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Unified H∞ Observer for a Class of Nonlinear Lipschitz Systems:
application to a real ER Automotive Suspension*

Thanh-Phong Pham1,2, Olivier Sename1, and Luc Dugard1

Abstract— This paper presents an extension of the synthesis
of a unified H∞ observer for a specific class of nonlinear
systems. The objectives are to decouple the effects of bounded
unknown input disturbances and to minimize the effects of
measurement noises on the estimation errors of the state
variables by using H∞ criterion, while the nonlinearity is
bounded through a Lipschitz condition. This new method
is developed to estimate the damping force of an Electro-
Rheological (ER) damper in an automotive suspension system,
and is implemented on the INOVE testbench from GIPSA-lab
(1/5-scaled real vehicle) for real-time performance assessment.
Both simulation and experimental results demonstrate the effec-
tiveness of the proposed observer to estimate the damper force
in real-time, face to measurement noises and road disturbances.

I. INTRODUCTION

Nowadays, semi-active suspensions are widespread in
vehicle applications because of their advantages compared
to active and passive suspensions (see [1] and references
therein). A review about control approaches is presented in
[2]. Some control approaches considered the damper force
as the control input of the suspension system, and then
use an inverse model or look-up tables for implementation
(see for instance [3], [4], [5]). Others use the force tracking
control schemes for local controller in order to attain control
objectives [6]. Therefore, the damper force signal is crucial
for control and diagnosis of suspension systems.

To fulfill the demand, several estimation methodologies
were proposed to estimate the damper force in real-time.
It is worth noting that the damper force measurements
are difficult and expensive, so the methods should used
classical on-board sensors. Moreover the method must take
the dynamic behavior of damper into account, and deal with
the nonlinearity in presence of unknown road disturbances
and sensor noises. Kalman filters were used in [7] to estimate
the damper force while ignoring the dynamic characteristic
of the semi-active damper. In [8], the authors proposed an
H∞ damping force observer based on a dynamic nonlinear
model of the ER damper, while three sensors are required

*This work has been partially supported by the 911 scholarship from
Vietnamese government. The authors also thank the financial support of the
ITEA 3, 15016 EMPHYSIS project

Thanh-Phong Pham is with Univ. Grenoble Alpes, CNRS, Greno-
ble INP>, GIPSA-lab, 38000 Grenoble, France. (e-mail: thanh-
phong.pham2@gipsa-lab.grenoble-inp.fr) and Faculty of Electrical and Elec-
tronic Engineering, The University of Danang - University of Technology
and Education, 550000 Danang, Vietnam (e-mail: ptphong@ute.udn.vn).

Olivier Sename and Luc Dugard are with Univ. Grenoble Alpes,
CNRS, Grenoble INP>, GIPSA-lab, 38000 Grenoble, France (e-mail:
{olivier.sename;luc.dugard}@gipsa-lab.grenoble-inp.fr). >Institute of Engi-
neering Univ. Grenoble Alpes

as inputs of the observer. To handle the nonlinearity and
maintain the consideration of dynamic characteristic of MR
damper, an LPV-H∞ based approach is introduced in [9]
using the deflection and deflection velocity data (which are
costly and not common sensors) to compute the scheduling
parameter.

To overcome the above issue, the LMI-based observer for
Lipschitz nonlinear systems is a potential approach since
the nonlinearity in the ER model satisfies the Lipschitz
condition. Over the last decade, there have been several
theoretical research contributions for observer design of
Lipschitz nonlinear systems (see [10]–[14]). The above-
mentioned methodologies are broadly classified into a) Pro-
portional Observers and b) Proportional-Integral Observers.
More recently, this has been extended to propose a unified
form of the dynamic observer for linear systems in [15], and
for Lipschitz systems in the absence of unknown inputs in
[16].

In this paper, we aim first to extend the unified observer
in [15] to Lipschitz systems in the presence of sensor noises
and unknown input disturbances based on the S- procedure
lemma. Then this observer is developed in order to estimate
the damper force of an ER damper in automotive suspen-
sion, using two accelerometers only. A nonlinear suspension
model of a quarter-car vehicle model is augmented with
a first order dynamical nonlinear damper model, which
captures the main behavior of the ER suspension system.

The two major contributions of this paper are as follows:
• A unfied H∞ observer for Lipchitz nonlinear system

in presence of unknown disturbances and measurement
noises is developed minimizing, in an L2-induced gain
objective, the effect of sensor noises and decoupling
unknown disturbances.

• The proposed observer has been implemented on a real
scaled-vehicle test bench, through the Matlab/Simulink
real-time workshop. The observer performances are then
assessed with experimental tests

The rest of this paper is as follows. Section II presents
the problem formulation and III the design of the unified
H∞ observer. In section IV this method is applied to the
real ER automotive suspension system. Section V gives some
concluding remarks.

II. PROBLEM FORMULATION

Consider the nonlinear Lipschitz system described by{
ẋ = Ax+BΦ(x)u+D1ωr

y = Cx+D2ωn
(1)



where x ∈ Rn, u ∈ Rm, ωr ∈ Rl, and ωn ∈ Rf are state,
control input, unknown disturbance input and measurement
noise input vectors respectively. Matrices A, B, D1, C and
D2 are known and of appropriate dimensions.
Assumptions:
A1) The nonlinearity Φ(x) is globally Lipschitz in x, i.e.:
∀x, x̂ ∈ Rn

‖Φ(x)− Φ(x̂)‖ 6 γ‖(x− x̂)‖,∀x, x̂ (2)

where γ is called the Lipschitz constant, which, according
to [11], [17], is rewritten here as (with Γ a constant matrix)

‖Φ(x)− Φ(x̂)‖ 6 ‖Γ(x− x̂)‖,∀x, x̂. (3)

A2) The control input is bounded |ui| 6 Ui with i =
1, · · ·m, U := [U1 · · ·Um]T . In practice, the known control
input signal U is bounded due to the power limitation.

The form of a unified H∞ observer is given by ż = Nz + Jy +HΦ(x̂)u+Mv
v̇ = Pz +Qy +Gv
x̂ = Rz + Sy

(4)

where z ∈ Rn is the state variable of the observer, v ∈ Rn
is the auxiliary vector, x̂ ∈ Rn is the estimated state vari-
ables. All matrices N, J,H,M,P,Q,G,R, S of appropriate
dimensions are the observer matrices to be designed.

The dynamic error is given as

ε = z − Tx. (5)

where the matrix T ∈ Rn×n is an arbitrary matrix.
Differentiating (5) with respect to time and using (1) and

(4), one obtained:
ε̇ = Nε+ (NT − TA+ JC)x− TD1ωr + JD2ωn

+(H − TB)Φ(x̂)u− TB(Φ(x)− Φ(x̂))u+Mv

v̇ = Pε+ (PT +QC)x+QD2ωn +Gv

x̂ = Rε+ (RT + SC)x+ SD2ωn.
(6)

Denote ζ =

(
ε
v

)
, equations (6) become

ζ̇ =

(
N M

P G

)
ζ +

(
NT − TA+ JC

PT +QC

)
x+

(
TD1

0

)
ωr

+

(
H − TB

0

)
Φ(x̂)u−

(
TB

0

)
∆Φ · u+

(
JD2

QD2

)
ωn

x̂ =
(
R 0

)
ζ + (RT + SC)x+ SD2ωn

(7)
where ∆Φ = Φ(x)− Φ(x̂).

It is obvious that if the following conditions are satisfied:

NT − TA+ JC = 0 (8)
TD1 = 0 (9)

H − TB = 0 (10)
PT +QC = 0 (11)
RT + SC = I (12)

the system (7) becomes
ζ̇ =

(
N M

P G

)
ζ −

(
TB

0

)
∆Φ · u+

(
JD2

QD2

)
ωn

e =
(
R 0

)
ζ + SD2ωn

(13)
where e = x̂− x is the estimation error.

The problem of the unified H∞ observer design reduces
to determine observer matrices N , J , H , M , P , Q, G, R, S
such that all conditions (8)-(12) are satisfied and the effect
of measurement noise ωn on estimation error e is minimized
while ∆Φ · u is bounded.

A. Parameterization of the observer matrices

In order to determine the observer matrices
T, P,Q,R, S,H,N, J of the proposed observer satisfying
all the conditions equalities (8)-(12), the parameterisation is
made by using the general solution of (8)-(12) as explained
in [15].

Firstly, from equations (11) and (12), one obtained(
P Q
R S

)(
T
C

)
=

(
0
I

)
. (14)

The equation (14) is solvable if and only if

rank


T
C
0
I

 = rank

(
T
C

)
= n. (15)

Next, let matrix E ∈ Rn×n be an arbitrary matrix of full
row rank such that:

rank

(
E
C

)
= rank

(
T
C

)
= n. (16)

Then there always exists a parameter matrix K such that:(
T
C

)
=

(
I −K
0 I

)(
E
C

)
⇔ T = E −KC. (17)

Consequently, equation (14) becomes:(
P Q
R S

)(
I −K
0 I

)(
E
C

)
=

(
0
I

)
. (18)

and there exists an exact solution set fulfilling (18), in the
form of(

P Q
R S

)
=

[(
0
I

)
Σ+ − Ym

(
I − ΣΣ+

)](I K
0 I

)
(19)

where Σ =

(
E
C

)
, Σ+ is any general inverse of matrix Σ

satisfying ΣΣ+Σ = Σ, Ym is a free matrix of appropriate
dimension. This is equivalent to:

P = −Ym1β1, Q = −Ym1β2, (20)
R = α1 − Ym2β1, S = α2 − Ym2β2 (21)



with Ym1 =
(
I 0

)
Ym, Ym2 =

(
0 I

)
Ym, α1 =

Σ+

(
I
0

)
, α2 = Σ+

(
K
I

)
, β1 = (I − ΣΣ+)

(
I
0

)
, β2 =

(I − ΣΣ+)

(
K
I

)
.

Besides, from the equations (9) and (17), one obtained

KCD1 = ED1 (22)

which can be solved if and only if

rank

(
ED1

CD1

)
= rank

[(
E
C

)
D1

]
= rankD1 = rankCD1.

(23)
there exists one solution of (22), as follows

K = ED1(CD1)+. (24)

From the condition (10), one obtains

H = TB = (E −KC)B = (E −ED1(CD1)+C)B. (25)

On the other hand, substituting (17) into the decoupling
condition (8), one obtains

N(E −KC)− (E −KC)A+ JC = 0

⇔
(
N J −NK

)
Σ = (E − ED1(CD1)+C)A (26)

which can also be parameterized as(
N K1

)
Σ = Θ (27)

where

K1 = J −NK,Θ = (E − ED1(CD1)+C)A. (28)

and the solution set of (27) is given by(
N K1

)
= ΘΣ+ − Ym3(I − ΣΣ+) (29)

which is equivalent to

N = α3 − Ym3β1 (30)
K1 = α4 − Ym3β3 (31)

where Ym3 is a free matrix of appropriate dimension and

α3 = ΘΣ+

(
I
0

)
, α4 = ΘΣ+

(
0
I

)
, β3 = (I − ΣΣ+)

(
0
I

)
.

(32)

Remark: If matrices P,Q,R, S,H,N, J can be chosen
according to (20), (25), (30), and (28), respectively, then,
all conditions (8)-(12) are fulfilled.

III. UNIFIED H∞ OBSERVER DESIGN

As mentioned above, since the conditions (8)-(12) are
satisfied, the system (7) is rewritten as follows:

ζ̇ =

(
N M

P G

)
ζ −

(
TB

0

)
∆Φ · u+

(
JD2

QD2

)
ωn

e =
(
R 0

)
ζ + SD2ωn.

(33)

From the results of above parameterization, the matrices
of system (33) can be rewritten as follows:

A1 =

(
N M
P G

)
= A11 − ZA12 (34)

B1 =

(
JD2

QD2

)
= B11 − ZB12 (35)

where A11 =

(
α3 0
0 0

)
, Z =

(
Ym3 M
Ym1 G

)
, A12 =(

β1 0
0 −I

)
, B11 =

ΘΣ+

(
K
Ip

)
D2

0

, B12 =

(
β2D2

0

)
.

Note that estimation error e is independent of the matrix
R. Since matrix Ym2 is fixed to Ym2 = 0 , the following
matrices are obtained

C1 =
(
R 0

)
=
(
α1 0

)
, (36)

D1 = SD2 = α2D2. (37)

Besides, let denote

W1 =

(
−TB

0

)
. (38)

From these results (34)-(38), the estimation error dynamic
system (33) becomes{

ζ̇ = A1ζ + W1∆Φ · u+ B1ωn

e = C1ζ + D1ωn.
(39)

Remark: All matrices A11, A12, B11, B12, W1, C1, D1 in
the system (39) are known.

Assuming the Lipschitz condition (3) for Φ(x), the unified
H∞ observer design problem is to determine the matrix Z
such that:
• The system (39) is stable for ωn(t) = 0.
• ‖e(t)‖L2

< γ‖ωn(t)‖L2
for ωn(t) 6= 0.

The following theorem gives a sufficient condition to solve
the above problem into an LMI framework
Theorem 1. Consider the system model (1) and the observer
(4). Given positive scalars γ and εl. The above design
problem is solved if there exist a symmetric positive definite
matrix X and a matrix Y satisfying

Ω11 Ω12 Ω13

ΩT12 −εlI 0
ΩT13 0 εlU

TDT1 ΓTΓD1U + DT1 D1 − γ2I

 < 0

(40)

where

Ω11 = AT11X −AT12Y T +XA11 − Y A12

+ εlU
TCT1 ΓTΓC1U + CT1 C1,

Ω12 = XW1,

Ω13 = XB11 − Y B12 + εlU
TCT1 ΓTΓD1U + CT1 D1,

the matrix Z will be then Z = X−1Y .
Proof. Consider the following Lyapunov function candidate

V (t) = ζ(t)TXζ(t). (41)



Differentiating V (t) along the solution of (39) yields

V̇ (t) = ζ̇(t)TXζ(t) + ζ(t)TXζ̇(t). (42)

For brevity, define η =

 ζ
∆Φ · u
ωn

, then one obtains

V̇ (t) = ηTQ1η (43)

where Q1 =

AT1X +XA1 XW1 XB1

WT
1X 0 0

BT1X 0 0

.

From (3), the following condition is obtained

∆ΦT∆Φ 6 eTΓTΓe. (44)

From assumption A2, the inequality (44) implies

(∆Φu)T∆Φu 6 UT (C1ζ + D1ωn)TΓTΓ(C1ζ + D1ωn)U

⇔ηTQ2η 6 0 (45)

where Q2 =

−UTCT1 ΓTΓC1U 0 −UTCT1 ΓTΓD1U
0 I 0

−UTDT1 ΓTΓC1U 0 −UTDT1 ΓTΓD1U

.

In order to satisfy the objective design w.r.t. the L2 gain dis-
turbance attenuation, the H∞ performance index is defined
as:

J = eT e− γ2ωTnωn
= ηTQ3η (46)

where Q3 =

CT1 C1 0 CT1 D1

0 0 0
DT1 C1 0 DT1 D1 − γ2I

.

By applying the S-procedure [18] to two contraints (44) and
J > 0, V̇ (t) < 0 if there exist scalars εl > 0, εn > 0 such
that

V̇ (t)− εl(ηTQ2η) + εnJ < 0

⇔ηT (Q1 − εlQ2 + εnQ3)η < 0. (47)

The condition (47) is equivalent to

Q1 − εlQ2 + εnQ3 < 0. (48)

In order to satisfy a sufficient condition to reject the mea-
surement noise V̇ + eT e− γ2ωTnωn < 0, εn is set to 1. The
inequality (48) becomes:

Q1 − εlQ2 + Q3 < 0

⇔

M11 M12 M13

MT
12 −εlI 0

MT
13 0 εlU

TDT1 ΓTΓD1U + DT1 D1 − γ2I

 < 0

(49)

where M11 = (A11 − ZA12)TX + X(A11 − ZA12) +
εlU

TCT1 ΓTΓC1U + CT1 C1,
M12 = XW1,
M13 = X(B11 − ZB12) + εlU

TCT1 ΓTΓD1U + CT1 D1.
Let define Y = XZ and substitute into (49), the LMI (40)
is obtained.

If (40) is satisfied, (47) implies

V̇ + J < 0⇔ V̇ < γ2ωTnωn − eT e
⇒‖e(t)‖2L2

< γ2‖ωn(t)‖2L2
. (50)

The proof of Theorem 1 is completed. �
Remark: If the observer matrices M = 0, P = 0, and
Q = 0, the proposed observer become PI observer. In this
case, Theorem 2.3.12 in [19] can be applied to find general
solution of (40). The reader should refer [15] for more
detailed.

IV. APPLICATION TO AUTOMOTIVE SUSPENSION

In this section, to assess the effectiveness of the proposed
observer, it is applied to estimate the damper force in the
automotive suspension system.

A. Semi-active suspension modeling

This section introduces the quarter-car model with the
semi-active ER suspension system [1]. The well-known
model consists of the sprung mass (ms), the unsprung mass
(mus), the suspension components located between (ms)
and (mus) and the tire which is modelled as a spring with
stiffness kt. From second law of Newton for motion, the
system dynamics around the equilibrium are given as:{

msz̈s = −Fs − Fd
musz̈us = Fs + Fd − Ft

(51)

where Fs = ks(zs− zus) is the spring force; Ft = kt(zus−
zr) is the tire force; the damper force Fd is given as follows:

Fd = k0(zs − zus) + c0(żs − żus) + Fer

Ḟer = − 1
τ Fer + fc

τ · u · tanh(k1(zs − zus)
+c1(żs − żus))

(52)

where, c0, c1, k0, k1, fc, τ are constant parameters; zs and
zus are the displacements of the sprung and unsprung masses,
respectively. zr is the road displacement input.
In the ER damper, control input u is the voltage input that
provides the electrical field to control the ER damper. In
practice, it is the duty cycle of the PWM signal that controls
the application.

Moreover the measured outputs used in the observer real-
time scheme are y = [z̈s, z̈us]

T , easily obtained from on
board sensors (accelerometers).

By selecting the system states as x =
[x1, x2, x3, x4, x5]T = [zs − zus, żs, zus − zr, żus, Fer]T ∈
R5, and denoting ωr = żr the road profile derivative and ωn
the sensor noises, the system dynamics in the state-space
representation can be written as follows{

ẋ = Ax+BΦ(x)u+D1ωr

y = Cx+D2ωn
(53)

where Φ(x) = tanh(Γx) with Γ =
[
k1 c1 0 −c1 0

]
.

Therefore, Φ(x) satisfies the Lipschitz condition (3).
The system matrices A, B, C, D1, D2 are known.



B. Synthesis results and frequency domain analysis

In the INOVE testbed available at GIPSA-lab, the control
signal u (duty cycle of PWM signal) is limited in the range
of [0, 1]. Therefore, applying Theorem 1, we obtain the L2-
induced gain γ = 0.87, εl = 50, and the observer matrices
N , J , H , M , P , Q, G, R and S.

The resulting attenuation of the sensor noises on the
estimation error is shown in Figure 1. According to Figure
1, these results emphasize the effectiveness of the proposed
observer in terms of noise rejection, since the upper bound
on the singular values decreases rapidly in the region of high
frequency noises.
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Fig. 1. Transfer ‖e/ωn‖- Upper bound on the singular value

C. Simulation

To emphasize the effectiveness of the proposed ap-
proach, simulations are done with the nonlinear quarter-
car model (53). The initial conditions of the proposed
design are as follows: x0 =

[
0, 0, 0, 0, 0

]T
,

z0 =
[
0.01, −0.4, 0.001, −0.15, 2

]T
, v0 =[

0, 0, 0, 0, 0
]T

.
Three simulation scenarios are used to evaluate the per-

formance of the observer as follows:
Scenario 1: It considers various road frequencies (from 0 Hz
to 10 Hz)
• The road profile is a chirp signal
• The control input u is constant (u = 0.35)

Scenario 2: It considers a typical road profile
• An ISO 8608 road profile signal (Type C) is used.
• The control input u is constant (u = 0.35)

Scenario 3: It considers a closed-loop suspension control
• An ISO 8608 road profile signal (Type C) is used.

TABLE I
PARAMETER VALUES OF THE TESTBED MODEL

Parameter Description Value Unit
ms Sprung mass 2.27 kg
mus unsprung mass 0.25 kg
ks Spring stiffness 1396 N/m
kt Tire stiffness 12270 N/m
k0 Passive damper stiffness coefficient 170.4 N/m
c0 Viscous damping coefficient 68.83 N.s/m
k1 Hysteresis coefficient due to displacement 218.16 N.s/m
c1 Hysteresis coefficient due to velocity 21 N.s/m
fc Dynamic yield force of ER fluid 28.07 N
τ Time constant 43 ms
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Fig. 2. (left) Simulation senario 1, (right) Simulation senario 2
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• Control input u is obtained from a Skyhook controller
The simulation results of three tests are shown in the Fig. 2
and Fig. 3. According to Fig. 2, the robustness of the unified
observer to the frequency of road profile disturbance is
guaranteed. It can be clearly observed that the damping force
is estimated with a satisfactory accuracy at all frequencies of
the road profile. In Fig. 3, the estimated result in a closed-
loop control system test proves the efficiency in a realistic
case.

D. Experimental validation

To validate the effectiveness of the proposed algorithm,
real-time experiments have been performed on the 1/5 car
scaled car INOVE available at GIPSA-lab, shown in Fig. 4.

This test-bench which involves 4 semi-active ER sus-
pensions is controlled in real-time using Matlab real-time
workshop and a host computer. The target PC is connected to
the host computer via Ethernet communication standard. The
proposed observer system is implemented with the sampling
period Ts = 0.005s. Note that the experimental platform is
fully equipped with sensors to measure its vertical motion.
At each corner of the system, a DC motor is used to generate
the road profile.

The damping force estimation algorithm is applied for
the rear-left corner using two sensors: the unsprung mass
z̈us and the sprung mass z̈s accelerometers. For validation
purpose only, the damper force sensor is used to compare
the estimated force with the measured one.

Two experiment senarios are used to validate the effec-
tiveness of the proposed observer as follows:

Fig. 4. The experimental testbed INOVE at GIPSA-lab (see www.gipsa-
lab.fr/projet/inove)
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Experiment 1:
• The road profile is sequence of sinusoidal bumps
• The control input u is obtained from a Skyhook con-

troller
Experiment 2:
• An ISO 8608 road profile signal (Type C) is used.
• The control input u is obtained from a Skyhook con-

troller
The experiment results of the observer are presented in
Fig. 5 and Fig. 6. The result illustrates the accuracy and
efficiency of the proposed observer. To further describe this
accuracy, Table II presents the normalized root-mean-square
errors, considering the difference between the estimated and
measured forces for experimental results presented in the Fig.
5 and Fig. 6.

V. CONCLUSION

This paper developed a unified H∞ observer to estimate
the damper force, using a dynamic nonlinear model of the
ER damper. For this purpose, the quarter-car system is
represented in nonlinear Lipschitz form by considering a
phenomenological damper model. Based on two accelerom-
eters, the unified H∞ observer is designed, giving a good
estimation result of the damping force. The estimation error
is decoupled from the effect of unknown road profile and
only minimized for the effect of measurement noises, while
the nonlinearity term is bounded by a Lipchitz condition.
Both simulation and experiment results assess the ability and
the accuracy of the proposed model to estimate the damping
force of the ER semi-active damper.
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