The outline of the article is as follows: in section 2, the rotational analogy of the AHM Hamiltonian is
formulated and the corresponding equation of motion and the reduced density matrix are discussed. In
section 3, a simple example of a planar molecule with N-fold symmetry is considered. By performing an
adiabatic expansion in the reduced density matrix, we derive an equation of motion in the adiabatic limit, which
allows simplifying the problem and leading to the concept of mean torque, damping, and external-driving
torque. Consequently, it enables one to better estimate the conditions for uni-directional rotation. Finally, in
section 4 we summarize the article and give a brief outlook.

2. Methodology

2.1. General Hamilton operator
We first consider the general Hamilton operator of a molecule of interest, which we can write as:
Hyo = H, + Hpye, where H,and H,,, describe the electronic and nuclear degrees of freedom, respectively:

H. =" &Ry, ..., Ry)d} ¢))

p?
Hnuc = Z 2]\14 + Vnuc(Rb B RNa) (2)

i i
The electronic part of the Hamiltonian is written, within a single particle picture, using molecular orbitals and is
thus diagonal in this basis. { ¢,} are the corresponding molecular orbital energies and the operator d (d,) creates
(annihilates) an electron in the #nth molecular orbital (including spin degrees of freedom). These orbitals in
general depend on the individual coordinates of the constitutive N,-atoms {R;, ..., Ry, }, meaning that
intramolecular distortions can modify the orbital energies. The nuclear part is treated classically in the spirit of
the Born-Oppenheimer approximation by invoking the large mass difference between electrons and nuclei [46].
The variables P; and M, denote the momentum and mass of the ith nucleus, respectively. In order to address the
rotational dynamics of a molecule deposited on a substrate, we need to compute its potential energy surface in
terms of the full set of nuclear coordinates {R, ..., Ry, } and include the influence of the surface; this requires,
however, an atomistic approach to the problem, which goes beyond the scope of the current study. To further
proceed, we assume that the substrate is acting only as a conformational constraint, so that the dynamics of the
molecule on the substrate can be described in terms of only three collective variables: the center of mass
coordinates (implying that the internal relative motion is neglected) and two collective angular variables. Thus,

2



10P Publishing

J. Phys. Commun. 3 (2019) 025011 H-HLinetal

Figure 2. The orientation of the molecule specified by an azimuthal angle § and polar or tilt angle 1.

we write the Hamiltonian as:

P? I?
Huol = > &(Reu, 0, ¥)d, dy + —2 4 + VoueReu, 0, ), 3
n Mmol 21n 0,7)

where Ry and M, are the center of mass coordinate of the molecule and the total molecular mass,
respectively, 0 is the azimuthal angle in a plane parallel to the substrate, and ¢ is a polar angle or tilt angle with
respect to the normal to the substrate (see figure 2). Note that these angles can always be clearly defined with
respect to the specific orientation of the molecule in the state with lowest energy. The vectors L is angular
momentum and I,,, ) is the moment of inertia with respect to the principle axis (8, 1p). Clearly, a
more systematic approach would imply an explicit coarse-graining of the full set of molecular coordinates
{R;} (N, degrees of freedom) down to a set of few collective variables, going beyond Rcyy, 6, 9 [35]. Here,
however, we assume that this has been already carried out and based our choice of the collective coordinates on
physical intuition. To further simplify our model, we consider situations where the molecule can not be tilted
with respect to the normal to the substrate, thus removing the angular variable ¢ from our description. If the
center of mass is also fixed by the interaction with the substrate, we are then left with a single angular degree of
freedom 6. We can separate the electronic Hamiltonian into a contribution arising from occupied states —up to
the highest-occupied molecular orbital (HOMO)-and a contribution from the unoccupied states —beginning
with the lowest-unoccupied molecular orbital (LUMO):

H, = Z fmd,j;dm + Z 6ﬂd,fd,,. 4)

m<HOMO n>LUMO

In general, only orbitals below the LUMO are filled up. Therefore, the electronic operators are acting on a
subspace of the Fock space in which all the occupation numbers below HOMO are equal to 1. As a result, the first
term in the previous equation becomes a scalar function of the collective variables { Rcyy, 60, 1}, namely

> €m = Uo(Rem» 0, 1), which defines the ground state potential energy surface of the molecule. If now
additional electrons are added to the molecule, the Hamiltonian in this subspace becomes:

Ho=U+ 3 (U~ U)dydy ®)
n2LUMO
where U,, = ¢, + Ujrepresents now the potential energy surface with an occupied nth-orbital.
Once this minimal molecular Hamiltonian has been introduced, we can easily extend it to include the
coupling to electronic degrees of freedom describing the electronic systems of the substrate and the STM tip:
Hiw: = Z €ka C]ja Cka + Z An(t) d;;rdn + Z Z (Tl?(yclju dn + hC) (6)
ka n>LUMO ka n>=LUMO
The molecule is contacted by the STM tip (&« = T) and deposited on the substrate (&« = S) with the energy
spectra €, where k stand for the corresponding wave vector. The electronic matrix element T}, describes the
coupling between the levels in the molecule and the reservoirs. The operators ¢, and ¢, are creation and
annihilation operators of an electron in level ¢, respectively. The third term in equation (6) mimics the local
electrostatic gating effects coming from the action of the STM tip on the molecule such as consecutive probing;
the overall effect is included in a time-dependent gating A, (¥).
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2.2. Rotational Anderson-Holstein model (RAHM)
Combining equations (3) and (6), we arrive at the following general Hamiltonian:

Hpapm = I:Ie + I:Imol + Ve (7)
with

H= > A,(tdld, + Z EkaCkaCkn +> > (Tkuckad + h.o),

n>LUMO ka n>LUMO

~ P2 12 -

Hmol =M + + UO:
2Mmol 2'In 0,7)

V;fm = Z (Gn - UO)d;jdm
n>LUMO

where Uy = Uy + Vyueand U, = U, + Vuc. Now, H, represents the effective electronic Hamiltonian relevant
for the dynamics and H,,, is the unperturbed molecular Hamiltonian with effective ground state potential energy
surface Uj. The interaction term V,_,, which is crucial in our approach, describes the possibility that the
molecular conformational state can change from its ground state PES U, to any other PES U, in dependence on
the occupation of electronic states with energies ¢, > epupmo. Note that the interaction U, — Uy is in general a
non-linear function in the angular variables § and W. If the angular distortions and the separation of the two PES
minima can be considered as small, then a Taylor expansion can be used to obtain a linear coupling between the
angles and the electronic degrees of freedom. In this case, we recover the AHM. However, in our case, where the
focus is the possibility of inducing global rotations of the molecule, both the full non-linear potential and the
non-linear electron-rotation coupling must be taken into account. Therefore, our model can be viewed as a
generalized version of the AHM. For the sake of simplicity, we will drop all the tildes from now on.

To extend the model given by equation (7), one can include the first-order corrections due to the fast nuclear
dynamics in the Hamiltonian, which yields off-diagonal coupling terms. In general, one may also introduce an
angle dependence of the molecule-lead coupling strength. This dependence will be determined by the details of
the setup, e.g. the geometry of molecule and the tip.

2.3. Langevin equation
Using Hamilton’s equations of motion, we can derive a Langevin equation for the rotational dynamics of the
classical variable 6 as:

Uy

10 + —
00

= Tr[i(U(G) —~ U0(0)1)a] +§ (8
00
where o denotes the reduced electronic density matrix. We have further introduced a matrix U with elements
givenby U,,,, = U,,0,,,,,- In this equation of motion, the first term on the right hand side will be denoted as
current-induced torque. It is given by the expectation value of an operator valued torque. The second term, 3
which is a stochastic operator, quantifies the deviation of the torque from the mean value. If one assumes that the
time scales for the rotational dynamics of the molecule and for the electron transfer from the tip to the molecule
are well separated, then the electronic system can always reach a stationary state according to the corresponding
molecular configuration. This represents the so called non-equilibrium Born-Oppenheimer (NEBO) approx-
imation [40], and one can show that the noise term in the adiabatic limit is always delta-correlated in time. In
order to account for the noise, the operator  is often replaced by a classical stochastic torque &(#) with an
appropriate correlation function [40, 42, 43, 45]. Note that the damping is implicitly hidden in the first term.
One can perform the adiabatic expansion of the density matrix up to first-order to get an explicit expression for
the damping, which can be shown to fulfill the fluctuation-dissipation theorem in the limiting case of thermal
equilibrium. On the other hand, according to the equation (8) the dynamics of the relevant nuclear degrees of
freedom are mainly determined by an ensemble-averaged PES given on the right-hand side if the torque noise is
sufficiently weak. The opposite limit is captured by considering a single-trajectory dynamics, where the
switching between potential energy surfaces is purely stochastic [35].

2.4. Electronic dynamics

To actually solve equation (8), we first need to know the reduced density matrix, which can be obtained by
solving the following equation of motion in the time domain [47, 48]:

iﬁ%a(t) = [H®), o()]- + iy [T (1) + IL(1)]. ©)

Here, H (t) is the matrix with H,,,,,(t) = [A,(t) + U,(0(t)) — Uy(0(¢))]6,n, and I1, are so-called current
matrices, which can be expressed in terms of Green’s functions and self-energies as:
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mo - [ LG YSI, 1) — GP(, (YEL(, 1) (10)

Here G= and X< are lesser/greater Green’s functions and self-energies, respectively [49]. The current matrices
are closely related to the current by:

Ja(t) = 25—6 Re Tr{IL.(1)}, (11)

with e denoting the elementary charge. However, in the general case the calculation of the current matrices is
very challenging. To overcome this, we consider the wide-band limit [50], where the real part of the retarded self-
energy R is vanishing and the imaginary part is a constant independent of the energy. Then, we can solve the
following system of differential equations to get the reduced density matrix without evaluating the complicated
convolution integral in equation (10):

. . . 1 s
z/z/%o-(t) =[H(t), o(H)]- — i[T'/2, O'(t)]_._lZ(ZFa + > TL,(1) + h.c.], (12)
«a p=1
., 0 R, i
1551_[(117(1') = ?I‘a + [H(t) - EI‘ - XIP]Hap, (13)
where I, denotes the broadening matrix with I' = }° I}, = —2Im 3, and I1,,,(¢) are auxiliary current

matrices, which are related to the current matrix through the relation:

IL, (1) = —[1 — 2001 + Z ILop(t). (14)
p=1

The coefficients R, and poles XZP are determined by the Matsubara expansion [51] with coefficients R, = 1
and poles Xip ~ n, + w(2p — 1)/ B where p,, is the chemical potential in reservoir cand 1/3 = kT
represents the thermal energy. For a better convergence, we choose Karrasch’s approach [52] to obtain the

coefficients R, and poles z,. To get additional insight into the problem, we perform now an adiabatic expansion
of the reduced density matrix and the current matrices [53]:

c=00+o0 4, (15)
o, =1I%) + Hﬁfg + (16)

The superscript (1) denotes the n-th order correction with respect to the time derivative. The zeroth-order term
is the instantaneous solution of the time-dependent Hamiltonian and the first-order term will be related below
to the damping and the influence of external driving. We therefore limit or discussion to these two contributions
in the expansion and provide analytic expressions for them in the appendix A.

A similar expansion can be carried out for the current ] ,(¢), giving:

Jo (1) = JO(0) + I (),
JO) = [ (- 20<°>(t)]P+Re[ZHS’£(t)U,

p=1

p=1

JO(t) = %[—Eaﬂ)(t)r + Relz H“)(f)]]- a7)

where J{” and J{" are zeroth and first-order correction for the current flow out of the reservoir a.

3. A single electronic level coupled to the rotational motion

We apply the formalism presented above to the simple case of a planar molecule with N-fold symmetry placed
on top of a metallic substrate and we consider only one relevant electronic level (LUMO) as relevant for the
rotational dynamics. In addition, we focus on the current-induced torque only [54], so that the stochastic term is
not considered (Ehrenfest approximation). Since the ground state PES should display the molecular symmetry,
we make the Ansatz:

Uy (0) = 1y sin(NB), (18)

where 7, gives the amplitude of the angle-dependent potential. We also need to define the PES U, (6)
corresponding to the excited state with non-zero electron occupancy. The simplest way to describe it is by
introducing a phase shift between the two PES [35]:
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Ui(0) = 7osin(NO + ¢). (19)

Once we specify the molecular potential, we can write down the adiabatic corrections to the reduced density
matrix by using the adiabatic expansion; details of the calculations can be found in appendix B. Inserting the
obtained reduced density matrix into equation (8), we arrive at an equation of motion for the rotational degree
of freedom of the molecule:
- OU .
0+ 8—90 = Tu(0) + 746, 0) + 7.(0, ). (20)

The three terms on the right-hand side are the current-induced mean torque, current-induced damping, and the
external-driving torque, respectively, which are given by the expressions:

Tm(0) = —oN (cos(NO + ¢) — cos(NO)) oD (0), (21)
74(0, 0) = =N (cos(NO + ¢) — cos(NO)) o'} (0, 0)

= —7(0)9, (22)

7.(0, t) = —1yN (cos(NO + ¢) — cos(NO)) a0, ). (23)

o© is a zeroth-order (adiabatic) contribution to the density matrix, while og) and o'V are first-order corrections
related to the damping and external driving, respectively (further details are provided in appendix B). Once we
have the equation of motion, we are ready to solve the equation (20); the solutions will be divided into two cases,

depending whether the orbital shift is time-dependent or not.

3.1. Time-independent case
In this case, we consider a planar molecule with a three-fold symmetry (N = 3), which experiences a constant
orbital shift A(f) = const. One can immediately find that the external-driving torque vanishes according to
equation (B.2). To solve the equation of motion, we use the following parameters which are representative of
typical experimental conditions [14-16,35,55]: T = 5K, ¢ = 7/2,I = 1074 kg - m?, Ap = pp — ps =
10 meV, 7o = 10 meVandI" = 0.1 meV. For the initial condition, we set (0) = —m/4and #(0) = 0 rad ./ ns.
By solving the adiabatic Langevin equation, we can obtain the phase-space trajectory of the solution, which is
shown in figure 3(a). The red (black) line represents the solution with the orbital shift A = 1 eV (—1 eV)and the
solution exhibits a typical damped oscillation behavior with corresponding fixed-pointsat § = 67 and 07
(close to —m/3 and —/6 respectively).

To explain this oscillatory behavior, we rewrite equation (20) as follows:

_ OUegr
00

with the effective potential Uyg (0) = Uy(0) — f T,n(07)d0’. From equation (24), one can understand that the

16 = — ()6 (24)

0

bo
molecule is rotating according to the effective potential with an angle-dependent damping (), which are shown
in figure 3(b). In terms of the effective potential, it is easy to explain why the fix-points areat § = 67 and 0%:
when the orbital shiftis high (A = 1 eV), the corresponding electron density on the molecule is nearly zero.
According to our previous discussion when introducing the RAHM, we know that in this case U.g(0) =~ Uy(6).
As aresult, the molecule starts to change the orientation until it reaches the nearest local minimum on the
effective potential surface, which is simply at 6% (fixed-point on the right). On the contrary, if the orbital shift is
low (A = —1 eV), the average electron occupation approaches unity, which implies U.(6) ~ U;(6), so that the
nearest local minimum is at 7 in this case.

3.2. Time-dependent case

In the previous section, we have already seen that the location of the fixed-points depends on the orbital shift.
This suggests that a time-dependent orbital shift may be considered a way to manipulate the location of the
fixed-points, i.e. to control the rotational behavior of the molecule. Here, we assume the following orbital shift
(see figure 4):

1 — ek(t— t)

A(t) R

(25)
where Ais the initial orbital shift; k is the switching rate of the orbital shift and # is the switching time.

In the following calculations, we use the parameters ¢ = —117/12,k = 100 GHz, A = 1€V,
I=10*"kg - m*Ap =y — pig = 10meV, 7, = 10meV,I" = 0.1 eVandt; = 100 ps[14-16, 35, 55]. For
the initial conditions, we choose (0) = 6", 5(0) = ¢”(#*) and I, (0) = HE?; (6*), which means that the
molecule starts from one of the fixed-points. One can clearly see in figure 4(b) that as A(f) decreases the electron
occupation increases. The time-dependency of the total current flow into the molecule J; + Jg is also consistent
with the change of occupation. Since the occupation is changed, the fixed-points are also shifted. On the other

6
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Figure 3. Solution of equation of motion with parameters ¢ = 7/2,1 = 107 kg - m% py = —pg = 5 meV, 7 = 10 meV and
I’ = 0.1 eV. The nitial conditions are §(0) = —m/4 and §(0) = 0. The red (black) line represents the solution with the orbital shift
A =1 eV (-1 eV). (a) Phase-space trajectory. The black point marks the initial starting point. (b) Effective potential. The black points
mark the fixed-points on the right 8% and left 67.
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Figure 4. Solution of time-dependent orbital shift with parameters ¢ = —117/12,1 = 10 *' kg - m%, Ap = ju; — pig = 10 meV,
To = 1 meVandI' = 0.1 eV for different types of switching. Figures (a)—(d) show the time-dependency of orbital shift, electron
density, total current flow into the molecule and phase-space trajectory for single-switching with switching timing ¢, = 100 ps,
respectively. In the bottom, figures (e)—(h) illustrate the same quantities with two switching timing #, = 100 psand t, = 400 ps.

hand, the trajectory in figure 4(d) shows a similar oscillatory behavior as in the time-independent case. From the
pattern of the phase-space trajectory, it is straightforward to consider a consecutive switching of orbital shift to
see whether an open trajectory is possible, which would mean that the molecule is rotating uni-directionally
instead of oscillating around a local minimum. To implement consecutive switching, we apply the following
time-dependent orbital shift:
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Figure 5. Phase response of molecular average angular velocity & with parameters = 10™*' kg - m’, Ay = p1;, — pig = 10 meV,
7o = l meVandI' = 0.1 eV with two switching timing f; = 100 psand t, = 400 ps.

2 2
ek(t*l‘l) _|_ 1 ek(t*tz) + 1

A) = [ + I]A, (26)

with #; = 100 psand t, = 400 ps. Due to the second switch, the instantaneous change of the fixed-point can
possibly make the molecule rotate one-way. To achieve this kind of rotation, the switching timing has to be in
coherent with the instantaneous angular velocity; otherwise, the molecule is not able to cross the nearby
potential maximum and it will hence display an oscillatory behavior. In figure 4(h), since the second switch is
coherent, the trajectory becomes open, which means the rotation is uni-directional. Note that, in our approach,
the rotation is driven by manipulating the electrostatic gating effect explicitly instead of using a stochastic driving
torque [35].

3.2.1. Response to different phase-shifts

An interesting issue is whether a phase shift ¢ between the two PES may be found, such that the molecule will
rotate with the largest angular velocity. To answer this question, we have used the same parameters as for the
time-dependent case while adjusting the phase-shift from — to 7 to see the behavior of the average angular
velocity® @. In figure 5, one can clearly see that there exist certain windows in the values of the phase shift where
the angular velocity of the molecule is in resonance with the external switching. We therefore denote this
behavior as resonant rotation. The response is fully anti-symmetric with respect to ¢ = 0, since the ground state
PES Uy = 79 sin 36 is also anti-symmetric. In figure 5 there are peaks close to =7 and /2. The direction of the
rotation for ¢ close to —7 can be explained by considering the effective potential U;. Suppose t < t;, then the
molecule is always staying on a minimum of the PES. When t; < t < t, itis moving to a nearby minimum of

U, = 79 sin(30 — 117/12), which is on the right-hand side of the original location. For t > t,, the potential is
then switched back to Uy, but the angular velocity is large enough such that the molecule can further rotate in the
same direction, which is similar to the scenario in figure 4(h). For the peaks near ¢ ~ —/2, the mechanism is
similar. The only difference is that the second switching takes place before the molecule crosses the first local
maximum in the U surface for ¢ ~ —, whereas the second switching happens after the molecule passes the
first local maximum in the Uy surface for ¢ ~ —7/2.

4, Conclusion

We have proposed a rotational version of the Anderson-Holstein model to describe the molecular rotational
dynamics in a generic setup consisting of a single molecule adsorbed on a metallic substrate and electrically
addressed by an STM tip. By applying an adiabatic expansion to the time-evolution of the reduced density
matrix, the damping and external driving can be related to the first-order corrections of the reduced density
matrix. To demonstrate our approach, a planar molecule with N-fold spatial symmetry was considered, where a
single rotational variable couples non-linearly to an electronic level, the occupation of the latter being controlled

® The average is taken within 1000ps.
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byalocal, in general time-dependent gate mimicking the influence of current pulses coming from the STM tip.
We have shown that unidirectional rotation can be achieved by specific tuning of the time-dependent gate as well
as of the relative phase difference of the potential energy surfaces. Our framework can be systematically extended
to include multi-level electronic systems as well as more than one collective variable. It thus opens the possibility
to make contact with atomistic simulations able to provide quantitative information e.g. on the shape of the
potential energy surfaces involved in the rotational process [ 11] and on the strength of the coupling between
mechanical and electronic degrees of freedom. On this basis, a further going step would be the study of the
mechanisms leading to the transmission of angular momentum in coupled molecular rotor arrays, which
represents a major issue in designing molecule-based mechanical devices.
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Appendix A. Adiabatic expansion

In order to further simply the problem, we consider the adiabatic approximation, the reduced density matrix can
be expanded by the following:

oc=09+ o0 .. (A.1)
Similarly, this also holds for the auxiliary current matrices:

I, = IOf) + ) + ... (A.2)

A.1.Zeroth-order correction
For simplicity, we set i = 1 in the following. The zeroth-order correction o® and HE,?; can be obtained by
solving the following equation:

0 0
i—1O = i—a©® = 0. A3
or T or (A.3)
Then we can immediately obtain
© Ry i I
o = - H® = - =, | L. (A4)

Then the reduced density matrix can be obtained by solving the so-called Sylvester equation:

(H — iT/2)0® — ¢O(H + iT/2) = iy (F,.L, + L.F) (A5)
where

F=1_% &[H L X;p]l. (A6)
;AL 2

N

A.2. First-order correction
For the first-order correction, by plugging the zeroth-order corrections o® and Hff; into equations (13), (12)
and neglecting the derivative of the first-order terms Then we have the following equation:

. —1
a _ i .0 0
an - I:H(t) - EF - X;:p:l IEHQP’ (A7)
(H—-iT'/2)e® — ¢O(H + iT'/2) = iga'(o) —2iy ReII{). (A.8)
ot P

ap

As in zeroth-order case, the equations above enable one to get the first-order corrections.

9
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Appendix B. Density matrix for the single-level planar molecule

We show the analytic solutions of equations (A.5) and (A.8) for the planar molecule. The zeroth and first-order
terms are given by:

o® = LR > l:\I/(l — ﬁ(ro(sin(Nﬂ + ¢) — sin(NO) + A®) — p,) + ﬁf)
2 4T \ZTr 2 2 4
- w(l + 5By (sin(NO + 6) — Sin(NB) + A@) — i) + - )] (B.1)
2 2 47
5 — BN (cos(NO + ¢) — cos(N) O + A1)
82l
1 ip . . B
X Z[\I/’(— — —(1o(sin(NO + ¢) — sin(NO) + A()) — p,) + —P)
o 2 2w 47

+ ‘1/’(l + 2(7'0(sin(N0 + @) — sin(NO) + A(t)) — ) + ﬁI‘)]
2 2 4T

1N (cos(N0 + ¢) — cos(NO) O + A@®)

B
R
I 14
% % o [To(sin(NO + ¢) — sin(NO) + A(t) — iF/2 - XZPP
=10+ O A®)
=0, 0) + o0, 1). (B.2)

Note that the digamma function is defined as ¥(z) = ;—Z In(I'(z)), where I'(z) is the Gamma function. For
the first-order correction, we have defined two terms in the right-hand side of equation (B.2). The first term
inl) (6, 0)is called the damping term, which is proportional to the angular velocity 6. On the other hand, the

second term o' (6, t), is the external-driving term proportioned to the time derivative of orbital shift A(z).
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