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Abstract 

Due to acquired resistance or limitations of the currently approved drugs against cancer, there 

is an urgent need for the development of new classes of compounds. Among others, there is an 

increasing attention towards the use of Ru(II) polypyridyl complexes. Most studies in the 

literature were made on complexes based on the coordination of N-donating bidentate ligands 

to the ruthenium core whereas studies on 2,2´:6´, 2´´-terpyridine (terpy) coordinating ligands 

are relatively scare. However, several studies have shown that [Ru(terpy)2]2+ derivatives are 

able bind to DNA through various binding modes making these compounds potentially suitable 

as chemotherapeutic agents. Additionally, light irradiation of these compounds was shown to 

enable DNA cleavage, highlighting their potential use as photosensitizers (PSs) for 

photodynamic therapy (PDT). In this work, we present the systematic investigation of the 

potential of 7 complexes of the type [Ru(terpy)(terpy-X)]2+ (X = H (1), Cl (2), Br (3), OMe 

(4), COOH (5), COOMe (6), NMe2 (7)) as potential chemotherapeutic agents and PDT PSs. 

Importantly, six of the seven complexes were found to be stable in human plasma as well as 

photostable in acetonitrile upon continuous light irradiation (480 nm). The determination of the 

distribution coefficient logP values for the 7 complexes revealed their good water solubility. 

Complex 7 was found to be cytotoxic in the micromolar range in the dark as well as to have 

some phototoxicity upon light exposure at 480 nm in non-cancerous retinal pigment epithelium 

(RPE-1) and cancerous human cervical carcinoma (HeLa) cells. 

 

1. Introduction 
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Based on the increasing impact of cancer on the life quality as well as mortality in the world, 

research efforts are made towards the development of new methods for the treatment of this 

disease as well as the improvement of existing anticancer drugs. Most commonly, cancer is 

fought through the combination of different techniques (i.e. chemotherapy, surgery, 

radiotherapy and immunotherapy).[1-3] To date, the gold standard in the chemotherapeutic 

treatment of cancer is the platinum drug cisplatin and its derivatives carboplatin and 

oxaliplatin.[4, 5] However, although the ability of cisplatin for the treatment of patients with 

cancer is impressive and undeniable, treatments with this drug are also associated with severe 

side effects that include nerve and kidney damage, nausea, vomiting and bone marrow 

suppression. Acquired resistances limit also the use of cisplatin and this derivatives. These 

drawbacks have led, in the last decades, to the search for alternative compounds and, among 

others, of non-platinum based compounds. Among the new classes investigated, coordinatively 

saturated, inert Ru(II) polypyridyl complexes are receiving increasing attention due to their 

promising anticancer and antimicrobial activity as chemotherapeutic agents as well as 

photodynamic therapy (PDT) photosensitizers (PSs).[6-17] Very importantly, one of Mc 

Farland and co-workers’ ruthenium-based PDT PSs, namely TLD-1433, just completed phase 

I clinical trial as a PDT PS against bladder cancer.[10] 

 

In the field of ruthenium-based PDT PSs, most studies in the literature are based on a 

[Ru(bipy/phen/bphen/dppz)3]2+ (bipy = 2,2’-bipyridine, phen =1,10-phenanthroline, bphen = 

4,7-diphenyl-1,10-phenanthroline, dppz = dipyrido[3,2-a:2′,3′-c]phenazine) scaffold due to 

their interesting redox properties, long excited-state lifetimes as well as intense 

luminescence.[11, 13, 18-24] In comparison, complexes based on a [Ru(terpy)2]2+ (terpy 

=2,2´:6´, 2´´-terpyridine) scaffold have not been very extensively studied. These complexes are 

well-known to have a short-lived excited state and to be weakly luminescent at room 
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temperature but long-lived and strongly luminescent at low temperature (77 K). This 

phenomenon is explained by an unfavourable bite angle of the ligands for the octahedral 

coordination of the Ru(II). As a result, a relatively low ligand field state 3LF (ligand-field) is 

created which is able to quench the normally emitting 3MLCT (metal-to-ligand charge-transfer) 

state.[20, 25] Despite these unfavourable photophysical properties, several studies have shown 

that these complexes were still able to bind to DNA and to cleave it upon light irradiation, 

making them potential PSs for PDT purposes.[26-30] Interestingly, it was demonstrated that 

these complexes were able to interact in different manners with DNA, including electrostatic 

interactions, intercalation, and groove binding, depending on the substituents on the terpy 

ligand.[31-35]  

 

In this work, we present the systematic investigation of the potential of 7 Ru(II) complexes of 

the type [Ru(terpy)(terpy-X)]2+ (X = H (1), Cl (2), Br (3), OMe (4), COOH (5), COOMe (6), 

NMe2 (7)) as potential chemotherapeutic agents and as PDT PSs. All investigated complexes 

were fully characterised by 1H and 13C-NMR, ESI-HRMS, elemental analysis as well as single 

crystal X-ray crystallography. As described below, one of the complexes (compound 7) was 

found to be cytotoxic in the micromolar range in the dark as well as to have some phototoxicity 

upon light exposure at 480 nm, highlighting some potential for this type of complexes. 
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2. Experimental section 

2.1. Materials 

All chemicals were obtained from commercial sources and used without further purification. 

Solvents were dried over molecular sieves if necessary. The Ru(II) precursor Ru(terpy)Cl3 was 

synthesised as previously published.[36] The substituted 2,2’:6’,2”-terpyridine ligands (terpy-

X): 4‘-chloro-2,2’:6’,2”-terpyridine (terpy-Cl),[37] 4‘-bromo-2,2’:6’,2”-terpyridine (terpy-

Br),[38] 4‘-methoxy-2,2’:6’,2”-terpyridine (terpy-OMe),[39] 4‘-carboxy-2,2’:6’,2”-terpyridine 

(terpy-COOH),[40] 4‘-methylcarboxy-2,2’:6’,2”-terpyridine (terpy-COOMe),[40] 4‘-

dimethylamino-2,2’:6’,2”-terpyridine (terpy-NMe2)[41] were synthesised as previously 

reported.  

 

2.2. Instrumentation and methods 

1H and 13C NMR spectra were recorded on a Bruker 400 MHz NMR spectrometer. Chemical 

shifts (δ) are reported in parts per million (ppm) referenced to tetramethylsilane (δ 0.00) ppm 

using the residual proton solvent peaks as internal standards. Coupling constants (J) are reported 

in Hertz (Hz) and the multiplicity is abbreviated as follows: s (singulet), d (doublet), dd (doublet 

of doublet), m (multiplet). ESI-MS experiments were carried out using a LTQ-Orbitrap XL 

from Thermo Scientific (Thermo Fisher Scientific, Courtaboeuf, France) and operated in 

positive ionization mode, with a spray voltage at 3.6 kV. No Sheath and auxiliary gas was used. 

Applied voltages were 40 and 100 V for the ion transfer capillary and the tube lens, respectively. 

The ion transfer capillary was held at 275°C. Detection was achieved in the Orbitrap with a 

resolution set to 100,000 (at m/z 400) and a m/z range between 150-2000 in profile mode. 

Spectrum was analyzed using the acquisition software XCalibur 2.1 (Thermo Fisher Scientific, 

Courtaboeuf, France).  The automatic gain control (AGC) allowed accumulation of up to 2*105 

ions for FTMS scans, maximum injection time was set to 300 ms and 1 µscan was acquired. 10 
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µL was injected using a Thermo Finnigan Surveyor HPLC system (Thermo Fisher Scientific, 

Courtaboeuf, France) with a continuous infusion of methanol at 100 µL.min-1. Elemental 

microanalyses were performed on a Thermo Flash 2000 elemental analyser. 

 

2.3. Synthesis 

[Ru(terpy)2](PF6)2 (1)  

[Ru(terpy)2PF6)2 was synthesized as previously published.[42] Experimental data fits with the 

literature. Purity of the sample was assessed by HPLC and elemental analysis. Anal. Calc. for 

C30H22F12N6P2Ru: C 42.02, H 2.59, N 9.80. Found: C 41.91, H 2.60, N 9.71.  

 

[Ru(terpy)(terpy-Cl)](PF6)2 (2) 

The synthesis of [Ru(terpy)(terpy-Cl)](PF6)2 was previously reported.[43] In this work, another 

synthetic route was employed. Ru(terpy)Cl3 (200 mg, 0.45 mmol, 1.0 equiv.), 4‘-Chloro-

2,2’:6’,2”-terpyridine (terpy-Cl) (134 mg, 0.50 mmol, 1.1 equiv) and some drops of N-

ethylmorpholine were dissolved in 8:2 EtOH/H2O (50 mL). The mixture was heated under 

reflux for 4 h under nitrogen atmosphere. The crude product was cooled to room temperature 

and undissolved solid was filtered off over Celite. The solid was washed with EtOH, the 

solution concentrated and a sat. aqueous solution of NH4PF6 was added. The crude product, 

which precipitated as a PF6 salt was collected by centrifugation and washed with EtOH, H2O 

and Et2O. The product was isolated by column chromatography on silica gel with an CH3CN/aq. 

KNO3 (0.4 M) solution (10:1). The fractions containing the product were united and the solvent 

was removed under reduced pressure. The residue was dissolved in CH3CN and undissolved 

KNO3 was removed by filtration. The solvent was removed again and the product was dissolved 

in H2O (50 mL). Upon addition of NH4PF6 the product precipitated as a PF6 salt. The solid was 

obtained by filtration and was washed three-times with H2O and Et2O. Experimental data fits 
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with the literature. Purity of the sample was assessed by HPLC and elemental analysis. ESI-

HRMS m/z: 301.0277 [M]2+, calcd for C30H21ClN6Ru 301.0274. Anal. Calc. for 

C30H21ClF12N6P2Ru + 1.3*H2O: C 39.36, H 2.60, N 9.18. Found: C 38.99, H 2.50, N 9.68. 

 

[Ru(terpy)(terpy-Br)](PF6)2 (3) 

The synthesis of [Ru(terpy)(terpy-Br)](PF6)2 was previously reported.[44] In this work, another 

synthetic route was employed. Ru(terpy)Cl3 (200 mg, 0.45 mmol, 1.0 equiv.), 4‘-Bromo-

2,2’:6’,2”-terpyridine (terpy-Br) (156 mg, 0.50 mmol, 1.1 equiv) and some drops of N-

ethylmorpholine were dissolved in 8:2 EtOH/H2O (50 mL). The mixture was heated under 

reflux for 4 h under nitrogen atmosphere. The crude product was cooled to room temperature 

and undissolved solid was filtered off over Celite. The solid was washed with EtOH, the 

solution concentrated and a sat. aqueous solution of NH4PF6 was added. The crude product, 

which precipitated as a PF6 salt was collected by centrifugation and washed with EtOH, H2O 

and Et2O. The product was isolated by column chromatography on silica gel with an CH3CN/aq. 

KNO3 (0.4 M) solution (10:1). The fractions containing the product were united and the solvent 

was removed under reduced pressure. The residue was dissolved in CH3CN and undissolved 

KNO3 was removed by filtration. The solvent was removed again and the product was dissolved 

in H2O (50 mL). Upon addition of NH4PF6 the product precipitated as a PF6 salt. The solid was 

obtained by filtration and was washed three-times with H2O and Et2O. Experimental data fits 

with the literature. Purity of the sample was assessed by HPLC and elemental analysis. ESI-

HRMS m/z: 324.0020 [M]2+, calcd for C30H21BrN6Ru 324.0012. Anal. Calc. for 

C30H21BrF12N6P2Ru +1 H2O: C 37.75, H 2.43, N 8.81. Found: C 37.55, H 2.03, N 9.26. 

 

[Ru(terpy)(terpy-OMe)](PF6)2 (4) 
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Ru(terpy)Cl3 (203 mg, 0.46 mmol, 1.0 equiv.), 4‘-Methoxy-2,2’:6’,2”-terpyridine (terpy-Br) 

(133 mg, 0.51 mmol, 1.1 equiv) and some drops of N-ethylmorpholine were dissolved in 8:2 

EtOH/H2O (50 mL). The mixture was heated under reflux for 5 h under nitrogen atmosphere. 

The crude product was cooled to room temperature and undissolved solid was filtered off over 

Celite. The solid was washed thoroughly with EtOH and afterwards the solvent was removed 

under reduced pressure. The residue was dissolved in H2O and a sat. aqueous solution of 

NH4PF6 was added. The crude product, which precipitated as a PF6 salt was collected by 

centrifugation and washed with EtOH, H2O and Et2O. The product was isolated by column 

chromatography on silica gel with an CH3CN/aq. KNO3 (0.4 M) solution (10:1). The fractions 

containing the product were united and the solvent was removed under reduced pressure. The 

residue was dissolved in CH3CN and undissolved KNO3 was removed by filtration. The solvent 

was removed again and the product was dissolved in H2O (50 mL). Upon addition of NH4PF6 

the product precipitated as a PF6 salt. The solid was obtained by filtration and was washed 

three-times with H2O and Et2O. 257 mg of [Ru(terpy)(terpy-OMe)](PF6)2 (4) (0.29 mmol, 

63 %) were yielded as a red solid. 1H-NMR (CD3CN, 400 MHz): δ = 8.72 (d, J = 8.2 Hz, 2H), 

8.50-8.46 (m, 4H), 8.36 (t, J = 8.2 Hz, 1H), 8.33 (s, 2H), 7.93-7.86 (m, 4H), 7.42 (ddd, J = 5.5, 

1.4, 0.7 Hz, 2H), 7.29 (ddd, J = 5.5, 1.4, 0.7 Hz, 2H), 7.18 (ddd, J = 7.5, 5.6 1.3 Hz, 2H), 7.12 

(ddd, J = 7.5, 5.6 1.3 Hz, 2H), 4.31 (s, 3H). 13C-NMR (CD3CN, 100 MHz): δ = 167.6, 158.8, 

158.6, 156.5, 156.4, 153.3, 152.8, 138.5, 138.4, 135.7, 128.0, 127.9, 125.0, 124.8, 124.1, 111.3, 

57.8. ESI-HRMS m/z: 299.0527 [M]2+, calcd for C31H24N6O1Ru 299.0522. Anal. Calc. for 

C31H24F12N6O2P2Ru: C 41.95, H 2.73, N 9.47. Found: C 41.79, H 2.64, N 9.45.  

 

[Ru(terpy)(terpy-COOH)](PF6)2 (5) 

The synthesis of [Ru(terpy)(terpy-COOH)](PF6)2 was previously reported.[45] In this work, 

another synthetic route was employed. Ru(terpy)Cl3 (200 mg, 0.45 mmol, 1.0 equiv.), 4‘-
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Carboxy-2,2’:6’,2”-terpyridine (terpy-COOH) (139 mg, 0.50 mmol, 1.1 equiv) and some drops 

of N-ethylmorpholine were dissolved in 8:2 EtOH/H2O (50 mL). The mixture was heated under 

nitrogen atmosphere at reflux for 4 h. After cooling down to room temperature, the crude 

product was filtered over Celite and washed thoroughly with EtOH. The solvent was removed 

and the solid residue dissolved in H2O. A sat. aqueous solution of NH4PF6 was added and the 

crude product preticipated as a PF6 salt. The solid was collected by centrifugation and washed 

with Ethanol, Water and Et2O. The product was isolated via fractionated precipitation from 

Acetonitrile by adding dropwise Et2O. The yielded solid was isolated by filtration and washed 

with pentane. Experimental data fits with the literature. Purity of the sample was assessed by 

HPLC and elemental analysis. Anal. Calc. for C31H22F12N6O2P2Ru + 0.1 * C5H12: C 41.63, H 

2.57, N 9.25. Found: C 41.84, H 2.68, N 9.56. 

 

[Ru(terpy)(terpy-COOMe)](PF6)2 (6) 

Ru(terpy)Cl3 (137 mg, 0.31 mmol, 1.0 equiv.) and AgBF4 (212 mg, 1.09 mmol, 3.5 equiv.) 

were suspended in Acetone (50 mL) under nitrogen atmosphere. The mixture was refluxed for 

2 h, cooled to room temperature and undissolved solid was filtered off over Celite. The solid 

was washed with methanol and then the solvent removed under reduced pressure. The residue 

was dissolved in dry EtOH (50 mL) and 4‘-Methylcarboxy-2,2’:6’,2”-terpyridine (terpy-

COOMe) (100 mg, 0.34 mmol, 1.1 equiv.) was added. The mixture was heated under reflux for 

18 h under nitrogen atmosphere. The crude product was cooled to room temperature and 

undissolved solid was filtered off over Celite. The solid was washed with EtOH, the solution 

concentrated and a sat. aqueous solution of NH4PF6 was added. The crude product, which 

precipitated as a PF6 salt was collected by centrifugation and washed with EtOH, H2O and Et2O. 

The product was isolated by column chromatography on silica gel with an CH3CN/aq. KNO3 

(0.4 M) solution (10:1). The fractions containing the product were united and the solvent was 
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removed under reduced pressure. The residue was dissolved in CH3CN and undissolved KNO3 

was removed by filtration. The solvent was removed again and the product was dissolved in 

H2O (50 mL). Upon addition of NH4PF6 the product precipitated as a PF6 salt. The solid was 

obtained by filtration and was washed three-times with H2O and Et2O. 154 mg of 

[Ru(terpy)(terpy-COOMe)](PF6)2 (6) (0.17 mmol, 55 %) were yielded as a red solid. 1H-

NMR (CD3CN, 400 MHz): δ = 9.20 (s, 2H), 8.76 (d, J = 8.2 Hz, 2H), 8.66-8.62 (m, 2H), 8.50-

8.47 (m, 2H), 8.45 (t, J = 8.2 Hz, 1H), 7.98-7.89 (m, 4H), 7.39-7.36 (m, 2H), 7.30-7.27 (m, 

2H), 7.23-7.19 (m, 2H), 7.16-7.10 (m, 2H), 4.18 (s, 3H). 13C-NMR (CD3CN, 100 MHz): δ = 

165.4, 158.7, 158.4, 157.1, 155.8, 153.5, 153.4, 139.3, 139.1, 137.5, 137.2, 128.8, 128.4, 125.8, 

125.5, 124.8, 123.7, 54.2. ESI-HRMS m/z: 313.0502 [M]2+, calcd. for C32H24N6O2Ru 

313.0497. Anal. Calc. for C32H24F12N6O2P2Ru: C 41.98, H 2.64, N 9.18. Found: C 41.92, H 

2.63, N 9.50. 

 

[Ru(terpy)(terpy-NMe2)](PF6)2 (7) 

Ru(terpy)Cl3 (205 mg, 0.47 mmol, 1.0 equiv.), 4‘-Dimethylamino-2,2’:6’,2”-terpyridine 

(terpy- NMe2) (141 mg, 0.52 mmol, 1.1 equiv) and some drops of N-ethylmorpholine were 

dissolved in 8:2 EtOH/H2O (50 mL). The mixture was heated under reflux for 6 h under 

nitrogen atmosphere. The crude product was cooled to room temperature and undissolved solid 

was filtered off over Celite. The solid was washed thoroughly with EtOH and afterwards the 

solvent was removed under reduced pressure. The residue was dissolved in H2O and a sat. 

aqueous solution of NH4PF6 was added. The crude product, which precipitated as a PF6 salt 

was collected by centrifugation and washed with EtOH, H2O and Et2O. The product was 

isolated by column chromatography on silica gel with an CH3CN/aq. KNO3 (0.4 M) solution 

(10:1). The fractions containing the product were united and the solvent was removed under 

reduced pressure. The residue was dissolved in CH3CN and undissolved KNO3 was removed 
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by filtration. The solvent was removed again and the product was dissolved in H2O (50 mL). 

Upon addition of NH4PF6 the product precipitated as a PF6 salt. The solid was obtained by 

filtration and was washed three-times with H2O and Et2O. The product was isolated via 

fractionated precipitation from CH3CN by adding dropwise Et2O. 225 mg of [Ru(terpy)(terpy-

NMe2)](PF6)2 (7) (0.25 mmol, 53 %) were yielded as a dark red solid. 1H-NMR (CD3CN, 400 

MHz): δ = 8.70 (d, J = 8.2 Hz, 2H), 8.52-8.45 (m, 4H), 8.31 (t, J = 8.2 Hz, 1H), 7.93 (s, 2H), 

7.93-7.82 (m, 4H), 7.50-7.48 (m, 2H), 7.24-7.19 (m, 4H), 7.08-7.03 (m, 2H), 3.46 (s, 6H). 13C-

NMR (CD3CN, 100 MHz): δ = 159.9, 159.4, 157.3, 156.3, 154.8, 153.5, 152.9, 138.6, 138.5, 

135.2, 128.3, 127.7, 125.0, 124.7, 124.3, 107.4, 40.8. ESI-HRMS m/z: 305.5687 [M]2+, calcd. 

for C32H27N7Ru 305.5680. Anal. Calc. for C32H27F12N7P2Ru: C 42.68, H 3.02, N 10.89. Found: 

C 42.55, H 2.95, N 10.82. 

 

2.4. X-ray crystallography 

X-ray single-crystal data were collected at 160(1) K with Oxford liquid-nitrogen Cryostream 

coolers on Rigaku OD diffractometers: SuperNova (CCD Atlas detector) for 1_BPh4 and 

XtaLAB Synergy Dualflex (Pilatus 200K detector) for all the other X-ray analyses. Single 

wavelength X-ray sources from micro-focus sealed X-ray tubes were used with the Mo Kα 

radiation (λ = 0.71073 Å)[46] for 1_BPh4 and 2_BPh4 and with the Cu Kα radiation (λ = 

1.54184 Å)[46] for all other analyses. The selected single crystals were mounted using 

polybutene oil on a flexible loop fixed on a goniometer head and transferred to the 

diffractometer. Pre-experiments, data collections, data reductions and analytical absorption 

corrections[47] were performed with the program suite CrysAlisPro[48]. Using Olex2,[49] all 

structures were solved with the SHELXT[50] small molecule structure solution program and 

refined with the SHELXL2018/3 program package[51] by full-matrix least-squares 

minimization on F2. Molecular graphics were generated using Mercury 4.0.[52] The crystal 
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data collections and structure refinement parameters for are summarized in Tables S1 – S9. 

CCDC 1889454 (for 2_PF6), 1889455 (for 2_BF4), 1889456 (for 3_BF4), 1889457 (for 3_PF6), 

1889458 (for 4_BF4), 1889459 (for 2_BPh4), 1889460 (for 4_PF6), 1889461 (for 6_BPh4), 

1889462 (for 6_PF6), 1889463 (for 6_BF4), 1889464 (for 5_BPh4), 1889465 (for 7_PF6), 

1889466 (for terpy-Br), 1889467 (for 7_BF4), 1889468 (for 5_BF4), 1889469 (for terpy-Cl) 

and 1889470 (for 1_BPh4) contain the supplementary crystallographic data for these 

compounds, and can be obtained free of charge from the Cambridge Crystallographic Data 

Centre via www.ccdc.cam.ac.uk/data_request/cif. 

 

2.5. Spectroscopic measurements 

The absorption of the samples has been measured with a SpectraMax M2 Spectrometer 

(Molecular Devices). The emission was measured by irradiation of the sample in fluorescence 

quartz cuvettes (width 1 cm) using a NT342B Nd-YAG pumped optical parametric oscillator 

(Ekspla) at 450 nm. Luminescence was focused and collected at right angle to the excitation 

pathway and directed to a Princeton Instruments Acton SP-2300i monochromator. As a detector 

a PI-Max 4 CCD camera (Princeton Instruments) has been used. 

 

2.6. Luminescence quantum yield measurements 

For the determination of the luminescence quantum yield, the samples were prepared in a non-

degassed CH3CN solution with an absorbance of 0.1 at 450 nm. This solution was irradiated in 

fluorescence quartz cuvettes (width 1 cm) using a NT342B Nd-YAG pumped optical 

parametric oscillator (Ekspla) at 450 nm. The emission signal was focused and collected at right 

angle to the excitation pathway and directed to a Princeton Instruments Acton SP-2300i 

monochromator. As a detector a PI-Max 4 CCD camera (Princeton Instruments) has been used. 
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The luminescence quantum yields were determined by comparison with the reference 

[Ru(bipy)3]Cl2 in CH3CN (Φem=0.059)[53] applying the following formula : 

 

Φem, sample = Φem, reference * (Freference / Fsample) * (Isample / Ireference) * (nsample / nreference)2 

F = 1 – 10-A 

Φem = luminescence quantum yield, F = fraction of light absorbed, I = integrated emission 

intensities, n = refractive index, A = absorbance of the sample at irradiation wavelength. 

 

2.7. Lifetime measurements 

For the determination of the lifetimes, the samples were prepared in an air saturated and in a 

degassed CH3CN solution with an absorbance of 0.1 at 450 nm. This solution was irradiated in 

fluorescence quartz cuvettes (width 1 cm) using a NT342B Nd-YAG pumped optical 

parametric oscillator (Ekspla) at 450 nm. The emission signal was focused and collected at right 

angle to the excitation pathway and directed to a Princeton Instruments Acton SP-2300i 

monochromator. As a detector a R928 photomultiplier tube (Hamamatsu) has been used. 

 

2.8. Distribution coefficient 

The lipophilicity of a compound was determined by measuring its distribution coefficient 

between the PBS and octanol phase by using the “shake-flask” method. For this technique, the 

used phases were previously saturated in each other. The compound was dissolved in the phase 

(A) with its major presence with an absorbance of about 0.5 at 450 nm. This solution was then 

mixed with an equal volume of the other phase (B) at 80 rpm for 8 h with an Invitrogen sample 

mixer and equilibrated overnight. The phase A was then carefully separated from phase B. The 

amount of the compound before and after the sample mixing was determined by UV/VIS 

spectroscopy at 450 nm with a SpectraMax M2 Microplate Reader (Molecular Devices). The 
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evaluation of the complexes was repeated three times and the ratio between the organic and 

aqueous phase calculated. 

 

2.9. Stability in human plasma 

The stability of the complexes was evaluated with caffeine as an internal standard, which has 

already shown to be suitable for these experiments.[54] The pooled human plasma was obtained 

from Biowest and caffeine from TCI Chemicals. Stock solutions of the compounds and caffeine 

were prepared in DMSO. One aliquot of the solutions was added to 975 μL of human plasma 

to a total volume of 1000 μL. Final concentrations of the compounds of 50 μM and caffeine of 

25 μM were achieved. The resulting solution was incubated for 48 h at 37 °C with continuous 

gentle shaking (ca. 300 rpm). The reaction was stopped after the incubation time by addition of 

4 mL of methanol. The mixture was centrifuged for 45 min at 650 g at 4 °C. The methanolic 

solution was filtered through a 0.2 μm membrane filter. The solvent was evaporated under 

reduced pressure and the residue was dissolved in 1:1 (v/v) CH3CN/ H2O 0.1% TFA solution. 

The solution was filtered through a 0.2 μm membrane filter and analysed using a 1260 Infinity 

HPLC System (Agilent Technology). A Pursuit XRs 5 C18 (250x4.6 mm) reverse phase column 

has been used and the absorption at 250 nm measured.  The samples have been measured with 

a flow rate of 1 mL/min and a linear gradient of 0.1% TFA containing H2O and CH3CN (t=0–

3 min 95% H2O 0.1% TFA, 5% CH3CN; t=17 min 100% CH3CN; t=23 min 100% CH3CN) has 

been used. 

 

2.10. Photostability  

The samples were prepared in an air saturated CH3CN solution. To measure the photostability, 

the samples were irradiated at 450 nm (light dose after 10 min: 13.22 J/cm2) in 96 well plates 

with an Atlas Photonics LUMOS BIO irradiator during time intervals from 0-10 min. The 



15 
 

absorbance spectrum from 350-700 nm was recorded with an SpectraMax M2 Microplate 

Reader (Molecular Devices) after each time interval and compared. As a positive control 

[Ru(bipy)3]Cl2 and as a negative control Protoporphyrin IX has been used. 

 

2.11. Cell culture 

HeLa cells were cultured in DMEM medium supplemented with 10% fetal calf serum. RPE-1 

cells were cultured in DMEM/F-12 medium supplemented with 10% fetal calf serum. Cell lines 

were complemented with 100 U/ml penicillin-streptomycin mixture, and maintained in 

humidified atmosphere at 37°C and 5% of CO2. Before an experiment, cells were passaged 

three times. 

 

2.12. (Photo-)Cytotoxicity 

The cytotoxicity of the compounds was accessed by measuring the cell viability using a 

fluorometric resazurin assay. Cells were seeded in triplicates in 96 well plates (4000 cells per 

well in 100 μL of media). After 24 h, media was removed and the cells were treated with 

increasing concentrations of the compounds diluted in cell media achieving a total volume of 

200 μL. The cells were incubated with the compounds for 4 h. After this time, the media was 

removed and replaced with 200 μL of fresh media. For the phototoxicity studies, the cells were 

exposed to light with an Atlas Photonics LUMOS BIO irradiator. Each well was constantly 

illuminated with 480 nm irradiation. During this time, the temperature was maintained at 37 

°C. The cells were grown in the incubator for additional 44 h. For the determination of the dark 

cytotoxicity, the cells were not irradiated and after the media exchange directly incubated for 

44 h. After this time, media was replaced with fresh media containing resazurin with a final 

concentration of 0.2 mg/mL. After 4 h incubation, the amount of the fluorescent product 

resorufin was determined upon excitation at 540 nm and measurement its emission at 590 nm 

using a SpectraMax M2 Microplate Reader (Molecular Devices). The obtained data was 

analysed with the GraphPad Prism software. 
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3. Results and Discussion 

3.1. Syntheses and Characterisation 

Ru(II) complexes 1-7 investigated in this work can be visualised in Figure 1. The synthesis and 

characterisation of compounds 1,[42] 2,[43] 3[44] and 5[45] have been previously reported in 

the literature. However, in this work, except for 1, a different synthetic procedure was employed 

to prepare them. To the best of our knowledge, complexes 4, 6 and 7 have never been reported. 

Specifically, the substituted 2,2’:6’,2”-terpyridine ligands (terpy-X, Scheme S1), namely 4‘-

chloro-2,2’:6’,2”-terpyridine (terpy-Cl),[37] 4‘-bromo-2,2’:6’,2”-terpyridine (terpy-Br),[38] 

4‘-methoxy-2,2’:6’,2”-terpyridine (terpy-OMe),[39] 4‘-carboxy-2,2’:6’,2”-terpyridine (terpy-

COOH),[40] 4‘-methylcarboxy-2,2’:6’,2”-terpyridine (terpy-COOMe)[40] and 4‘-

dimethylamino-2,2’:6’,2”-terpyridine (terpy-NMe2)[41] were synthesised as previously 

reported. Analytical data of all synthesised ligands matched with those of the literature. 

Interestingly, the structures of the ligands terpy-Cl and terpy-Br were confirmed by single 

crystal X-ray crystallography in this work (see section below). Complexes were synthesised by 

refluxing the precursor Ru(terpy)Cl3[36] and the respective terpy ligand in ethanol to give 

complexes 1-7 (Scheme S2) in moderate yields.[36] Worthy of note, the reaction between 

Ru(terpy)Cl3 with terpy-COOMe yielded a mixture of different undesired products, as observed 

by HPLC (data not shown). To overcome this problem, the synthetic procedure was changed to 

a two-step reaction. In the first step, the Cl substituents on the Ru(II) core were exchanged with 

solvent molecules by reaction of Ru(terpy)Cl3 with AgBF4 and filtration of the formed AgCl. 

In the second step, the terpy-COOMe ligand was coordinated to the metal core upon 

replacement of the solvent molecules. All complexes were analysed by 1H, 13C-NMR, ESI-

HRMS as well elemental analysis (Figure S1-S9). Worthy of note, the structures of all Ru(II) 
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complexes prepared in this work were determined by single crystal X-ray crystallography (see 

below). 

  

 

Figure 1. Chemical structures of the [Ru(terpy)(terpy-X)]2+ complexes investigated in this 

work. The complexes were isolated as PF6 salts. 

 

3.2. X-ray crystallography 

The crystal structures of terpy-Cl, terpy-Br, and all investigated [Ru(terpy)(terpy-X)]2+ 

complexes 1 – 7 have been determined by single crystal X-ray diffraction studies. Crystal data, 

structure refinement parameters and molecular structures are presented in Tables S1 – S9 and 

Figures S10 – S18.  In the literature, the [Ru(terpy)2]2+ cation is well known and can be found 

in many crystal structures co-crystallizing with various counterions (Cl-, I, BF4
-, ClO4

-, PF6
- and 

other Pt anionic clusters…) and solvent molecules (H2O, CH2Cl2, MeCN, NMe2CHO…).[42, 

55-63] There is also a very large number of other ruthenium terpyridine complexes in the 

Cambridge Structural Database  (version 5.40, last update November 2018).[64] For instance, 

142 structures were obtained from a search with terpyridine ligands substituted in para position. 

In the crystal structures of our new metal complexes, the Ru(II) centres are typically in a 

distorted octahedral environment coordinated by two terpyridine ligands acting as tridentate 

pincer ligands through the nitrogen atoms. The two ligand planes are always exactly or almost 

perpendicular to each other. The largest deviation to orthogonality is observed in 6_PF6 with 
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an angle of 86.9(3)° between the calculated mean planes. As a structural feature, the M–Ncentral 

distances are significantly shorter than the M–Nterminal distances which is typical for 

coordination of conjugated terimine systems. The M–Ncentral distances fall in the range 1.973(3) 

– 1.998(3) Å and the M–Nterminal distances in the range 2.063(2) – 2.089(9) Å. In most of the 

crystal structures of 2 – 7, the Ru(II) molecules exhibit a positional disorder of the terpyridine 

ligands. The result of such a disorder is that the group or atom in para position on the central 

pyridine of the substituted terpyridine ligand (and consequently the corresponding H atom of 

the unsubstituted ligand as well) appears on both terpyridine ligands with a site-occupancy 

factor of 0.5. It is observed in nine crystal structures over fourteen, only 4_PF6, 5_BF4, 6_PF6, 

7_PF6 and 7_BF4 are free of that kind of disorder. It seems to not be influenced or controlled 

by the presence of one specific counter ion, neither by the para substituent but it is worth noting 

that when the latter is a “mono-atomic” group like in complexes 2 and 3 (X = Cl, Br) the 

disorder is always observed (five crystal structures). The crystal packing of [M(terpy)2] cations 

have been fully analysed by Scudder et al. in 1999.[65]  A standard crystal supramolecular motif has 

been identified as a two-dimensional net of terpy embraces involving molecules attracted by face-

to-face π…π interactions and edge-to-face C-H…π interactions between the external rings of the 

ligands. Despite the para substitution of one of the terpyridine ligands, this standard “terpy embrace” 

motif can be observed in six of our crystal structures: 2_BF4, 2_PF6, 3_BF4, 3_PF6, 4_BF4 and 

7_BF4 (Figure S19). The presence of the bulky BPh4
- couterion in 1_BPh4, 2_BPh4, 5_BPh4 and 

6_BPh4 rules out that standard layer structure since no direct interactions are observed between 

cations anymore, the crystal packing is mainly governed by π…π interactions between the pyridine 

rings of the cations and the phenyl rings of the anions (Figure S20). The so-called terpy embrace 

motif still exists in the other crystal structures but the typical face-to-face and edge-to-face 

interactions only lead to chains in 5_BF4 and 7_PF6 (Figure S21) or form small units of two 

molecules in 6_PF6 or four molecules in 6_BF4 (Figure S22). These chains or units are further 



19 
 

connected to via C-H…O hydrogen bondings or C-H…π interactions, and to the counterions via C-

H…F interactions to form a three-dimensional network. Finally, the crystal structure of 4_PF6 is the 

only one to not exhibit π…π interactions, only C-H…π and C-H…F interactions are observed. 

 

3.3. Photophysical Characterisation 

For a complete characterisation, the absorption and emission properties of the synthesised 

compounds were investigated. The UV/Vis absorption spectra were recorded in CH3CN (Figure 

2) and PBS buffer (Figure S23). The comparison between the different complexes shows that 

the para substituents on the central pyridine of the terpy ligand influences the amount of light 

absorbed and therefore the excitation coefficient (Table S10). However, no strong shift either 

to blue or red could be observed. The analysis of the absorption shows that the very intensive 

band in the UV region is caused by a ligand centred (LC) π-π* transition. The other broad band 

in the visible spectrum (~400-550 nm) was attributed to the spin-allowed d-π metal-to-ligand 

charge transfer (MLCT) transition.[20, 25, 66] Next to the absorption, the emission of the 

complexes was investigated. The synthesised complexes have a very weak emission from ~550-

800 nm (Table S1, Figure S24) upon excitation in CH3CN at 450 nm at room temperature which 

was measurable only at the detection limit of our used setup. The luminescence quantum yields 

were found to be <0.01 % in CH3CN which is fitting with previous studies of similar 

complexes.[30, 67-69]  For verification that the measured emission is caused by the 

compounds, the excitation and absorption spectrum of compound 6 has been compared. As 

expected, no significant differences between the spectra could be observed. The 

characterisation of the excited state lifetimes was not possible with our apparatus due to a 

necessary minimal delay between excitation and detection, indicating that the compounds 1-7 

have lifetimes < 29 ns. Therefore, as expected, the excited state lifetimes are in the same range 

than other [Ru(terpy)2]2+ derivatives previously published.[30, 67-69]  
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Figure 2. UV/Vis spectra of the complexes 1-7 in CH3CN. 

 

3.4. Determination of the LogP values 

After having assessed the photophysical properties of our compounds, we investigated their 

solubility in an aqueous solution which is crucial for any kind of biological application. For this 

purpose, we determined the distribution coefficient (logP values) of the complexes between an 

aqueous PBS phase and a lipophilic octanol phase by the “shake-flask” method, as previously 

performed by our group with other metal complexes.[70, 71] All compounds were mostly found 

in the aqueous phase, which we assume, is due to the positive charge of the metal complexes. 

As anticipated, the results (Figure 3) show that the logP values change based on the functional 

group present on the terpy ligand. Compound 5 bearing a carboxylic acid was found to be the 

most hydrophilic and complex 3 bearing a bromine substituent the most lipophilic one. The 
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following order could be made (from the most hydrophilic to the most lipophilic): 5 > 1 > 6 > 

2 > 4 > 7 > 3.  

 

Figure 3. Distribution coefficients (LogP values) of complexes 1-7. 

 

3.5. Stability in Human Plasma 

In order to have a preliminary insight of the metabolic stability of our compounds, their 

compatibility under biological conditions was investigated. For this purpose, the complexes 

were incubated upon the addition of the internal standard caffeine in human plasma at 37 °C 

for 48 h and their stability investigated, as previously performed by our group with other metal 

complexes.[21, 23] After extraction from the plasma, the complexes were analysed via HPLC 

and the chromatogram before and after incubation compared. Complexes 1-5 and 7 (Figure 

S25-S29, S31) were found to be stable for a therapeutically relevant time. However, some 

degradation of compound 6 (Figure S30) was observed, as indicated by the appearance of small 

peaks as well as a decreased of the compound/caffeine ratio.  
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3.6. Photostability 

Since Ru(II) complexes are well known to act as PDT PSs, the compounds were investigated 

to assess if a phototobleaching effect, which is a degradation of the compound upon light 

irradition, was observed.[72, 73] To investigate this, the complexes were constantly irradiated 

at 450 nm in CH3CN and the potential change in absorbance between 350-700 nm from 0-10 

min monitored. As a positive control, [Ru(bipy)3]Cl2[74] (Figure S32) and as a negative control 

Protoporphyrin IX (PpIX)[75] (Figure S33) were chosen. Analyses (Figure S34-S40) shows a 

different photostability of the complexes based on the functional group they bear. In general, a 

rather small photobleaching effect was observed. From comparison between the different 

complexes, the following order for photostability can be made from the most photostable to the 

least photostable: 2 ~ 3 > 4 > 1 > 7 > 5 > 6. 

 

3.7. Dark Cytotoxicity and (Photo-)toxicity 

We then investigated the biological influence of the complexes 1-7, their corresponding ligands 

and precursor on non-cancerous retinal pigment epithelium (RPE-1) and human cervical 

carcinoma (HeLa) cells. For this purpose, cells were treated with the compounds in the dark as 

well as upon light irradiation at 480 nm and their cell viability measured using a fluorometric 

resazurin assay. The IC50 values of the compounds are shown in Table 1. Unfortunantly, 

complexes 1-6 did not show a measurable cytotoxic effect in HeLa cells in the dark as well as 

upon light irradition. The poor phototoxic effect was expected due to the poor photophysical 

properties including the short excited state lifetimes of our complexes. However, compound 7 

was found to be cytotoxic in the micromolar range in RPE-1 and HeLa cells. Unfortunately, no 

selectivity for cancerous cells versus non-cancerous cells was observed. The IC50 values for 7 

are 1.4 times higher in RPE-1 and 3.3 times higher in HeLa cells than for the clincally used 
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drug cisplatin. In terms of PDT treatement, an important value for the evaluation of a PS is the 

comparison between a dark and light treatment. For this purpose, the phototoxic index (PI) is 

defined as the ratio between the IC50 value in the dark and upon irradiation. Compound 7 was 

found to be phototoxic with a PI value of 1.4 in RPE-1 and HeLa cells. These values are rather 

low in comparison to porphyrin based-PSs like Protoporhyrin IX (PpIX). Additionally, the 

cytotoxic effects of the differently substituted terpy ligands were investigated (Table 1) in the 

dark as well as upon light exposure. Contrary to the cytotoxicty of the complexes, all the ligands 

except of terpy-COOH and terpy-COOMe were toxic in the mircomolar range. The exposure 

ot light revealed phototoxcity with PI values in the range 1.0 - 2.0. Terpy ligands are well known 

to bind to biological relevant metals as for example Cu(II) inside of cells or living organisms 

and therfore their properties have been investigated as imaging probes and potential anticancer 

agents.[76, 77] As the terpy ligands itself are not able to cause such a phototoxic effect, we 

assume that they could potentially bind with a biological relevant metal ion and the resulting 

complex could cause this effect. 

 

Table 1. IC50 values in the dark and upon irradiation at 480 nm for the complexes 1-7, the terpy-

X ligands and the Ru-precursor incubated in non-cancerous retinal pigment epithelium (RPE-

1) and human cervical carcinoma (HeLa) cells. Average of three independent measurements. 

 RPE-1 HeLa 

Compound IC50  / μM 

dark  

IC50  / μM 

480 nm  

(10 min, 

3.1 J/cm2) 

 

PI 

IC50  / μM

dark  

IC50  / μM  

480 nm  

(10 min, 

3.1 J/cm2) 

 

PI 

1 >100 >100 n.d. >100 >100 n.d. 

2 >100 >100 n.d. >100 >100 n.d. 
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3 >100 >100 n.d. >100 >100 n.d. 

4 >100 >100 n.d. >100 >100 n.d. 

5 >100 >100 n.d. >100 >100 n.d. 

6 >100 >100 n.d. >100 >100 n.d. 

7 39.7 ± 3.6 27.5 ± 1.1 1.4 35.1 ± 0.6 24.5 ± 2.6 1.4 

terpy-H 21.8 ± 0.7 21.9 ± 2.4 1.0 26.5 ± 3.0 18.1 ± 0.7 1.5 

terpy-Cl 8.7 ± 0.8 8.4 ± 1.2 1.0 12.3 ± 0.6 8.3 ± 1.3 1.5 

terpy-Br 10.5 ± 0.4 8.8 ± 0.3 1.2 13.7 ± 3.2 6.9 ± 0.1 2.0 

terpy-OMe 18.9 ± 0.8 16.7 ± 0.7 1.1 40.9 ± 2.1 40.2 ± 0.3 1.0 

terpy-

COOH 

>100 >100 n.d. 50.5 ± 9.1 37.5 ± 5.4 1.3 

terpy-

COOMe 

>100 >100 n.d. 23.3 ± 4.0  20.0 ± 2.4 1.2 

terpy-NMe2 14.8 ± 1.4 13.3 ± 2.2 1.1 19.6 ± 1.3 17.7 ± 2.7 1.1 

Ru(Terpy)Cl3 >100 >100 n.d 96.0 ± 3.5 87.5 ± 8.0 1.1 

PpIX >100 3.8 ± 0.1 >26 >100 2.5 ± 0.1 >40 

Cisplatin 29.3 ± 1.4 - - 10.5 ± 0.8 - - 

n.d. = not determinable. 
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4. Conclusion  

In this study, we report on the systematic investigation of differently substituted 

[Ru(terpy)(terpy-X)]2+ (X = H (1), Cl (2), Br (3), OMe (4), COOH (5), COOMe (6), NMe2 

(7)) complexes as potential chemotherapeutic agents and PDT PSs. The compounds were 

characterized in-depth including by single crystal X-ray crystallography. Photophysical 

measurements showed that the complexes strongly absorb in the green region of the 

visible electromagnetic spectrum. Further analysis revealed that they are weakly 

luminescent and have a short lived excited state. Despite their unfavourable photophysical 

properties such as a weak emission and short lifetimes, ruthenium terpyridine complexes 

were found in the past to be able to bind to DNA and to cleave it upon light irradiation. 

Inspired by the works of Thorp and Brewer et al., we systematically evaluated their 

potential as PDT PSs. The distribution coefficient (logP value) of the complexes between 

an aqueous PBS phase and a lipophilic octanol phase was determined. As expected, all 

compounds were majorly found in the aqueous phase. Importantly, compounds 1-5 and 7 

were found to be stable in human plasma and to have only a small photobleaching effect 

upon continuous LED irradiation. Complex 6 was found to be not stable in human plasma. 

Biological evaluation on one cancerous and one non-cancerous cell line demonstrated 

that compounds 1-6 had no cytotoxic effect in the dark as well as upon light irradiation. 

In comparison, 7 was found to have a dark and (photo-)cytotoxicity in the micromolar 

range. However, irradiation at 480 nm seems to have only a negligible effect. We assume 

this is caused by the very short excited state lifetimes of this complex. Overall, this study 

demonstrates that small structural changes are able to influence significantly the effect 

that a compound has on cell viability.  
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