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Abstract

We analyse a bi-dimensional fluid-structure interaction system composed by a viscous incompressible fluid
and a beam located at the boundary of the fluid domain. Our main result is the existence and uniqueness of
strong solutions for the corresponding coupled system. The proof is based on a the study of the linearized
system and a fixed point procedure. In particular, we show that the linearized system can be written with
a Gevrey class semigroup. The main novelty with respect to previous results is that we do not consider any
approximation in the beam equation.
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1 Introduction

In this article, we are interested in the interaction of a Navier-Stokes fluid and of a beam. More precisely, we
consider a planar domain F(¢) where evolves a viscous incompressible fluid modeled by the classical Navier-
Stokes system. The fluid domain is a transformation of an infinite horizontal strip through the displacement
of a beam located at its upper side. More precisely, we write for any 7: R — (—1, 00)

de

Fu(n) = {(z1,22) €R?, 21 €R, 22 € (0,1 +7(z1))}, (1.1)

Tu(n) € {(s,1+n(s), se€R}, Taes =R x {0} (1.2)

def

Then the fluid domain writes F(t) = Fx(n(t)) where n(t,s) (t > 0, s € R) is the vertical displacement of
the beam. If we denote by v and p the velocity and the pressure of the fluid, our system is the following

v+ (v-V)v—divT(v,p) =0, t>0, z& Fu(n(t)),
dive=0 t>0, z € Fx(n(t),
v(t,s,1+mn(t,s)) = (0m)(t,s)ez t >0, s €R,
v=0 t>0, x € Iax %, (1.3)
v Le; — periodic ¢ > 0,
Outn) + a1 0ssssm — @205 = —H,(v,p), t>0, s€R,
n L — periodic ¢t > 0,

with the initial conditions

n(0) =7, 8n(0)=ny and v(0,-) =" (1.4)
We focus in this article in the case of a periodic solution in the direction e, where (e, ez) is the canonical
basis of R?. We have also used the following notation:

T(v,p) & 20D (v) — pls, D(v) = % (Vo + (Vo)) (1.5)

By (v,p) (8 5) < {(1+ 10un(t, 9)*)"2 [T(0, p)n] (5,1 + (t, ) - e2 (1.6)

Above, the constant v > 0 is the viscosity and the vector fields n is the unit exterior normal to Fg(n(t))
and in particular, on I'x(n(t)),

n(t, 1, x2) = 1 —3577(757551)
(t,z1, m2) 1+|8sn(t,x1)|2[ 1 ] (1.7)

The constants a; and ag are assumed to satisfy
a1 >0, o2 20. (1.8)
Due the spatial periodicity, we also use the following notation (see Figure: for any 7 : [0, L] — (—1, 00),
F(n) = {(z1,22) €R?, 21 € (0,L), 22 € (0,1 +17(z1))}, (1.9)
T(n) = {(s,1+n(s)), s € (0,L)}, Tax = (0,L)x {0}. (1.10)

A formal calculation on system (|1.3)) shows that

d [T
— t,s) ds = 0.
o /O n(t, s) ds
For simplicity, and without loss of generality, we assume that the mean value of 7} is zero and thus
L
/ n(ts) ds=0 (13 0). (1.11)
0
This leads us to consider the following spaces

L5(0,L) = {f € L{,.(R) ; f(-+L)=f} (p€[Loc) (1.12)



g
o
-
3
—
~

0 lax L

Figure 1: Our geometry

L
00 {sery0.0; [ 6=} Geo. (113)
H (0, L) = Hizo(R) N L3 0(0, L) (a>0), (1.14)
and the orthogonal projection
M : L3 (0,L) — L% (0, L).
We also define the operator for the structure:

Hs = Li&,o(ovL)v D(Al) = H;}E,O(OvL)v (115)
A1 :D(A1) > Hs, 1N 210ssssh) — a20ss7. (1.16)

One can check that for any « € [0, 1],
D(AT) = Hyo(0, L). (1.17)

Note that from relation ([1.11]), the pressure is not determined up to a constant as in the usual Navier-Stokes
system. Indeed, from the beam equation in (|1.3]) and relation (1.11]) we deduce

/OL (p(t5,n(t)) = 20 {1+ 00" /2 D ()] (k5,1 + () - 2} ) ds =0

that can determine the constant for the pressure. In what follows, we only write the projection of the beam
equation in Hs:
Oun + A1n = 7Hn(1},p), t>0, (1.18)

where _
Hy (v, p) = MHy (v, p). (1.19)

)

In what follows, we need spaces of the form H' (0, T; L*(F(n))) and L*(0, T; H"(F(n))), etc. with T’ < oc.
Ifn(t,-) > =1 (t € (0,T)), then v € H' (0, T; L*(F(n))) if y = v(t, y1, y2(14+n(t,y1)) is in H' (0, T; L*(F(0)))
and similarly, v € L*(0,T; H*(F(n))) if y — v(t,y1,y2(1 +n(t,41))) is in L*(0,T; H*(F(0))). We have used
the following notation: L” for the Lebesgue spaces, H * for the Sobolev spaces and C} for the set of the
continuous and bounded maps. We use the bold notation for the spaces of vector fields: L% = (LD‘)Q,
H" = (H")? etc.

As explained above, our aim is to show the existence and uniqueness of strong solutions for system .
We mean by a strong solution of system a strong solution for the fluid equations: that is

v e L*(0, T H*(F(n)) N Co([0, T H' (F(n)) NH' (0, T;L*(F(m), pe€ L*(0,T:H' (F(n)))  (1.20)

and the first four equations of (|1.3]) are satisfied almost everywhere or in the trace sense and a solution for
the structure equation with the regularity

n € L*(0,T; Hy/3(0, L)) N Cy([0,T); HY/ 5(0, L)) N H' (0, T; Hy/ 3(0, L)),
(1.21)
B € L*(0,T; HY 5(0, L)) 0 Cy([0,T); Hy/ 5(0, L)) N H' (0, T; (H/3(0, L))"),

and (L.18) holds in L*(0,T; H}/3(0,L)’).



Remark 1.1. From the third equation of (1.3)), we see that the regularity of v and of Oy are related by trace
theorems. The regularity (1.21) of Oin that we consider is thus quite natural when looking at the regularity

(1.20) of v.

We are now in position to state our main results. We assume there exists € > 0 such that

m € Hi'5(0,L), n3 e Hy5(0,L) (1.22)
with
¥>—-1 inR. (1.23)
and
0 1 0
v' € H (F(n)), (1.24)
with
dive’ =0 in Fg(n)), (1.25)
v° Ley — periodic, (1.26)
(s, 1+ 01 (s)) =m3(s)e2 s € R, (1.27)
v =0 on Dpx 4. (1.28)

We first give the existence and uniqueness of strong solutions for small times.
Theorem 1.2. Assume [0°, 1}, 1] satisfies (1.22) ~(1.28). Then there exist T > 0 and Co > 0 such that if

31|22 0,1y < Co (1.29)
there exists a strong solution (n,v,p) of with
n(t,)>-1 telo,T). (1.30)
This solution is unique locally: if (n™, 0™, p™)) is another solution, there exists T* > 0 such that

(™0, p") = (n,0,p)  on [0,T7].
We can also obtain the following result
Theorem 1.3. There exists Co > 0 such that for any [v°, n?, n3] satisfying [L.22)-(T.28) and

o 0 0
[[w° e, 772]HHl(f(ngJ))xH;fg(o,L)xH;:g(o,L) < Co,

there exists a solution (n,v,p) of (1.3) with
n(t, ) > -1 tel0,00). (1.31)

Let us give some comments about our main results. Theorem [[.2]states a local in time existence of strong
solutions whereas Theorem gives the global existence of strong solutions for small initial conditions. We
do not recover the global in time existence of strong solutions as for the standard Navier-Stokes equations.
Moreover, we see that there is a loss of regularity for (1, 9;n): we have the continuity of (1, 9;n) in Hj:;/ 3 (0, L)%
H;#/’?)(O, L) but we need to impose that at initial time, it belongs to Hir(f (0,L) x H;&f (0, L) for some € > 0.
Finally, the uniqueness holds only locally in time. All the above points are due to the coupling of the
Navier-Stokes equations with the beam equation which modify the nature of the Navier-Stokes system.
More precisely, the linearized system that we consider in Section [3|is composed by a Stokes system
and a beam equation and the corresponding semigroup is not analytic but only of Gevrey class (see Section
5). This is stated in Theorem and is a part of our main results.

Another important remark is that in this work we have focused on a particular geometry: our linear
result, Theorem [5.1] is proved in the case where the fluid domain is a rectangle. This explains why we need
the smallness conditions in Theorem This hypothesis on the geometry implies the commutativity
of some operators (see Proposition and this simplifies the resolvent estimates in Section The result
should hold true in a general geometry, but the corresponding proof should be more involved. This will be
the subject of a forthcoming paper.



The model presented above, mainly system (1.3]) was proposed in [I6] for a model a blood flow in a vessel.
It is important to remark that in their model, the beam equation is damped by a term of the form —d0:ss7.
More precisely in (|1.3]), the beam equation is replaced by

Oun + 1055551 — 20551 — 8Os = —]ﬁl,, (v,p). (1.32)

Several authors have studied this model: [5] (existence of weak solutions), [2], [14] and [I0] (existence
of strong solutions), [I7] (stabilization of strong solutions), [I] (stabilization of weak solutions around a
stationary state). In all these works, the damping term plays an important role. In particular, with this
term, the linearized system is parabolic that is the underlying semigroup is analytic.

Up to our knowledge, there exists only one result in the case without damping, that is for § = 0:
the existence of weak solutions is obtained in [9] (by passing to the limit § — 0). Note that recently in [11],
the authors show the existence of local strong solutions for a structure described by either a wave equation
(a1 =8 =0 and a2 > 0 in (I.32)) or a beam equation with inertia of rotation (a; > 0, az = § = 0 and with
an additional term famn(]i;f@).

In particular, they do not treat our case (a1 > 0, a2 > 0and § = 0 in ) and therefore, our work gives
the first results of existence and uniqueness of strong solutions in the case of an undamped beam equation.
Moreover, we develop a new general approach for the analysis of fluid-structure interaction systems based
on Gevrey class semigroups. More precisely, our idea consists in linearizing the problem and in showing
that the linearized system (that is in our case) is of Gevrey class (see [19] for this notion). We then
derive some regularity properties for our linear system and perform a fixed point argument to deduce the
well-posedness of system . Several works considered Gevrey class semigroups, but this is usually done
for elastic structures: [6], [7], [I8], [8], [22], etc.

The outline of the article is as follows: in Section we perform a change of variables to write system
in a cylindrical domain. The rest of the paper concerns the resulting system. Section [3| presents the linear
system associated with this nonlinear system, and we show in Section [4] the Gevrey class of this system by
estimating the resolvent of the corresponding operator. In Section [5] we prove some regularity properties of
the linear system. Part of this section is general for any Gevrey class systems. Finally, Section [0 is devoted
to the proof of the main results, Theorem [[.2] and Theorem [[.3] by using a fixed point argument.

Notation

We complete here some notation that we use all along the paper. We denote by £(X1, X2) the space of the
bounded linear operators from X; to X2. We also set for T' € (0, 0]

W(0,T; X1, Xs) & {w e L*(0,T; X,); %’ e L*(0,T; Xz)} .

We recall (see [3, Rem. 4.1 p. 156 and Prop. 4.3 p. 159]) the following embediing
W(0,00;X1,X2) — Cb([o,oo),[X1,X2]1/2), (133)
where [X1, X2]o denotes the complex interpolation method.
Finally, we use C as a generic positive constant that does not depend on the other terms of the inequality.
The value of the constant C may change from one appearance to another.

2 The system written in a fixed domain

We transform the system ([1.3)) written in the non cylindrical domain

U1t} x Fn(e))

>0
into a system written in the domain
(0,00) X F,
where
F L F0)=(0,L) x (0,1). (2.1)



We also define

def

Fup ERx(0,1), TET0)=(0,L)x {1}, Iy ET40)=Rx{1}, (2.2)

and
dcf

rb T UThx, Doy & Ty Uy = 0Fy, (2.3)

where I'sx, ['ax,# are defined in and -
Using the particular geometry of the problem, one can consider the general changes of variables

X2t F') = F0°),  (y1,92) — <y1,yz%> , (2.4)

whose inverse is X, 2 ,1. Our change of variables is thus defined by

X(t,+) = Xomey 1 (y1,52) = (1, y2(1+ 1t 91))) (2.5)
def . -t = X1, T2 X1 xQ;
Y(t, ) = X(t, ) XTI(t)»O : ( s ) — < 5 1+17(t,()31)> . (26)
We write
a ™ Cof(VY)*, b% Cof(VX)". (2.7)
We set
w(t,y) = bt y)o(t, X(Ly))  and  q(t,y) = p(t, X (t)), (2:8)
so that
o(t,z) = a(t,z)w(t, Y (t,z)) and p(t,z) = q(t,Y(t,x)). (2.9)

Remark 2.1. Note that we use the cofactor matriz Cof(VX) of VX in (2.8). Such a change of variables
allows us to keep the divergence free condition and the structure of the boundary conditions (see [13], [4], [1
Lemma 2.3]).

Then some calculation yields

Oaix Owi, 0Yy
bAU Zbaz > Wk +2 Z ba’L a (X) 8y€ axj (X)
4,4,k i,5,k, €
8% wa GYg Awe 62 Y}g
Z 8yg(9ym 8:rj Z Oye Bm ), (210)
_ IBaik ) 1 )
b[(v- V)] (X)), = ]Zk:m bai G (X)tsm (XJwiwm + Gy [(w - V)wl, (2.11)
dq 6Y 8Yk

[bVp(X)], = det(VX) Z o 812 8361- (X), (2.12)
b3 v(X) = b(8sa) (X)w + dyw + (Vw) (8, Y)(X). (2.13)

For the other equations of (1.3)), we need to use in a more precise way (2.5) and (2.6). We have the
following formulas

1 0 1+n7 O
VX(t = b(t = 2.14
( 7y17y2) |:y2asn 1+17:| ) ( 7?!17292) |:7y2asn 1:| ) ( )
1

1 0 i 0
VY (t,x1,x2) = 2 s 1 , a(t,xi,x2) = —57]7 . (2.15)

2 T2 1

1+n) 1+n ( +1n)2

Thus the boundary condition of (1.3) on I'x(n) rewrites

w(s,1) = 9m(t,s)ea t>0, seR.



We also deduce from (1.5)), , , (1.19) and (2.5) that
* —Us tv
E, (0,p)(,5) :M{[v<w+(w> )=l X(ts,1) |T10) e
zk ) (3‘wk % aa]'k
— My(t,s) +MH 3 e+ S (5 S0 4 5 G (o

(t,s,1) {_8”{@’8)} .ez}. (2.16)

Jwy. IYy
Y (0GR LX)
k.0

4]

Moreover, we recall that
Ho(w, q)(t,5) = MA{[T(w,q)es] (t,5,1) - ea}. (2.17)

In particular,
G(n,w)(t,s) = Ho(w, q)(t, s) — Hy(v,p)(t 5)

= VM{QZ |:(52,k52,l - a2k(X)%(X):| %

7 0To e
awk GYZ ka oYy
Os E E X
T Lz k(X ‘93/1% a2 (X ay[ i )]

+Z< = )+%‘§j<x>}—2%‘fj<){>)wk}. (2.18)

We also define

2
Fa(n,w,q) v Z boi——5 0 alk X)wg + 2v Z bai 8alk 8Wk ov; —(X

3,5,k Oz 2 i,5,k,0 amj 8y£ 81.]
Pwa [(OYe, . OYm
+Vj;1 YeOym (TM(X) O, (X) = e mj) Z ayz 83:
dq ) AN ) 1
_ 3 B (d t(VX) B, 2 (X) 8951( ) — 6a,,6k,l)

G (X (X = oo |

= [b(9:a)(X)w], = [(Vw)(0:Y)(X)],, (2.19)

w - Vuwl,

Then system (|1.3)), (1.4) rewrites,

Orw — divT(w, q) = F\(n, w,q) in (0,00) X Fy,
divw =0 in (0,00) X Fg,
w(t,s,1) = (0¢n)(t,s)ea t >0, s ER,
w=0 t>0, y&€laxx,
w Ley — periodic ¢ > 0,
Oun + Ain = —Ho(w, q) + G(n,w), t>0,

(2.20)

with the initial conditions
n(0) =, 9m(0) =73 and w(0,y) =woly) = b(0,y)v0(X(0,y), y€EF. (2.21)
Remark 2.2. We can notice that in the reference geometry we use here (where n =ez on T'),
Ho(w, q)(t,s) = —Mq(t,s, 1).

This can be done by standard calculation. Nevertheless, this particular form of Ho is never used in what
follows.



Using (2.14) and (2.15]), we can precise some terms of the above nonlinearities:

2 N
a(X) = ’577 VY(X)=| 8 1|,
S y2 —_—
T+ Ltn  L+m
0 0
VY(X)— I = —n |, det(VX)=1+n,
“PTEn 14
_8577
0 0 0
Oa oy _ (1+mn)? Oa v _ | o
5ur M) = | Buon(1 -+ 1) — 2(0.m)? of 9= ) SorU N
Y2 (1+n)? (14mn)
0 0
d%a
(X) = | Bssn(1 + 1) — 2(9sm)* ,
(91'18%2 (1 T 77)3 0
7837] 0
a vy _ (1+mn)? 0%\ _
873( ) Dsssn(1+n)* = 6(1+ n)Isndssn +6(0sm)® | ang(X) 0
v (1+n)?
0 0 0 p] 0 0
3 VY (X) = ” —0ssn(1+m) +20m)° =0 |, Z-VY(X)=|__Om
' (1+mn)? (1+n)? ? (1+n)?
(1_?:)2 0 0
ata(X) = 8ts77(1 + 77) - 283778t7] 0 R 8tY(X) = —ys 1at77 .
+n

(1+n)?

3 The linear system

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

In this section, we consider a linear system associated with . This linear system is similar to the one

introduced in [I] in the case of a damped beam equation and we use several results of this previous work.
We recall that F, Fu, I', 'y, I'y, I'y, % are defined by , and , that L™ and H* stand for

Lebesgue spaces and Sobolev spaces respectively, and that we use the bold notation for the spaces of vector

fields: L* = (L*)?, H* =
([T12)(T.14).

We consider the following functional spaces:

def

LL(Ty) = {f € Li,.(Tv%) ;

LY, o(Th) = {f € LL(Ty) ;

def

(H")? etc. We also recall that LL(0, L),

fG+Ler)=f} (pel,o0]),

f~nd7=0} (v € [1, 00)),

'y

HE(Ty) = Hige(Th4) N L3%(Ty) (o> 0),
VE(Ty) £ HE(T) NLLo(Ts)  (a>0),
LE(F) E{f € L (F) 5 f(+Le)=f} (pe[l,00)),
HY(F) ¥ HE(Fy) N LE(F) (a>0),
VL(F) = {f € HL(F) ; div f =0},
Vi (F)E{feHY(F); divf=0, f-n=0 onlp} (a€[0,1/2)),
Vi (F)E{feHLY(F); divf=0, f=0 onT,} (ac(1/2,1)).

L%, 4(0,L) and Hg (0, L) are defined by



We introduce the operator A : L% (0, L) — L2 (T',) defined by

(An)(y) = (Mn(y1))e2 if yeT,

3.10
(An)(y) =0 if ye€ lax. (3.10)
The adjoint A* : L% (') — L%(0, L) of A is given by
(A"v)(s) = M (v(s,1) - e2) (s €(0,L)). (3.11)
Note that for any a € [0, 4],
Ae L(Hg(0,L),Vi(T'y)) (3.12)
and
A" € L(HE (D)), D(AT?)). (3.13)
We recall that A; is defined in (1.15)), (1.16]) and satisfies (1.17]). Moreover,
a/4 a/4
IARl|sg, ry) = c(@)[| AT nllns  (n € D(AT)). (3.14)
Note that Ho (see (2.17))) can be written in a simpler way as
Ho(w,q) = A" {T(w, q)nir, , } - (3.15)

We consider the space Li(]—") X D(Ai/z) X Hs equipped with the scalar product:

2 2 1/2 1/2 (2 2
<[w(1),77§1),77§1)] : [w@),ni P >]> :/ w® . w® gy + (Al/ D, A2y )) n (nél)wé >) 7
F Hs Hs

and we introduce the following spaces:

H L L w, i, m] € LA(F) x D(AY?) x Hs 3 w-n = (Anz) -n on T4, divw=0in f} , (3.16)

y {[w,m,ng] € Hy(F) x D(AY*) x D(AY*) s w= Any on Ty 4, divw =0in .7:} .
We denote by Py the orthogonal projection from L% (F) x D(Ai/Q) x Hs onto H. We have the following
regularity result on Pp:

Lemma 3.1. For any s € [0, 1],
Po € L(HS(F) x D(A*T/%) x DAY, (3.17)

and
Py € L(LL(F) x D(AY®) x D(A}/®)). (3.18)

Proof. We have proven in [1l Proposition 3.1 and Proposition 3.2] relation (3.17) and that for any [w,n1,72] €
L*(F) x D(A}?) x Hs,

w w— Vp
Po [n| = 7
72 n2 + A" (pn)

where the pressure function p € H' (F) obeys / p dy = 0 and is solution to the Neumann problem:
F

Vg € H'(F) such that /qdy:O7

_F
[ 9o vady+ (8w A @), = [ wTady= (14 @)
F Hs F

From (3.19) and by using the trace inequality ||p|[z1/2r) < C||Vp|lL2(#) and (3.13) for o = 1/2, we deduce
that

(3.19)

Hs

IVplI22 ) + 1A (00) 3s < Cllwllnz ) VP2 ) + 1AT Y 52 llaes AV A" (o) |0 )
—1/8
< O(wllezz) + 14T 02l IV DllLe (7).
from which, we obtain (3.18]). O



We now define the linear operator Ag : D(Ao) C H — H:
def

D(Ao) VN [Hi(f) x D(A;) % D(A}/Q)L (3.20)

and for [w,m, 772} € D(Ao), we set

vAw
Ao [m| = 2 (3.21)
"2 —Aim — A" (2vD(w)n)
and _
Ao & PyAy. (3.22)

Remark 3.2. As already pointed out in Remark[2.3, by using the particular geometry of F, we can simplify
the above expression since A" (2vD(w)n) = 0. This simplification is not used in this paper and several results
of the next sections remain true for a general geometry. The important consequence of our geometry in our
work corresponds to the commutativity of some operators (see Proposition @)

By using the above operators, we can rewrite the following linear system
Ow —divT(w,q) = F in (0,00) X Fg,
divw =0 in (0,00) X Fa,
w(t,s, 1) = (0m)(t,s)ez (¢,s) € (0,00) xR, (3.23)
w(t,-) Ley — periodic t € (0, 00),
Oun+ A1 = —Ho(w,q) + G in (0, c0),

with the initial conditions

U)(O, ) = wO’ 77(07 ) = n?v 87577(07 ) = ’737 (324)
as follows
dlw w F w w’
il I Ao | n | +P [0], n | (0)=|n]- (3.25)
8{'] 81577 G 81577 773

We have the following result (see [I, Proposition 3.4, Proposition 3.5 and Remark 3.6]).

Proposition 3.3. The operator Ao defined by (3.20)—(3.22) has compact resolvents, it is the infinitesimal
generator of a strongly continuous semigroup of contractions on H and it is exponentially stable on H.

We have also the following result (see [I, Proposition 3.8]).
Proposition 3.4. For 6 € [0,1], the following equalities hold

D((~A0)’) = [H;f(f) x D(AY>9/%) D(Ai’”)] AH if 0e(0,1/4), (3.26)

D((~40)°) = {[w,m,me] € [HF(F) x DAY**?) x DAY 0 H5 w = Az on T}
if 0¢(1/4,1]. (3.27)

4 Gevrey type resolvent estimates for A

We introduce the notation
CTE{\eC; Re()) =0}, (4.1)

and
Ct={reC; |\ >a}. (4.2)

The goal of this section it to prove the following result on the operator Ao defined by (3.20)—(3.22]).
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Theorem 4.1. There exists C > 0 such that for all X € CT
1/2 -1
Al H()‘ — Ao) Hgm.w <C. (4.3)
Moreover, there exists C' > 0 such that for all X € CT and for all
[£,9:h] € 1 (LA(F) x D(AT®) x D(4})),

the following estimates hold

[ /
(A —A0)" | <c||s (4.4)
h H2, (F)xD(A]/%)xD(A}/®) Lh L2, (F)xD(A}/ %) xD(4;/%)
and
) f f
AL|(A=A0) ™ |9 <C| |9 : (4.5)
h Li(r)xD(Af/s)xD(A}/s)/ h Li(ﬂxp(fxf/g)xD(A}/S)

Remark 4.2. A consequence of (4.3) is the following resolvent estimate,
supr['/267 — Ao) g < v,
TE

which implies in particular that (€'°)1>0 is of Gevrey class 6 for all § > 2 (see [19]), namely, for all compact

K C (0,+00) and 0 > 0 there exists C = C(0, K) such that for allt € K and alln € N,

|

In order to prove Theorem we rewrite the resolvent equation in a more convenient way. Assume
A e Ct and [f,g,h] € H. We set [v,m1,12] := (A — Ao)'[f, g, h] so that

n tAg
dd";n <Co™(n)’.

L(H)

A —divT(v,p) = f in Fyg,
dive =0 in Fyg,
v=An onTIy 4,
v Le; — periodic, (4.6)
)\771 — N2 =g,
Anz + Avm = —A” {T(v,p)mrb,#} +h

For all A € C", we define the solution (wy, g,) (that depends on ) of

Awy — divT(wy, ¢n) =0 in Fau,
divw, =0 in Fyu,

Wn = An on Fb,#, (47)
wy Ley — periodic.
We also define the operator
Do(N)n L w,. (4.8)
We denote by A the Stokes operator:
D(A) £ VL . (F)NHL(F), A= vPA:DA) = VL, (F), (4.9)

where P : L (F) — VY%, (F) is the Leray projection operator.
Using the above notation, we can decompose the solution of (4.6) as

v =Do(Nm2 + (A — A)'Pf,

11



that is (v,p) = (Wxy, qny) + (U, p) where (wn,, qn, ) satisfies (4.7)) with n = n2 and where (U, D) satisfies

Ao —divT(@,p) = f in Fau,
divi=0 in Fy,

v=0 on F}L#, (4.10)
v Le; — periodic.
In that case, system (4.6]) becomes
AL —n2 =g
« SO X (4.11)
A+ A = —A {T(v,p)mpby#} —A {'[[‘(w,,2 , qnz)n‘pbv#} + h.

This leads us to define the operators 7(\) € L:(Li(]:),D(Ai/S)) and L(\) € C(D(A:f/g),D(Ai/S)) (see
Propositionand (4.31) below) by

TS A {1, D)nyr, , | (4.12)
L()\)W = A" {T(wnaqU)n\Fb’#} s (4413)
so that system (4.11) can be written

A —n2=g
{ Aps + Lz + Ay = TOVf + b, (414)

We thus introduce the operator

AN & L?l L_(i)} (4.15)
and study the equation
oo 1] = [2). (410

where N
h TN f + h.

In what follows, we need the following operator:

V(A) = NPT+ AL()\) + A, (4.17)
We will prove that V() is invertible (see Proposition |4.8| below), so we can compute the inverse of A + A(\)
I-V7(\)A; 1
_ _ A
A+ AN) " = X Vo (4.18)
V')A AV

and the inverse of A — Ag:

A=A TP+ ADN)V I NTA) —Do(MNV A AL ADo(MV (N

A=A~ = VLTV L}\l()‘)Al VI : (4.19)
AVET () V')A AV

4.1 Preliminaries

We first recall a standard result on the operator A (see (4.9)) and on the operator 7 (see (4.12)).

Proposition 4.3. Let 0 € [0,1] and f € L%(F). There exists C > 0 such that for any solution (T,p) of
@.10) and for any XA € CT,

||6HH§£(]—') < C|)‘|G_1||f||Li(}')' (4.20)
In particular, there exists C > 0 such that for any A € Cct,
(A — A)71P‘|L(Li(7),Hi(F)) + AN = A)AP”L(LQI)) <G, (4.21)
and
||T()‘)||L<L;<f>,v<A}/8)) <C. (4.22)

12



Proof. Using that the Stokes operator A (defined by (4.9))) is the infinitesimal generator of an analytic
semigroup and that C* c p(A), we have the following properties

14" = &) gllz ) < CA gl sy (9€ VEa(F), AeCH 0 [0,1)).

This can be proven by interpolation by showing the case § = 0 and § = 1. We deduce (4.20) (and then
[@21)) from the above estimate and from the embedding D((—A)?) — Hf‘f (F).
We deduce in particular

IVPllLs, ) < Clivllez, ) + ANz, ) + 1Lz, ) < Cliflles, -
Using (3.13]) and (4.12)), we obtain

Next we show the following result on the operator Do()) defined by (4.8).
Proposition 4.4. For any A € CT, the operator Do(\) satisfies

Do() € L(D(A}®), H(F)) N LID(AY®) L (F)).

More precisely, for 0 € [0,1], there exists a constant C' > 0 such that the operator Do(\) defined by (4.8)
satisfies

1Do N lezzs zy < © (14727 nlas + N IAT Pnllag ) (€ DAYV, ety (4.28)

Proof. Using (3.12)) and standard Stokes regularity results, we obtain the first part of the proof.
In order to prove ([4.23)), we first decompose the solution (wy, g,) of (4.7) as

(wn, qy) = (vy,pn) + (20, Cy)

with
—divT(vy,py) =0 in Fuy, Azy — div T(zy, Cn) = —Avy  in Fyu,
divo, =0 in Fg, divz, =0 in Fg,
vy =An on Ty 4, and zn =0 on 'y, (4.24)
vy Le; — periodic, zn Lei — periodic.

Using again standard Stokes regularity results, we deduce that for any 0 € [0, 1], there exists a positive
constant C' independent of A such that

6/2—1/8
lonlleze ) < CIAT7H P nllaes. (4.25)
On the other hand, from (4.20)) in Proposition we deduce
0
HZnHHif’(f) < A HUWHLi(}‘)'
Combining the above estimates with (4.25), we obtain
6y 4—1/8
lzallsze ) < CIN AT Pl
Then (4.23)) follows by combining the above inequalities with (4.25]). O
Using Proposition we can define for A € CT,

K()\) € E(D(A}/s)/,'D(Ai/s)), G()\) c ﬁ('D(Ai/s),'D(Ai/g)/)

(KM Q4178 patssy déf/an'Wdy (4.26)
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and
<G()\)77? C>D(A}/8)’,D(Ai/8) d:ef 2 /}_ Dw'ﬂ : DWC dy (427)

Note that we have
K(\n = _A*{T(@m ﬂ-W)nhﬂb‘#} (4‘28)
where
Apy — divT(py, my) = wy  in Fy,
divp, =0 in Fg,

$n = 0 on Fb’#, (4'29)
¢pn Ley — periodic,
and where wy, is the solution of (4.7]).
Ifne D(A‘:’/S), then we can write
L p—
2/ Duw,, : Dwedy = 2/ A" ((Dwy)n) ¢ ds —/ Aw, - wedy,
F 0 F
and, with Proposition 4.4} we deduce that
G(Y) € L(D(AY®), D(4}%)). (4.30)

The operators K(A) and G(\) are related to the operator L(A) defined by (4.13): multiplying (4.7)) by w¢
and integrating by part, we deduce that

L) = AK(\) + G(N). (4.31)

Proposition 4.5. The operators K(\) € L(D(AY®) D(AY®)) and G(\) € L(D(A)'®), D(AY®)) defined
above are non negative and self-adjoint. There exist 0 < p1 < p2 such that for any A € C™, we have

8 8 —1/8 1/8
Pl AY s < GOV a1rs) parrsy < o2 (JAY 0lles + INIAT *nlihs) (1€ D(AYS),  (432)

—1/8 1/8\7
0 < AE N M)y 178 sy < 22l A7 Pl (0 € DAY, (4.33)

1

Proof. First, by definition, K (), G(\) are symmetric and

(GO patsey oatrey =2 [ 1Dwsl* dy (€ DAY,
7 (4.34)

(KON oy paprsy = [ nl® dy (€ DIAYS))

In particular, they are non negative and since K () is bounded, it is self-adjoint.
From (4.34), (3.14) and from the trace theorem, there exists a constant C' > 0 such that

1/8
(GOmms > Cllenliys oy = ClAnl e, > ClAT niles.

This yields the left inequality in .

The other estimates are a consequence of and .

Finally, from the Lax-Milgram lemma we deduce that G(X) : D(Ai/s) — D(A}/S)' is onto. Since it is
also symmetric we conclude that G(\) is self-adjoint (see e.g. [21], Proposition 3.2.4]). O

The next result is crucial in our analysis and is due to the particular shape of the domain F.

Proposition 4.6. Assume A € C*. Then for a € R

LVAT = ATL(N), KMAT = ATK(N), GAAT = ATG(M). (4.35)
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Proof. Using the definition of the operator A and , we first notice that
Oy, An = A(0:m) (n€ Hy(0,L)), 0:sN*v=A*(0y,0) (veHLT)).
Thus, we can differentiate system with respect to y1 and we obtain that
Oy, Wy = Wa,n.

We thus deduce L(A)A1 = A1 L(\). Using (4.28)), we show similarly that K (A)A; = A1 K () and from (4.31)),
we finally deduce G(A\)A1 = A1G(N). O

Corollary 4.7. Let p2 the constant introduced in Proposition@ For any X € C*, we have
IGOmIRes < 203 (1A} nll3es + NPIAT *nll3es ) (n € D(AY™). (4.36)

Proof. First, since G(\) : D(AL®) — D(A}’®)’ is positive and self-adjoint, we can define its square root
G(N)'2. Using that [D(A}/®), D(A})®) )12 = Hs, we have G(A)'/? € L(Hs, D(A}'®)) and G(A\)'/? €
L(D(AY®), Hs).

The right inequality in (4.32]) yields

IGO) *nles < p2 (14T *nles + IMIATnll3es ) (n € D(AY®)),
and using the identity G(A)2G(A)"/? = G()\) and the fact that G()\) and A; commute, we find
IGOmIRes < 23 (143 “nll3es + 20N nll3es + N2IAT *nll3es ) (n € D(AY™).
The conclusion follows from 2|[nl[3,s = 2(A1 "0, AT )us < (A" AV Nllns + NNAT nlls)- O

According to (@.31)), for A € C* the operator V()) that is (formally) introduced in ([.17) can be defined
as the following unbounded operator on Hs:

D(V(A) =D(A1) and  V(Nnp= N0+ KN)n) +AGN)C + AiC. (4.37)
Proposition 4.8. For all \ € CT the operator V()\) is an isomorphism from D(A1) onto Hs.

Proof. The case A = 0 is straightforward since V(0) = A;. In what follows we suppose A € C* and A #0.
We can write
V) = [NAT + KWATH + MGV AT + 1 As,

with K(A)ATY, GNAT! € L(Hs, D(A®)) (see ([30)).
It is sufficient to show that V(A)AT' € L(Hs) is invertible. Since A>(A7' + K(WATY) + AG(WAT!

is a compact operator, we can use the Fredholm alternative: assume & € ker(V(A)A; ") and let us write
def

n= A7'€¢. Then

0 =Re (V(NAT'EAATE), = Re(V(A)n, An)ug
=Re A (1 + K(N)m,n)acs + MG 0)aes + ReMAY 03 = o MIAY *nll3,,  (4.38)

and thus £ = 0. We thus deduce that V() is an isomorphism from D(A:) onto Hs. O
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4.2 Estimation of V7'())

The following section is devoted to the estimation (in terms of ) of the inverse of the operator V() for
A € Cf. We recall that the notation C{ is introduced in (4.2)).
We also recall that K and G are defined by (4.26) and (4.27) and from Proposition we have

1/8 1 8
sup. Kl eers) + 1A KN ALY £s) < +00. (4.39)
€

To obtain estimates for V(\) we first consider the following “approximation”
Vic(\) ZN2(T + K(\) + 2pM AV + 44, (4.40)

where p > 0 is a given parameter. The estimates on V() will then be deduced by a perturbation argument.

Theorem 4.9. For all A\ € C{ the operator Vic(\) : D(A1) — Hs is an isomorphism and for € [0,1] the
following estimates hold
sup [A*272) ATV V) |2 grs) < +oo. (4.41)
aecy

Proof. The proof of the invertibility of Vi () can be done in the same way as for V() (see Proposition [4.8)
We only prove - for # = 0 and 6 = 1, the other cases are obtamed by interpolation. Let us con81der
A€ CT and n € D(A;). We first develop the expression of Vi (\) in

2 1/4

H Vik(Mn
AQ

= ln+ KMNnll3,4 + 40
Hs

T

A
+ 2Re (77 + K(M\)n, 1277)
Hs A Hs

1/4 1/4 1/4
1 4pRe (K(A)n, A&") +4pRe <n, Al/\ ’7> +4pRe (Al/\ n “;”) . (4.42)
Hs Hs Hs

Since Re A > 0 we have Re(1/X) > 0 and we deduce,

1/4 1/4
() o) )] ()
Hs Hs

Hs
Usi 1/8 .
sing the fact that K(\) and A;’° commute (see Proposition 7 Re(1/X\) > 0 and (4.33)), we deduce

1/4
Re (K()\)m Ay ’7> — Re G) (K(A)A}/Sn,A}/Bn)H >0. (4.44)
Hs

2 2

A%y
)

A%y
)

>0. (4.43)

Hs

A s

Using again that K()\) and Ai/s commute, Proposition and (4.39), we deduce

|1+ K, Ay, =\(A”“n+AVSK(A)AV%,A?%)H ]<clnAi/“nHHS||Ai’/“n||as. (4.45)
S

Combining (4.42)), (4.43)), (4.44), (4.45) yields

> |+ K\)nl5,, +

H Vi (M1
)\2

2 %1,

2 1/4
Cu A nlls

A
—2 (n + K\, ;ﬁ)
Hs

Hs Hs

2
Note that if HA‘;’MUHHS < 20L||A1/477||HS, then we deduce from (4.46)), (4.33) and |A| > 1 that
1

Ve Nllg = AP lInlzes + A7 Al (A€ CY),

which yields (4.41)) for # =0 and 6 = 1.
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9,2
We can thus focus on the case ||A‘;’/477||7.¢S > CLHA}MnHHS. We deduce from (4.46), by using the
1

Cauchy-Schwarz inequality, that

2 2
2 A
e <||n+K<A>n||iS +] 52

Vi (M)n
= Cl

A2

2 1/4
) 1A} “nll2es

3/4 :
Hs Hs ||A1/ s

Now, we use a standard inequality (see e.g. [15, Theorem 6.10, p. 73]):

2
A?Mn 2 Ain 2
‘M3/2 <C ||77||7-LS + BV
Hs Hs
and (4.33) to obtain
Ve |[* -
H || 2 CIAY alles AV s
Hs

On the other hand, we obtain directly from (4.42)), (4.43)), (4.44)), (4.45) the relation

2
Ay
)

AlT]

)\2
Hs Hs

oo
RE

> lln+ KMl + 40

HVK()\)U‘ ?
AQ

Hs

Combining (4.48) and (#.49) and taking A € C;, we conclude that,

2 2

2
C A
> =+ KOl + || 557
e X\

Ay
)

2

+4p

H Vi (M)n
Hs

A2

Hs
and thus, with (4.33)),

VienlEyg > (1P InlBes + A7 A, )  (he ).
Consequently (4.41)) is proved for § =0 and 6 = 1.
Corollary 4.10. For 6 € [—1/4,0] the following estimate holds

sup A7 ATV (Nl cons) < oo
xect

1/4 3/4
ALY *llaes 1A 40l -

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

Proof. From Theorem we have the estimate if § = 0. Hence, if we show the case § = —1/4 we will then

obtain the cases 6 € (—1/4,0) by interpolation.
Using (4.40) and the fact that K(A) and Al_l/4 commute (see Proposition we deduce

N+ KA VST ) = A7 =20V () = A7 ViE )
and thus with (4.41)) for 6 = 3/4, § = 0 and with (4.33)), we obtain

IMPIATY Vi Wl ey < AP + KA Vid" (W)l 2

<C (147 Nleins) + MIVi Wllos) + 14T Vi Wlleins)) <A+ <€

Comparing V(A) and Vi (\), we prove the following
Theorem 4.11. For 6 € [—1/4,1] the following estimate holds

sup [A¥272 ALV TN || £y < Foo.
aect

17

O

(4.53)



Proof. First, we take in the definition (4.40) of Vx(\) a constant p € (0, p1/4), where p1 is defined in
Proposition and we set
SO E G - 247

From Proposition we deduce that S(X) € C(D(A}/S), D(Ai/s)/) is a positive self-adjoint operator satis-
fying

(01— 20) 1A *nles < 182 Wnls < C (nAi/snan AT ) (e DAYS)). (454)
Moreover, from and ([£37), V(A (A) = AS(A) and in particular,
Vi ') = V70 = Vi )V = Ve())V ) = AV ()SOV I

and then
[T+ AV )SWIVTH) = Vit (). (4.55)
Let us prove
vneHs, SO0V Vnlls < ISV Vi Ml (4.56)
For that, suppose that ( € D(A:1) and f € Hg satisfy the equation
CHAVE NS = f. (4.57)
We multiply by S(A)¢:
1SN *Clles + (Vi ()SNE SN, = (S, S(A)”QC)HS : (4.58)

Writting € = Vg ' (A)S(A)¢ and using (@.40) we obtain that for any A € CT,
Re(AV ' (M)S(NE SN ns = Re (A&, Ve (A)E) 4,
= Re(N) AT + K(A\)"2€ 55 + 20 A€l + Re(N)[[ A1 €135 > 0,
and with (4.58)) it gives the estimate
IS 2¢ll2es < IS Flles

Applying the above estimate to (4.55) implies (4.56]).
Combining (4.56) with (4.54) and using that A; commutes with S(\) and K () yield for all n € H.s,

ISCIVT Wmllaes = IS M2S )2V T (Al
< C (A5 V T nllacs + I 1A SO0V s )
= C ISV A s + 2SOV ) AT Pl )

C (IS)2Vie A *llaes + NSO 2Vie "N AT ol )
< c(nAi/“VKl(A)nuHS + A2 Vi Vs + |A|||A1”“VK1<A>n||Hs>-

Applying estimates and on the above estimate gives
v eHs, ISV Nallws < Clinllas. (4.59)
Coming back to equality we deduce that for n € Hs, 0 € [-1/4,1],
IIA{fV_l(/\)WIIHs < HA?VEI(A)T!IIHS + AATViE DSV T (Nl
Then using estimates and (| we obtain
\Alg/HeHA?Vf (M1llrs < Clinlles +CIAISAV ™ (Mnlls-
Combining the above estimate with yields . O
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4.3 Proof of Theorem [4.1]

Proof. First, the exponential stability of (ert)t2o (see Proposition and standard results (see [3, p.101,
Theorem 2.5]) yield that ||(A — Ao) " z(3) is uniformly bounded for A € C*. This implies that

sup  [[Ao(A — A0) iz + AN = Ao) |2y < oo
AecH A<1

Using (3.16) and (3.20), we deduce (&.3), (#.4) and (@&.5) for A € C* with |A| < 1. In the remaining part of

the proof, we can thus assume A € C| (see (4.2)).
In order to prove (4.3)), we recall formula (4.19|

) for (A — Ap) " and we see that we need to estimate

A2 = )7 Bz, iy I IDo)Y T TN Sl 7,
A2 IDo V™ (N Argllre, @, A2 IDo (V™ (Ml )
N2 IAVEV TN Fllaes s AT IAYZ T = VN AD gl I IAY 2V T ()l
APV T fllaes s W2V ) Agllaess P2V Ohlles - (460)

by
1/2
CllFllez, ) + 14T % gllacs + lhll2cs )
for some constant C independent of A\. Combining (4.21)), (4.22)), (4.23)) (for 6 = 0), (4.53) (for 6 = 0,1/2,1),
we deduce (4.3). Note that here and in the following we use several times that A; and V(\) commute.
In a similar way, to prove (4.4), we need to estimate

IO = 8) "B fllesz, 0 AIDo IV VTNl )5
1DV~ (V) Avgllirz, ) INIDoIV ™ Vs, )
ATV VTN Fllaes, IATHIATST = VT ) ADgllms,s 14TV M)hlus
AV T fllmss 1475V () Argllas, INIAY SV (Vhllas  (4.61)

by
O£z, 7 + 143 gllws + AT *hlls)

We use (4.21)), (4.23) (for § = 1) and (4.53)) for 6 =1/4,—1/4,3/4 to estimate all the terms except
ATHIATST = VT ) ADglls = WAV VIO + K ) +AGO)) AT gl

Here we have used the expression of V(N\). Using (4.33), (4.36) and (4.53) for 6 = 0,1/4,1/2, we
deduce the result.

Let us prove ([&5). Let [w,ni,m2] € H N HL(F) x D(A]/®) x D(AY®). First, from the continuity of
A" H;/2(Fb) — D(A}/g) and a trace inequality we have,

A" @D 4175, < CIA" D@y 4170, < CIDEMlgy ) < Cllwles ooy

From (3.21)), (3.22), (3.18) and the above estimate we deduce,

w vAw
Ao |m = || Py 2
21 lL2 (7)< DA}/ %) xp(al/y [~Aim = A"2vD(win) L3, (F)xD(A}/*)xD(4}/®y
vAw w
<C 2 <C||m
— Ay — A" (2vD(w)n) 3/ M2 B2, ()« D(AT/%) xD(A3/)

L2, (F)xD(A}/ %) xD(A;/ %)

Then with formula A(A — Ag) ™" = Ag(A — Ag) ' + I, the above inequality and ([@.4)) yield (4.5). O
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5 Regularity result for the linear system

We use the results of the previous section to deduce a regularity result on the linear system (3.23)—(3.24)),
or equivalently (3.25). We recall that Ao is defined by (3.20)-(3.22). The main result of this section is the
following theorem

Theorem 5.1. Assume F € L*(0,00; L% (F)) and G € LQ(O,oo;D(Ai/S)). Assume [w”, 17, 73] € V and
n € D(A‘I’/LHE), ny € D(A}/AHE) for some € > 0. Then the solution [w, ¢, n, 9:n] of (3.25) satisfies

w € L*(0,00; HE(F)) N Cy([0,00); Hy (F)) N H' (0,00, LE(F)), g € L*(0, 003 Hy(F)) (5.1)

n € L (0,00, D(AT*)) N Cy([0,00); D(AT™)) N H' (0, 003 D(4)), (5.2)
and
9 € L*(0,00, D(AY*)) N Cy([0,00); D(A,"%)) N H' (0, 00 D(4,")). (5.3)
In order to prove this result, we first consider the general linear system
Y = AY+F, Y(0)=Y" (5.4)

and we use the resolvent estimates obtained in Theorem [4.1]

5.1 Regularity results for Gevrey linear systems

In this subsection, we only assume that (A, D(Ap)) is the infinitesimal generator of a strongly continuous
semigroup on a Hilbert space H satisfying the resolvent estimate

sup 1712 (o — Ao) M| £ae) < o0 (5.5)
TE

This implies that the semigroup is of Gevrey class § for all § > 2 (see Remark . For sake of simplicity,
we also assume that (e'*°);>¢ is exponentially stable and thus (see, for instance, [3, p.101]),

1R C p(A), sup (o7 — Ao) ™Ml 220y < +oo. (5.6)
TE

Lemma 5.2. Assume F € L*(0,+o0; H) and Y° = 0. The solution of (5.4) satisfies
Y € W(0, +00; D((—A0)' "), D((—A0)"'?)')
and there exists a constant C' > 0, independent on F and Y, such that

1Y 11w (0,4 00:D((— A0)1/2),D((— 40)*1/2)) S CIF (I £2(0,+00m) -
Proof. Combining (5.6) and (5.5 we first deduce that

1er = Ao) e < C(L+ 727
On the other hand, from the relation Ao(s7 — Ag) ™' = —I 4+ 27(27 — Ap)” " and estimate we also have
[Ao(er = A0) " Hleay < CA+|7[Y2).
From the two above estimates we deduce,
I(=40)""2 (o7 = Ao) e < C (5.7)

Let us now consider the solution of (5.4) with F € L2(07 +o00;H) and Y? = 0. We extend Y and F by
zero in (—o0,0) and we denote by Y and F their Fourier transforms. We deduce from (5.4) that

(1 — A0)Y (1) = F(r) (1 €R).
Combining this relation with (5.7)) yields
Ye L2(0, JrOO;D((*AO)l/z))a with HY”L2(0,+00;D((7A0)1/2)) < CHFHL2(0,+O<>;H)-
From (|5.4)), the above relations imply
Y' e LQ(Oy +OO§D((*A3)1/2)/) with “YIHL2(0,+oo;D((7A3)1/2)’) < C||F||L2(0,+oo;7-£)'
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Lemma 5.3. Assume F = 0. For all k € N*, there exists C = C(k) > 0 such that for any Y° € H the
solution of (5.4)) satisfies

N (=A0) 2 Y |3 < C|[Y°||3  for allt € RT. (5.8)
Proof. Since (e'?);> is exponentially stable, Y € L?(0, +00; #) and there exists C' > 0 such that
Y 1| 220,0070) < CIY[13¢-
In what follows, we denote by T* the map in [0, c0) defined by T*(t) = ¢* for t > 0. Since T'Y satisfies
(T'Y) = A(T'Y)+Y, (T'Y)0)=0
we deduce from Lemmathat TYY € W(0, +00; D((—Ao)"/?), D((—Ao)**/?)") with
1T Y (vt 0, +-005D((— A0)1/2),D((— A0)1/2)1y < ClIY |22 (0,00570) < CIIY [l
Next, we observe that TQ(—AO)UQY satisfies
(T2(—A0)?Y) = Ao(Y?(—A0)/2Y) 4 2(—40)2Y'Y,  (Y*Y)(0) =0,
and we deduce from Lemma [5.2] with the above estimate
I*Y [[w (0,+00:D40),20 < CIY |22
By induction, we deduce
THY € W(0, 400; D((—Ag) FH1/2 D((—Ag)F~172)

for k > 1, with
k+1 0
HT * Y||W(O,+oo;D((—AO)(k+1)/2,D((—AO)(’C—l)/Q) < C”Y ||7-l (5-9)
From [3| Prop. 6.1 p. 171]), we have

[D((—A0) "+ V/2, D((—A0) " /%))1 /2 = D((—A0)*?). (5.10)
Finally, follows from , and . O

We now improve (5.8) by using interpolation results.
Lemma 5.4. Assume F =0 and Y° € D((—A0)1/4+£) for e > 0. The solution of system (5.4)) belongs to

W (0,400; D((—A0)"/?), D((—A0) /%))
and there exists a constant C' > 0, independent on Yo, such that
Y 1w (0, + 005D((— 40)172), D((— A0)1/2)) S CNY o agyr/atey-
Proof. Let us consider k € N such that & > 4 and k > 1/e. We have in particular
Y € D((—40)"/*7%) € D((—A0) ).
Since (e%),50 is exponentially stable, there exists C' > 0 such that
(= A0) /#4400 ) < Cll(—A0) /4T EY e (¢ 0).
On the other hand, from we deduce
tk+1”(7A0)k/2+1/4+1/keA0tY0”H < C||(*A0)1/4+1/kYOHH (t > 0).
Using that k > 4, we can interpolate the above estimates and we obtain
37 () | (= A40) 22 Y Ol < €Il (= A0) /Y e (22 0)

This concludes the proof. O
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5.2 Proof of Theorem [5.1]

We now come back to our particular case where Ag is defined by (3.20)-(3.22). The hypotheses of the
previous subsection are still valid but we use the particular structure of Ag and the resolvent estimates (4.4)
and (4.5) to obtain some better regularity results.

Lemma 5.5. Assume F € L* (O, +o0; H N (Li(]—') X D(Af/s) X D(Ai/s))) and Y° = 0. Then, the solu-
tion of system (5.4) satisfies

Y € W(0, +o0; H (F) x D(A]/®) x D(A}®), LL(F) x D(AY®) x D(4""))
and there exists a constant C > 0, independent on F and Y, such that

Y|

7/8 3/8 3/8

W (0,+00;H, (F) xD(A]/ ) x D(A/®), L3, (F)xD(A} *)xD(A 5/8

oy S Ol a0 pooins, () c(al/ 5y cpiat/ oy

Proof. We extend Y and F by zero for ¢ < 0 and we denote by Y and F their Fourier transforms. Since
Y =0, we obtain from (5.4) that

(1r — A))Y (1) = F(r) (1 €R),
and we deduce the result from (4.4) and (4.5). O
Assume F = 0. Writing Y = [w, 1, 0] and Y° = [wo7 nY, 77(2)], (5.4) is equivalent to

Orw — divT(w,q) =0 in (0,00) x Fyg,
divw =0 1in (0,00) X Fy,
w=A(Omn) on (0,00) x 'y 4,

w Ley — periodic in (0, 00),
8tt77 + A177 =—A" {T(wa q)n\l‘bv#} in (0’ 00)7
U)(O, ) = w07 77(07 ) = 7]?7 81677(07 ) = 7](2]~

(5.11)

Lemma 5.6. Assume [w°, 17, 73] € D((—A¢)/**%) for € > 0. The solution of system (5.11)) satisfies
w € W(0,00 HR (F), L4 (F)), g € L*(0,00; H(F)), (5.12)

and
n € L*(0,00; D(A]®)),  9m € L*(0,00; D(AY®)),  0un € L*(0,00; D(A}®Y). (5.13)

Proof. Since (—Ao)"/*Y satisfies (5.4) with F = 0 and the initial datum (—Ao)"/*Y, € D((—Ao)"/*) then
from Lemma 54 we deduce

[w, n, dem] € W (0, +00; D((—A0)*'*), D((—A0)™"*)) (5.14)
and thus
[w, n, dim] € H*'*(0, +00; H). (5.15)
From , we have
D((—40)**) = v 0 [HY(F) x D(A]®) x D(4}?)], (5.16)

and therefore we obtain from (5.14)) that n € L*(0, oo;D(AZ/S)), dyn e L*(0, oo;D(A?/S))
We have w’ € HL (F), divw” = 0 and w” = A(53) on 'y, 4. Moreover, from (5.14), (5.15) and (3:12),

A(@em) € L*(0,00; V(b)) N HY*(0, 00; VR (I's))
and thus, from standard result on the Stokes system, we obtain (5.12)). In particular,
T(w,q)nr,, , € L*(0,00; HY/*(T'v)),

and from (3.13), A"{T(w, ¢)nr, ,} € L*(0, o0; D(Ai/g))7 and thus dyn € L*(0, oo; D(A}/S)'). O
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We are now in position to prove Theorem

Proof of Theorem[5.1] We first consider a lifting operator R € E(D(Ai/yre), Vi/2+4s (F)) such that,

Ry An on I'y,
0 on Fﬁxy#.

In particular, w’ — Rn3 € V;ﬁyo(}"). Since I € L*(0, oo; L2#(]-')), we deduce the existence and uniqueness of

Ve W(0,00 HL(F),LL(F)), ¢" € L*(0, 00; Hy(F)) (5.17)
satisfying
ow — divT(w™, ¢M) = F in (0,00) x Fy,
divw™ =0 in (0,00) x Fy,
w™ =0 in (0,00) x Ty, (5.18)
w® Le; — periodic,
w(l)(O7 J=uw"—Rny in Fy.

From (3.13)), we also deduce that A*{T(wm,q(l))mpb,#} € L*(0, oo;D(A}/S)).

Now we set

and (3.23)—(3.24)) is transformed into

w® 9y gy e )

ow® —divT(w®,¢®) =0 in (0,00) x Fg,
dlvw<2> = O in (0,00) X Fyg,
w® = A(8m) in (0,00) x Ty,
w® Les — periodic, (5.19)
dun + A = —A" {T( R mrb#} A” {T )q >mrb#}+G
w?(0,-) = Rngin Fy, 0(0,-) =ni, 9m(0,) = n3.
We can write (5.19) as
g [27 w® 0 w® Rns
i n =A | n | +F i o 01) R n | (0)= 7]? . (5.20)
atn atn —A {T(’LU 7q( )n\rb,#} + G 8t77 778
From (3.17)), we have
0
0 1/2 5/8 1/8
Py eHN (F) x D(A}"") x D(AYY)) .
—A {T(“’mv q(l))”lrb,#} +a
On the other hand, from the definition of R and from (3.27)), we obtain
Ry
772 € D((—A0)"/*7™).
M2
Combining Lemma and Lemma[5.6] we deduce (5.2), (5.3) and
w® € W(0,00, HL(F), LE(F)), ¢ € L*(0, 00, Hy(F)).

Combining this with (5.17)), we conclude the proof of the theorem.

6 Fixed Points

We prove here Theorem and Theorem
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6.1 Local in time existence
In order to solve (2.20)—(2.21), we use a fixed point argument. We define for R, T > 0

%R, = {(F G) € L (O T; L#(]:)) X L2(07T7 qubé/,g(o’L)) ; ||(F5 G)||L2(OTL (]—'))XLQ(OTHI/Z(O N R} .

For T' = oo, we simply write Br Lof BR,oo-
Assume (F,G) € Brr. Then we consider the solution (w,n) of system (3.23))-(3.24) or equivalently
(13.25)). In particular, from Theorem [5.1) we have

w € L*(0, Ty HL(F)) N C([0, T); Hy (F)) N H' (0, T;LE(F)), g € L*(0,T; Hy(F)) (6.1)
n € L*(0,T; HY/ (0, L)) N C([0,T); Hy/ 5(0, L)) N H'(0,T; HY/ (0, L)), (6.2)
am € L*(0,T; HY/ (0, L)) N C([0, T); HY (0, L)) N H' (0, T; HY/ 3(0, L)), (6.3)

with

HwHLQ(O,T;Hz(]-'))mC([O,T];Hl(]—'))r‘lHl(O,T;LQ(}')) + ||qHL2(0,T;H1(J-'))
+ 10l L2 0,7557/20,2))nc (0, 77152 0,1)) F 11080 20,75 13/2 0, 2))nC (0,771 /2 (0,1))
<C(RA+1[w’, i, m9)ll a7y x 3+ (0.0) x 142 0,)) » (6.4
for a constant C' independent of R and T
In what follows, we take R such that
R > |[w®,n?,m2] |l () x m3+2 (0,0) x 1+ (0, 1) - (6.5)

We show below that for T' small enough, we can construct the change of variables defined in Section
and thus consider the mapping

Z: (F, G) (F (n,w q),G(n,w, q)) (6.6)
where the maps F and G are defined by (2.19) and ( , and (w,n,p) is solution of system (3.23] -
-D

First we notice that by interpolation, ( y1elds

||77||H3/4(0,T;H2(0,L)) + |‘77||L4(0,T;H3(0,L)) + 10l Laco, s 0,L)) + ||w||L8(O,T;H5/4(_‘F)) < CR. (6.7)

We recall that 7} satisfies (1.23). Using the Sobolev embeddings, there exists a positive constant eo such
that

n) > —1+eo. (6.8)
We first start with a series of useful results:
Lemma 6.1. There exists To = To(eo/R) > 0 and C = C(0) > 0 such that for all T € (0,To),

<C. (6.9)
H L4l oo 0,105 0,L))
In particular, for any ni,n2,n3 > 0 and for all T € (0,To),
|z —— 6.10)
(I +m)"8 || Loo (0,15 (0,1))

for a constant C' independent of T and R.
Proof. First, combining the continuous embedding H?/? (0,L) — L*(0, L) and (6.4)),(6.5) we deduce
In =%l s 0,725 0,0) < CTY 210l 20 s13/2(0,1y) < CT*R

Then, from and the above relation, we can choose Ty > 0 proportional to (eo/R)? such that n(t) >
—1+e0/2 for all t € (0,7Tp), and the first estimate is proved.
For the second estimate, we first observe that the continuous embedding H*/?(0, L) < W"*°(0, L) with

(6.4), (6.5) implies
H77||L°° 0,T;L°°(0,L)) + ||a T)||L°° 0,T;L>°(0,L)) X < CR.

Then the conclusion follows with . O
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Lemma 6.2. There exists a constant C' depending on To such that for all T € (0,To),

||77HL°°(0,T;H2(0,L)) + HasUHLW(O,T;LO"(O,L)) < O(T1/6R+ H"]?HHz(O,L))' (6-11)

Proof. Using Proposition [A1] we have

1/6

||77||L°°(0,T;H2(0,L)) < CHU?HHZ(O,L) +CT ||77HH3/4(0,T;H2(0,L)-

We then combine this Wlth . ) to obtain the first estimate. The second estimate is then deduced from the
continuous embedding H' (0, L) < L*(0, L). O

Using Lemma [6.1] and the expressions (2.14), (2:22)), (2:24), (2:26) and (2:27), we deduce that

IVXI| Lo 0,115 (7))t + [1Bll oo 0,7:1.00 (7yy2 + |a(X) || Loo (0,700 (7))2
+ HVY(X)||LOO(0,T;L<>C(]:))4 < C(l + R)a (6‘12)

(X) ‘ — VY (X) <CR. (6.13)
H 8932 Lo (0,T L°°(]—'))4 H 03 Lo°(0,T;Lo° (F))4 Oa Lo (0,T;L5° (F))4
Using the expressions 7- ) and (| -, -, we have
2
‘ﬂ X H Oa ‘ivw ) < C(R+R?), (6.14)
Oz La(o,riLee(Fs || 0T10%2 Lao,rsLee(Fps 1071 LA(0,T; Lo (F))4
2
H‘L‘;( <C(R+RY). (6.15)
TR PRICE ETEE

Using the expression ([2.23) and (6.11) with H>(0, L) < L>(0, L) we deduce,

VY (X) = I2[| oo (0,700 ()4 + | det(VX) = 1| oo 0,755 (7)) < C(T"°R + 7211722 0, ))- (6.16)
Using the expressions and (6.7), with H'(0,L) < L>(0, L) we deduce,

||ata(X)||L4(O,T;L2(.F))4 < C(R + R2)7 (6-17)

[1GeY) (X))l L1 0,700 (7)) < CR- (6.18)

Using (6.4), (6.7) with H*/*(F) < L>(F) we deduce,

||wHL2(0,T;H2(}‘)) + ||p||L2<0,T;H1(f)) < CR, (6.19)
Hw||L4(O THL(F)) S <cr ||w||L<>c(o,T;H1(f)) < CTIMR? (6.20)
HwHL4(0 T;Lo(F)) S <crY ”w”LS(o,T;HSM(]:)) < CTY®R, (6.21)
w® w||L4(o,T;L2(]:))4 < T ||w ® wHLoo(o,T;w(}-))él < cr'/* ||'LUH2Loo(o,T;H1(]:)) < CT1/4R27 (6.22)
H(w ’ v)wHL2‘(0,T;L2 F)) < T1/4 ”(w : v)'LU||L4(0,T;L2 F)) < CT1/4 Hw||2LS 0,T;H5/4(F < CT1/4R2' (6-23)

( ( ( (F))

From (2.19)), (6.12)—(6.22)), we obtain for some N; > 2,

#0100 g ) < CT R D00 (R (6.24)

On the other hand, in order to estimate G(n, w) in L*(0, T} ng((], L)), we need to estimate the following
expressions in L*(0,T; L?(F)) (and use the trace theorem)

6 8a¢k 8alk 6 Ak 8Xn 8aik Bwk
By (8517 o1 (X)w ) 01,m0ss—— oy X)wy + Os 172 8x]8xn 3ym wg + 0sn re (X)ay—m (6.25)
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8 8wk a}/g o ) (’)wk a)/e 8azk aX 8wk 8Yg
Byim (857704k(X) Oye 8:r] (X)> = 01mOssmain(X) 5 - Oye ax] +0s 772 8xn 8ym Byg Bx] X

%Y, X@Xn

wy 8Yg Owy
+ Ounain(X) 5 € )+6snzn:azk(X)8—waxjaxn( 1oy (6:20)

1o} Y, 0 o] 8Xn owy, 0Yy
82./7 ((6271@52,1 — a2k(X)8733§(X)) wk) _ Z a2k OWk OXe

Tyz axn 8ym O0ye Ox2
Yy 0wy, dwy  0%Y, 0X,,
+ <52,k52,l - azk(X)Tm(X ) Byedm - Z Tyeaxzaxn X D (6.27)

From (6.4), (6.10)-(6.16), (6-20), (6:21) we deduce that for some Ny > 2,

G, w) < OB R A+ | 20.0)) (R + B™?). (6.28)

L2(0,T; H1/2(0 L))
This shows that if (F,G) € Br,r, then

||Z(F G)||L2 0,T; L2 (F))x L2(0,T; H1/2(0 Ly > < C(T1/8R+ ||n(1)||H2(O,L))(R+ RN)7

for some N > 2. In particular, for T" and ||77?||H2(07L) small enough,
Z(F,G) € Br,1.

Assume now (FM GgM) (F®, G(Q)) E B, and let us denote by (n™, w™® ¢™M), (77(2) @ ¢®) the
corresponding solutions of - given by Theorem [5.1] . They satlsfy in partlcular and .

By setting

PP _p@ G ) _ ) e () @) e () (@) e () o (2)

we have also from Theorem [5.1}

||w||L2(0,T;H2(f))m0([o,T];H1(.F))nHl(0,T;L2(F)) + ||‘JHL2(0,T;H1(J-‘))

+ 1Ml 2 0,7557/2 0, L))nC ([0, 77:15/2(0,1.))

0l L2 0,1:13/2 0, Lyync oy /20,00 < CNE G 2o 1ip2 (7)) x 22075112 0,00 (629)
and
170l 73740, 75112 0,29y + 11l 40,7583 0,)) + 19eml L4, 1,17 (0, 1))
el s < CUE Gl iz s oypesorm/zoy (030)
for a constant C' independent of R and T'.
Using Proposition and (6.29), we have
1/6 1/6
||77HL°°(0,T;H2(0,L)) <CT Hn||H3/4(O TiH2(0,0) S CT 7||(F, G)”LQ(O,T;Li(F))xL?(O,T Hl/z(o Ly

Then, combining this estimate with Lemma for nm, 1 = 1,2, we obtain the following

Lemma 6.3. For any nonnegative integers ni, ni, na there exists C > 0 such that for all T € (0,To),

(n(l))nl(asn(l))nz B (7](2))"1(537](2))"2
(14nW)ns (14n®)ns

ni+n 1/6
SO+ RMT)TV||(F, G)||L2(O,T;Li(]-'))><L2(O,T Hy/2(0,0))" (6.31)

L2 (0,T;L°°(0,L))
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Using , (6.5), , (6.10) for 77(”, i=1,2, and (6.29)-(6.31) and the expressions ([2.14), (2.22)(2.28),

we deduce that,

|7y ) - oy (x )| + [[det (VX D) — det(vx )|

Lo°(0,T;L>°(F))4
<C1+R)TV|(F,G)

L£o9(0, 7315 (F))*
(6.32)

1/2

L2(0,T;Li(f))xL2(o,T H/5(0,0))

||VX(1) vx© )HL‘X’(O TiLoe (F))s T ||b(1) - b(Q)HLOO(o TiLo° (F))d T Ha( ) Xm) (2)(X<2>)||LO°(0,T;L°°(]-'))4
<SCA+R)|(FG) (6.33)

1/2

L2(0,T5LE, (F)) x L2(0,T;H /5 (0,1))’

1) )
Hivym(Xm) _ 9 gy x@) Hag (xW) 3; (x®)
T2 T2 Lo0(0,T;L%° (F))* T2 T2 Lo0(0,T3L%° (F))4
92a® o 92a®@ @
- <
H 93 ) 93 (&™) Lo (O TSL (P CUARNE D 20,22 (7)) 220,738 30,00
(6.34)
daV o 8a? @ 92aq o 85%a(? @
o xMy- 2 (x 22 - 2% (x
0z 0z L4(0,T;L° (F))4 01022 0x1012 L4(0,T;L°° (F))4
n Hivy(“(xm) _ 9 gy®x0)
0z, T1 LA(0,T;Lo° (F))4
2
< C(l + R )H( )||L2(O TL (]:))XL?(O T H1/2(O L)) (635)
2a® o 892a®@ @ 3
(XM -Z(x <C(+ RY|(F,G , (6.36
|5 g X)L SO PNE D g sz 659
WxDy _ 5,,2(x@ 2
‘ 8aM (XD - 9,0 (X )‘ vomaamy < COFENE D 2o s e rzomnzony (637
Wy x My _ @)y x @
|@yO)x®) —@y x| | < OO RIE D oo s oy e 0 20,y (639
and with
D guw® - w®guw® =W @wtwew?,
(w(l) . V)w(l) - (w(2) . V)w(Q) = (w(1> -V)w + (w - V)w(2>
and ( for (w,p™), i =1,2, and ( we deduce,
ku) 2w® —w?® g w(?)’ <TY4 Hw @w® — w® gw?® H
L4(0,T5L2(F))4 Lo9(0,T5L2(F))4
<cTYt H (O] H ) .
B P Tt il Lo° (0,T3H1(F)) lellzoe o,mien ()
1/4
< ORT|(F, G)||L2(o T;LZ, (F)x L2(0,T;HY/ 3 (0,L)) (6.39)

H(wu) V)w® = (w® . V)w®

/4 H ) Ww® — (w® . V)w®

L2(0,T; L2(]-')) L4(0,T;L2(F))

cor (Jur

]

LS(O,T;H5/4(.7:))) Hw|lLS(O’T;H5/4(F))

< CRTV*|(F, Q)|

L3(0,T;H5/4(F))

L2(0,T5L2, (F)) x L2(0,T; Hl/z(o L) (6.40)
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Using the above estimates, (2.19)), (6.12)—(6.21) for (w(i),p“)7 n(i)), i=1,2, and (2.18)-(6.27) and (6.11)),
we obtain

Hﬁa 7D, w®, ¢D) = Fo(n®, w®, q<2))’

L2(0,T5L5, (F))

N
<O+ BT R+ 1120 c)NF G o i, ) x 20,8 20,0y (641)
G, w™y = G(n®, <2>’
|G, w™) = G, w a0z
< CA+ R TR+ [0z 0,0)I(F, G| 2 (6.42)

L2(0,T5L2, (F) x L2(0,T;Hy/ 2(0,1))

for some N > 1. Thus, if (F(i)7G(i)) € Brr,i=1,2, then

1/2

1) ~(1) (2) ~(2)
[2(F7,677) = 2(F7, G )”L%O,T;Li(]—'))XLZ(O,T;H#YO(O,L))

<O+ RY)TVER+ [0} | 20,0 I(F, G)|

L2(0,T5L2, (F) x L2(0,T;Hy/ 3(0,1))”

In particular, for 7" and ||77?||H2(0,L) small enough, Z is a contraction on B g r. Using the Banach fixed point
theorem, we deduce the existence and uniqueness of (F,G) € B g, such that

Z((F,G) = (F,G).
The corresponding solution (n,w, q) of system (3.23)-(3.24) is a solution of (2.20)—(2.21)).

6.2 Uniqueness

Let us consider another solution (™, w™, ¢ of [@2.20)—(2-21) on (0,T) with T > 0. If we write
%) def 73 * * * *) def 7§ * *
FO) 8 B () g0 G 9 G ()

then we have
(F™, ™) e L*(0,T; L% (F)) x L*(0,T; Hy/ 3(0, L))

and
Z((F.GV) = (FV,60).

Moreover, according to the Lebesgue theorem we have

lim H(F(*’, G(*))‘

T*—=0

L2(0,T*L% (F))x L2(0,T*:H}/ § (0,1))

and thus for T < T small enough,
(F™,G%) € Brore.

Since Z is a contraction on B, r+, we deduce that (n,w™,¢™)) = (n,w,q). This ends the proof of
Theorem [L.2]

6.3 Small data

We can now consider the case of small initial conditions and 7" = co. The proof is similar to the proof of

Section We assume (F,G) € Br. Then, from Theorem the system (3.23)-(3.24) admits a unique
solution (n,w, q) with the estimates

||w||L2(o,oo;Hi(f))ncbqo,oo);H;(f))mHl(o,oo;Li(.r)) + |‘Q||L2<o,oo;H;t(f))
+ ||77HL2(0,oo;H7/2(O,L))ﬁCb([0,00);H5/2(0,L)) + ”67577”L2(O,oo;H3/2(O,L))ﬁcb([o,oo);Hl/2(O,L))

<C (R+ H[wovn?a77(2)]HHI(I)xH3+E(0,L)xH1+E(o,L)) , (6.43)
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for a constant C' independent of R.
In what follows, we take R such that (6.5) is satisfied and we choose R small enough so that we can
construct the change of variables defined in Section 2} Thus we can consider the mapping

Z:(F,G) € Br > (F(n,w,q),G(n,w,q)) € Br (6.44)
where the maps I and G are defined by (2.19) and (12.18]).
First we notice that by interpolation, (6.43) and (6.5)) yield

||77||H3/4(O,00;H2(0,L)) + ||77HL4(0,0<>;H3(O,L)) + 10enll 40,001 (0,2)) F Hw||L4(0,OO;H3/2(f)) < CR. (6.45)

Then it implies,

HwHL‘*(O,oo;Hl(}_)) <0 Hw||L4(o,oo;H3/2(f)) < CR, (6.46)

”wHL‘l(o,oo;Lw(]f)) <C ||w||L4(0,oo;H3/2(f)) < CR, (6.47)

o ® wll a0, 00:27y1 < C IllZa0,00im1072(5) < CR, (6.48)
2 2

[l (w - V)wHL2(o,oo;L2(]:)) <C Hw||L4(o,oo;H3/2(_7:)) < CR™ (6.49)

Then with similar calculations than in Section [6.1] by using (6.46)-(6.49) instead of (6.20)-(6.23), we can
show that if (F,G) € Br, then

2 Ny
0.y < CR +RY),

1Z2(F,G)l

1/2

L2(0,00;L3, (F)) X L2 (0,00, H /

for some N > 2. In particular, for R small enough,
2,7(1:17 G) € Br.

We can also show that, if (F),G™) € B, i =1,2, then

(CORPRIED) @ 4@
12, G7) - 2(F7, G )”L?(o,oo;L;(f))xL?(o,oo;H;{?)(o,L»

N2
S OB+ BIE G 20,0013, (7 x 120,003/ 20,1

for some N2 > 2. In particular, for R small enough, Z is a contraction on Br. Using the Banach fixed point
theorem, we deduce the existence and uniqueness of (F,G) € Br such that

Z((F, Q) = (F,G).
The corresponding solution (n,w, q) of system (3.23)-(3.24) is a solution of (2.20)—(2.21)).

A A technical result

In this section, X denotes a Hilbert space and C' > 0 denotes a generic constant independant on T > 0.

Proposition A.1. Let e € (0,1/2). There exists C > 0 such that for all v € HY/*te (0,T; X),
2(1— 2(1—
[VllLoe 0,3y < (1+TYCE9) 0(0) [ x + CT CE=D o]l 1242 g ) -

Proof. Let u € HY?*%(0,T; X) such that u(0) = 0. We define as follows

u(t) ift€0,7T),
a(t) =< w2l —t) ifte[T,27),
0 ift>T.
In particular, we have
vt e [0,2T], @(2T —¢)=a(t) and Vt>2T a(t)=0 (A1)

and since @(0) = @(2T) = 0 we have @ € H"/*"¢(0, +00; X).
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First, let us prove,
||u||H1/2+5/2(0 +o0;X) S CHU||H1/2+€/2(0 T;X)" (A.2)
For that, we start with the following calculations (where we use (A.1))),

Jal: Y R TP A L et o]
HY/2+€/2(0,400;X) — o X |S—T‘2+s

_ 2T d 2T 2T HU ‘Xd d 5 2T + oo ||’LL |X d d
=y Ml e + o - rfere T
2

o HU(QT - HX
= Hu||H1/2+a/2(o a7ix) T 1+¢ (2T — s)ite

— a2 2 [ las)llk
= ||uHH1/2+5/2(0,2T;X) + 1 Te A 51+E ds. (A3)

Thus, we recall the following generalized Hardy’s inequality, that can be obtained from [20} 3.2.6, (6) p.261]
or from the proof of [12, Thm 1.4.4.4],

Y (@) Y u(€) —v(Q)? 1/24e/2
d C 7d d¢ Vv H,
/0 grie 06 S / / € —cpre bl W E (0. 2).

By applying the above inequality to v(§) = ||a(£27T)|| we deduce,

[T g, (o [N e < ooy / /lmung ||x—nu(cz‘mengdC

Sl+s §1+€ ‘é‘ C|2+€

U later) — a(c2m) % T ) — a(n)|l
scen” / / \5 e K= 0/ / 5 rere e

By combining the above inequality with ( we obtain

||a‘|fql/2+s/2(o,+oo;x) < C||a‘|§11/2+s/2(0,2'1*;x)~

Moreover, by using (A.1)) we deduce

2T 2T 2T
[@l131/24</2 — 3ds + ”“ lats) = a4
H1/2+¢/2(0,2T;X) o |s — 7\2+E

HUS) u(n) % //2T lla(s) —a(r)|%
_2/ l[u(s |de+2// S dsdr + 2 O dsdr

T
[u(s) — u(r)|%
= 2||UHH1/2+5/2(0 rx) T 2/ / s +7— 2T|2+€d sdr.

Since |s + 7 —2T| =T — s+ T — 7 > [s — 7| the last above integral is bounded by [|u|z1/2+4/2 (0 1, x) and

(A.2)) follows.

Next, the continuous embedding HY/?te/? (0, +00; X) — L™(0, 400; X) guarantees the existence of C > 0
independent on 7" such that

lullzoe 0,7:%) = [1@ll 200 (0,4005x) < CllA| gr1/24€/2(0, 400;x)-

Then with (A.2),

lullzoe 0, 15%) < Cllullgi/242/2(0,75x)-

t
Next, if we now suppose that w € H'(0,T; X) and u(0) = 0, then u(t) = / u/(s)ds with the Cauchy-Schwarz
0

inequality yields
1/2
lull = 0,7:x) < CT"2lull 1 0,7:%)-
Then by combining the two last inequalities with an interpolation argument we obtain

[l o 0.7:x) < CT/ O |l g1 /24 0,75

Finally, suppose that v € H'/?*(0,T; X) and apply the above inequality to u(t) = v(t) — v(0). With

[o(0) | == 0.7:x) = [[0(0)1x and [[0(0) | g1 /242 0,5y = [0(O)l]L2(0,msx) = T/ [[0(0) ]| x we obtain the result.
O
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