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Article

A design methodology for quiet and long
endurance MAV rotors

Ronan Serré , Hugo Fournier and Jean-Marc Moschetta

Abstract

Over the last 10 years, the use of micro air vehicles has rapidly covered a broad range of civilian and military applications.

While most missions require optimizing the endurance, a growing number of applications also require acoustic covert-

ness. For rotorcraft micro air vehicles, combining endurance and covertness heavily relies on the capability to design

new propulsion systems. The present paper aims at describing a complete methodology for designing quiet and efficient

micro air vehicle rotors, ranging from preliminary aerodynamic prediction to aeroacoustic optimization to experimental

validation. The present approach is suitable for engineering purposes and can be applied to any multirotor micro air

vehicle. A fast-response and reliable aerodynamic design method based on the blade-element momentum theory has

been used and coupled with an extended acoustic model based on the Ffowcs Williams and Hawkings equation as well as

analytical formulations for broadband noise. The aerodynamic and acoustic solvers have been coupled within an opti-

mization tool. Key design parameters include the number of blades, twist and chord distribution along the blade, as well

as the choice of an optimal airfoil. An experimental test bench suitable for non-anechoic environment has been devel-

oped in order to assess the benefit of the new rotor designs. Optimal rotors can maintain high aerodynamic efficiency

and low acoustic signature with noise reductions in the order of 10 dB(A).
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Introduction

Designing a silent rotor goes through an aeroacoustic

optimization, which implies understanding the aerody-

namic phenomenon responsible for noise generation.

Predicting the noise generated aerodynamically is rela-

tively straightforward once detailed aerodynamic

involved in the propulsion system is available through

the use of direct noise computation or hybrid predic-

tion. Aeroacoustic optimization in that framework is

possible,1,2 but demanding in terms of computational

cost is not realistic in an industrial context. Lower fidel-

ity, yet functional tools are then needed. Reduction in

rotor noise has received important attention from the

early ages of aeroacoustics.3,4 It has yielded a lot of

information and materials which allowed the develop-

ment of low-fidelity models of sufficient accuracy.

There are identical phenomena that occur in a helicop-

ter rotor and an MAV rotor but the different noise

sources do not contribute to the overall noise in the

same amount. Detailed analysis of the aerodynamic

characteristics has to be specifically dedicated to
MAV rotors and low-fidelity models should be re-
calibrated or at least carefully selected. Aerodynamic
and acoustic optimization of MAV rotors has been
previously addressed for instance by Ormsbee and
Woan5 on a vortex line theory approach or by Gur
and Rosen6 but only tonal noise was considered.
Noise reduction techniques were proposed, yielding
promising conclusions, such as an unequal blade spac-
ing to reduce tonal noise7 or a boundary layer trip to
remove the broadband noise.8 This contribution
presents a general methodology for reducing the noise
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of MAV rotors while preserving or even increasing the
endurance. A similar strategy has been followed by
Wisniewski et al.9 and Zawodny et al.10 with models
based on empirical data at relatively high Reynolds
numbers and for symmetrical profile. The present
study proposes a more general methodology and its
originality lies in using low-fidelity albeit sufficiently
accurate models of detailed acoustic spectrum applied
with algorithms that modify the chord, the twist and
the airfoil sections of MAV rotor blades. For the aero-
dynamic modeling, a widely spread low-fidelity model
is used, based on the blade element and momentum
theory (BEMT).11 It is fast, reliable but yields a
steady loading on the blades. Acoustics is intrinsically
unsteady. Because of the relative motion between the
spinning blades and a static observer, acoustic radia-
tion can still be retrieved from a steady loading but it
can only be tonal noise as a consequence of a periodic
perturbation. As stated by Sinibaldi and Marino,12 the
acoustic spectrum radiated by rotors exhibits also a
broadband part.13,14 Low-fidelity broadband models
are then needed in the optimization process to avoid
designs where tonal noise is reduced and broadband
noise then dominates. The acoustic modeling is realized
in two steps: (i) an integral method based on the
Ffowcs Williams and Hawkings (FWH) equation15,16

gives the tonal noise radiated by the rotor from the
steady loading yielded by the BEMT and (ii) analytical
models based on the work of Roger and Moreau17 esti-
mate the broadband part of the acoustic spectrum. The
optimization of the chord and the twist of the blades
are yielded by a combination method, that is a system-
atic evaluation of the space of parameters. The optimi-
zation process is then to be seen as an analysis of all
possible combinations rather than an actual optimiza-
tion. Comparison with optimization algorithms will be
addressed in a future work.

Aerodynamic modeling

Through a BEMT approach as described by Winarto,11

local distributions of lift and drag and global thrust
and torque are retrieved from local lift and drag coef-
ficients of the blade element airfoil sections. As a result,
knowledge of the aerodynamic polar of the considered
airfoil section is essential to the process. Three strate-
gies may be employed to this end: experimental,18

numerical simulation19 or numerical modeling (such
as panel method in potential flow theory20). The last
one is used in the present study for efficiency. Lift and
drag coefficients and boundary layer data are extracted
from Xfoil open-source software by Drela and Giles20

and stored in the form of a database in a process
independent of the optimization tool which only
contains the BEMT for aerodynamic evaluation.

Figure 1(a) and (b) respectively show lift and drag coef-

ficients predicted by Xfoil compared with experiment

by Mart�ınez-Aranda et al.18 for a NACA 0012 airfoil

section at a Reynolds number Re¼ 33,000. Xfoil pre-

diction for the drag coefficient exhibits the same trend

as the measurements although underestimated. The lift

coefficient is clearly overestimated by Xfoil. Moreover,

it exhibits a hump around a 10� angle of attack that is

not found in the experimental work by Mart�ınez-
Aranda et al.18 although it was also observed in the

experimental work by Laitone.21 Because the overesti-

mation of the lift coefficient is higher than the under-

estimation of the drag coefficient, the optimization tool

is expected to yield an overestimated thrust and a

slightly underestimated torque in the investigated

rotors. Figure 2 depicts boundary layer thickness d
on a NACA 0012 at Reynolds numbers Re¼ 23,000

and Re¼ 48,000 for a 6� angle of attack, compared

with experiments by Kim et al.22 The boundary layer

behavior experimentally observed is dramatically

ignored by Xfoil in the medium chord region which

shows a monotonic trend. However, the values does

(a)

(b)

Figure 1. Aerodynamic coefficients between Xfoil prediction
and experimental work by Mart�ınez-Aranda et al.18 for a NACA
0012 airfoil section at a Reynolds number Re¼ 33,000. (a) Lift
coefficient. (b) Drag coefficient.
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not exhibit too much discrepancy at the trailing-edge

region where x=C�1. Boundary layer data needed for

the acoustic modeling are extracted from this region as

will be seen in the next section. Xfoil prediction, with

identified limitations, is considered satisfactory in this

framework and is used to provide input data for the

BEMT approach and broadband noise models. The
validation of the BEMT tool has been addressed with

high-fidelity numerical simulations and experiment.23

Acoustic modeling

The FWH equation is implemented in the time domain

as expressed by Casalino24 in the form known as

Formulation 1A and applied on the blade surface.25

Without any fluid volume inside the control surface,

the quadrupole term representative of flow non-

linearities is neglected but is believed to be of small

contribution in this low-Reynolds, low-Mach number

regime, typically encountered in MAV rotors.12 The

FWH equation then resumes to a surface integration

eventually yielding the thickness and the loading noise.

The main input parameters are the velocity of the blade

element that influences the thickness noise and the

force distributions that act on the loading noise. In

addition, two sources of broadband noise are consid-
ered, based on Roger and Moreau:17 the scattering of

boundary layer waves by the trailing-edge and the

ingestion of turbulence at the leading-edge. Roger

and Moreau17 mention a third source of broadband

noise, that is the shedding of vortical eddies in the

wake but this source is not yet considered. The main

inputs for the trailing-edge noise model are a wall-

pressure spectrum model as proposed by Kim and

George26 for instance and a spanwise correlation

length as modeled by Corcos27 tailored with a high-

pass filter, in which the boundary layer data near the
trailing-edge is necessary. This source of broadband
noise is not expected to contribute significantly to the
overall noise. However, its relevance is supported by
the authors to prevent optimization cases where broad-
band noise overcomes the tonal noise, as was observed
by Pagliaroli et al.,28 especially if tonal noise is to be
reduced. For the turbulence ingestion noise model,
information on impinging turbulence is required. The
driving parameters are the cross-correlated upwash
velocity fluctuations spectrum that can be approximat-
ed with a von Kármán model29 for instance, the mean
intensity of the streamwise velocity fluctuations and the
Taylor microscale as the turbulence length scale.30 The
latter is estimated by the optimization tool from the
wake width created at the trailing-edge31 that is
believed to impinge the following blade’s leading-edge
following observation on LES-LBM simulation.32 The
broadband noise models estimate the noise in the form
of a power spectral density, generated at the trailing-
edge and leading-edge regions, from boundary layer
data and turbulence statistics through a correlation
function modified by a Doppler shift imposed by the
relative motion between the source and the observer.
For the optimization process, only one observer is con-
sidered, arbitrary located 45� above the plane of rota-
tion, 1 m away from the center of rotation. Because the
acoustic directivity yielded by the noise models exhibit
a symmetrical behavior with respect to the plane of
rotation, selecting an observer position 45� above or
below that plane of rotation leads to the same conclu-
sions, without representing the higher acoustic intensity
that is radiated downward the plane of rotation in
rotating machinery.32 It is worth noting that formula-
tion 1A of the FWH equation gives a singular value on
the axis of rotation, while the trailing-edge noise model
has its singularity on the plane of rotation. The singu-
larity in the axis of rotation has also been reported by
Lowson33 and Mao et al.34 Steady-loading noise (tonal
noise) has zero efficiency on the rotation axis.

Optimization procedure

As stated in the introduction, relatively few optimiza-
tion studies on low-Reynolds rotors have been pub-
lished in spite of the general interest in MAVs and
the recent observation that noise from MAVs is gener-
ally considered as annoying.35 To demonstrate the fea-
sibility of the optimization methodology and to identify
the key parameters of the blade geometry allowing
noise reduction, a step-by-step optimization of a two-
bladed rotor is carried for increasingly complex blade
geometries: (i) constant chord and constant twist with a
NACA 0012 airfoil section; (ii) same constant chord
and optimized twist with a NACA 0012 airfoil section;

Figure 2. Boundary layer thickness on a NACA 0012 at
Reynolds numbers Re¼ 23,000 and Re¼ 48,000 and a 6� angle of
attack between Xfoil prediction and experiments by Kim et al.22

Serré et al. 3



(iii) optimized chord and twist with a NACA 0012 air-

foil section and (iv) previous blade geometry with opti-

mized airfoil sections at three radial positions based on

local Reynolds number and angle of attack. The suc-

cessive optimizations occur at iso-thrust, that is to say,

the rotational speed is adapted so that the optimized

rotors deliver the same thrust, set at 2 N, to represent

MAVs in hover. For each case, the optimized geometry

is selected on the Pareto front given by the optimiza-

tion tool to minimize both the aerodynamic power

Pshaft and the OASPL at one specific observer position.

Figure 3 illustrates the result of a representative opti-

mization process. The total population is depicted and

the initial geometry (reference blade) and the best opti-

mized one are highlighted. That best optimized geom-

etry has been selected to minimize the aerodynamic

power Ap and the broadband OASPL. Figure 3(a)

plots the individuals evaluated with the sole tonal

noise, while Figure 3(b) plots the same individuals

but evaluated with the broadband noise models. The

best optimized geometry that is highlighted on both

Figure 3(a) and (b) has the lowest Pshaft and the

lowest broadband OASPL. However, that selected

geometry does not have the lower tonal OASPL,
emphasizing the necessity to take into account the
sources of broadband noise in the acoustic modeling
for optimization purposes. In figure 3(b), it is worth
noting that the whole population is directed towards
both a lower Pshaft and a lower OASPL, like a swarm.
Figure 3 illustrates the possibility to enhance both
aerodynamic and acoustic characteristics of MAV
rotors. The blade chord and twist laws are parameter-
ized by Bézier curves considering control points in four
sections along the blade span giving eight variables.
However, to ensure lift at blade tip reaches zero to
yield a minimum induced velocity, the twist at the
fourth control point is imposed at zero eventually
giving seven variables. Each variable may take five
values giving five7 individual evaluations. Note that
the twist angle b is defined with respect to the plane
of rotation. A multi-objective selection is applied to
express the Pareto front according to the lower aero-
dynamic power Pshaft and lower overall sound pressure
level (OASPL). The optimization of the airfoil sections
is carried out in a second step through another process,
here with actual use of optimization algorithm, for it is
applied once local distribution of Reynolds numbers
and angle of attacks are known on a rotor with opti-
mized chord and twist distribution laws. Airfoil shapes
are determined using CST parametrization36 with 12
coefficients. The objective is to maximize the lift-to-
drag ratio through NSGA-II evolutionary algorithm37

with a population of about 100 individuals. The final
evaluation is achieved after 55 generations. Three posi-
tions along the span were selected for the aerofoil opti-
mization and the aerofoil sections in-between, in the
spanwise direction were built from spline interpolation.
A schematic view of the organization of the optimiza-
tion tool is provided in Figure 4. The blade geometries
are then built using SLA technology on a FormLabs
3D-printer with a 50 lm vertical resolution for exper-
imental purposes. Figure 5 depicts a typical printed
rotor. The printed rotors are manually grinded to
remove the supports from the printer and are balanced
on a static equilibrium axis. The tip radius is the same
for all the rotors and is set at R¼ 0.0875 m, imposed by
the printing volume allowed by the 3D-printer and
selected as a representative tip radius found in
7 inches commercial rotors for MAVs. At the time
the optimizations were carried out, only the trailing-
edge noise model was active. The turbulence interac-
tion noise model was under investigation as it needed
calibration.32

Numerical results

The successive configurations show an increased twist,
along with an increase of the chord for the third

(a)

(b)

Figure 3. Representative optimization process through combi-
nation method. Population, reference blade and best optimized
individual. (a) With tonal noise. (b) With broadband noise.
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optimization. For that optimized rotor, the chord
monotonically decreases with the span (Figure 6(a)),
while the twist is high at the hub, slightly increases at
mid-span before reaching a minimal value at the tip
(Figure 6(b)). The span direction and the chord are
normalized by the tip radius R. The optimized airfoil
sections at three radial positions are depicted in
Figure 7. They were obtained by an optimization
process as previously described to maximize the

Figure 4. Diagram of operations of the numerical optimiza-
tion tool.

Figure 5. A representative, 3D-printed rotor.

(a)

(b)

Figure 6. Twist and chord distribution laws of the successive
rotors. (a) Twist. (b) Chord.

(a)

(b)

(c)

Figure 7. Optimized airfoil sections for the fourth rotor com-
pared with the base configuration (NACA 0012). (a) r=R ¼ 1:0
(Re¼ 42,000). (b) r=R ¼ 0:5 (Re¼ 82,000). (c) r=R ¼ 0:1
(Re¼ 32,000).

Serré et al. 5



lift-to-drag ratio at the local Reynolds number and for

an average of three angles of attack around the values

at the specified radial positions. They are all thinner

than the reference one and cambered as can be

expected for low-Reynolds number aerodynamics.

The airfoil section near the tip region (r=R ¼ 1) exhib-

its a bump on the suction side, that might indicate an

adaptation to separation phenomenon for a very spe-

cific local Reynolds number. It might be avoided if the

airfoil optimization is made by taking the average

result over different Reynolds numbers along with the

average in the angles of attack. A CAD representation

of the four rotors is depicted in Figure 8. Figure 9(a)

and (b) shows lift and drag coefficients, respectively,

distributed along the span for the successive blades.

The lift coefficient is successively increased with a max-

imum localized around 75% of the blade radius. The

drag coefficient is also increased although less inten-

sively with a maximum value localized around 65%

of the blade radius. The lift coefficient is seen to have

been multiplied by three, while the drag coefficient has

been multiplied by two. The gain in aerodynamic effi-

ciency for the successive optimizations yields a diminu-

tion of the rotational speed required to deliver the

thrust objective set at 2 N, as will be presented in

Table 1 and discussed in the next section, resulting in

a diminution of the blade passing frequency (BPF). The

tendency of the optimizations to move the BPF towards

low frequencies has an effect on the noise reduction

because low frequencies are less perceived by the

human ear. As the optimizations were carried with the

sole trailing-edge noise model active, Figure 10 is pre-

sented to assess the ability of the optimization tool to

reduce the overall noise nevertheless, even with this sole

source of broadband noise. In Figure 10, the blade ele-

ment contribution to overall noise is shown for the four

configurations from the trailing-edge noise model

(Figure 10(a)) and the turbulence ingestion noise

model (Figure 10(b)). For the base configuration, the

blade element contribution increases almost linearly

towards the tip region according to a Reynolds

number effect. The three successive optimizations have

a zero twist angle at the tip and it results in a drastically

reduced radiated noise from the trailing-edge near the

tip region. The third and fourth optimization cases

express a lower radiated noise for each blade element

although its chord and twist distribution laws are

higher than the second optimization case. The airfoil

section optimization increases that tendency. To investi-

gate the noise reduction yielded by the optimization tool

Figure 8. CAD representation of the four rotors considered in the present study. (a) Initial rotor (base configuration, left) and
optimized twist (right). (b) optimized twist and chord (left) and additional optimized airfoil sections (right).
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for the successive rotors, Figure 11(a) and (b) shows the

A-weighted sound power level predicted by the trailing-

edge and the turbulence ingestion noise models, respec-

tively. The A-weighted sound power level is computed

following the guideline set by the ISO 3746 : 1995 stan-

dard in third octave bands for the successive rotors at a

2 N thrust. The important difference in magnitude

between the two numerical models is noteworthy. The

optimization tool suggests that turbulence ingestion is a

more intense source of noise than trailing-edge noise and

can overcome the main tonal component at the first

BPF. From the two noise models, noise reduction is

observed for the successive optimizations. The main

tonal noise component that occurs at the first BPF is

reduced for each optimization case, up to 25 dB(A) with

the fourth rotor as observed in both Figure 11(a)

and (b). From the second optimization, the trailing-
edge noise is dramatically reduced and the following
optimizations increase that tendency (Figure 11(a)).
The turbulence ingestion noise is also systematically
reduced (Figure 11(b)).

Experiment

The experiment took place in a rectangular room, not
acoustically treated, of dimensions ðl1 � l2 � l3Þ ¼
ð14:9� 4:5� 1:8Þ m3. The aerodynamic forces are
retrieved from a five components balance. The aerody-
namic measurements are validated against the UIUC
online database on a commercial Graupner SlimProp
9x6 propeller published in Brandt and Selig.38 The
thrust and the torque coefficients are shown in
Figure 12 for several rotational speeds, according to
definitions from Leishman39 as

Ct ¼ T
1
2 qðxRÞ2pR2

; Cq ¼ Q
1
2 qðxRÞ2pR3

where T is the thrust, Q is the torque, q is the ambient
density, x is the rotational frequency and R is the rotor

(a)

(b)

Figure 9. Spanwise aerodynamic coefficient distributions of the
successive rotors for a 2 N thrust. Numerical prediction. (a) Lift
coefficient. (b) Drag coefficient.

(a)

(b)

Figure 10. Spanwise blade element contribution to the overall
sound pressure level (OASPL) for a 2 N thrust for the successive
rotors. Numerical prediction. (a) Trailing-edge noise. (b)
Turbulence ingestion noise.Table 1. Rotational speeds and corresponding blade passing

frequency for a 2 N thrust between numerical prediction and
experiment for the four successive rotors.

Numerical Experimental

Baseline 9310 r/min (310 Hz) 9800 r/min (325 Hz)

Twist 7630 r/min (255 Hz) 8400 r/min (280 Hz)

Chord and twist 6010 r/min (200 Hz) 6650 r/min (220 Hz)

Airfoil 4880 r/min (165 Hz) 5450 r/min (180 Hz)

Serré et al. 7



tip radius. The thrust coefficient is coherent with the

measurements from UIUC but the torque is underesti-

mated with respect to experiments by Brandt and
Selig38 for the lowest rotational speeds, eventually lead-

ing to a possible overestimation of the figure of merit.

The measurements at ISAE-SUPAERO were not car-

ried beyond 5000 r/min for it exceeded the balance

capacity with forces beyond 3 N. The A-weighted
sound power levels and the total A-weighted acoustic

power are computed according to ISO 3746 : 1995
standard with five measurement points approximately

1 m around the rotor on Brüel & Kjær 1=200 free-field
microphones and a Nexus frequency analyzer with a
frequency resolution of 3.125 Hz. The distance between

the source and the microphones approximately repre-

sents five rotor diameters. Four of the microphones are

positioned in the form of a circle parallel to the ground

whose center is aligned with the rotor center of rota-
tion. The fifth microphone is located in the plane of

rotation. The rotor has an horizontal axis of rotation.

The validity of the ISO standard is assessed with sound

measurements in an anechoic environment, only

recently available at ISAE-SUPAERO. This new facil-
ity is a cube of 9 m wide with 1, 20 m long wedges on

the walls. The lower cut-off frequency is 90 Hz, while

the upper one is 16,000 Hz. Figure 13 illustrates the

experimental set-up in the anechoic chamber.

Comparisons are plotted between measurements car-
ried in the standard room and measurements carried

in the anechoic chamber on the total A-weighted
acoustic power (Figure 14) for a representative MAV
rotor. The validity of the ISO 3746 : 1995 standard to
account for non-anechoic environment is satisfying. In

spite of a 10 dB gap observed between the OASPLs of
the two measurements on narrow band power spectral

(a)

(b)

Figure 11. Sound power level of the acoustic spectrum of the
successive rotors for a 2 N thrust. Numerical prediction from
broadband noise models. (a) Trailing-edge noise. (b) Turbulence
ingestion noise.

(a)

(b)

Figure 12. Aerodynamic coefficients of a commercial Graupner
SlimProp 9x6 propeller. Measurements from ISAE-SUPAERO and
UIUC.38(a) Thrust coefficient. (b) Torque coefficient.

Figure 13. Experimental set-up in the anechoic chamber used
to validate the ISO standard. The five components aerodynamic
balance is below the motor driving the rotor.

8 International Journal of Micro Air Vehicles



densities, the total acoustic powers are consistent. The

severe discrepancy between the two acoustic powers at

4500 r/min, at the very same moment where the stan-

dard deviation is the highest, is believed to be a conse-

quence of installation effects. In the standard room, the

rotor is close to the ground. Ingestion of vorticity fila-

ments by the rotor causing distortion effects is

expected. Figure 15 exhibits thrust measurements and

numerical predictions for the four successive configu-

rations and several rotational speeds. The thrust is gen-

erally estimated by the optimization tool as was

expected from the discussion proposed in the aerody-

namic modeling section because of the overestimation

of the lift coefficient in Xfoil software. Measurements

and numerical predictions express the same trend, a

higher discrepancy observed for the third and fourth

optimizations notwithstanding. Such discrepancy

might be attributed to Xfoil inability to accurately pre-

dict the aerodynamic loads on exotic aerofoil shapes

such as the optimized aerofoil sections. Wind tunnel
experiments should be carried on the optimized aero-

foil and compared with Xfoil computations to further

document that point. The rotational speeds to reach
the thrust objective of 2 N and the corresponding

blade passing frequencies are presented in Table 1 for
the numerical prediction and the experiment. Table 1

clearly shows that the main effect of the successive
optimizations is to reduce the rotational speed needed

to reach the thrust objective and lower the BPF.
Figure 16 shows the sound power level computed

according to ISO 3746 : 1995 standard in the third

octave bands for the successive rotors at a 2 N thrust
from the experiment. It can be directly compared with

Figure 11(a) and (b). Noise reduction is effectively
observed, although less than the noise reduction

observed from numerical predictions (Figure 11(a)
and (b)). In the experiment, the main tonal component

at the first BPF is reduced by a maximum of 15 dB(A)
between the base configuration and the fourth rotor,

where the optimization tool predicted a noise reduction

by 25 dB(A). Noise reduction occurs in every frequency
band. Comparing Figure 16 with Figure 11(a) and (b)

suggests evidences that turbulence ingestion noise
might be the dominant source of broadband noise. A

slight overestimation by the optimization tool at high
frequencies is, however, to be expected.32

Results and discussion

Figure 17 shows the sound power level computed

according to ISO 3746 : 1995 standard in third octave
bands for the final optimized rotor at a 2 N thrust from

measurements and numerical predictions (trailing-edge

and turbulence ingestion noise models). Although it is
not possible to distinguish the broadband component

from the tonal component on a third octave spectrum,
it is clear that the low frequencies do not contribute to

the OASPL. The high frequency content from the

Figure 14. Acoustic power according to ISO 3746 : 1995
standard of a representative MAV rotor. Comparison between
measurements in the standard room and in the anecho-
ic chamber.

Figure 15. Thrust evolution with rotational speed of the suc-
cessive rotors from numerical prediction and experiment. The
horizontal dash line (red) indicates thrust objective at 2 N. N:
numerical predictions. E: experiment.

Figure 16. Sound power level of the acoustic spectrum of the
successive rotors for a 2 N thrust. Experiment.

Serré et al. 9



numerical prediction reaches the level of the OASPL
then supporting the idea that broadband noise predic-
tion is relevant to the design of MAV rotors. The
trailing-edge noise model predicts sound power levels
that do not reach the sound power levels observed in
the experiment. On the contrary, the turbulence inges-
tion noise model seems able to predict accurately the
broadband components of the sound power spectrum.
The exceeding sound power levels seen from the experi-
ments are tonal noise at the BPF and its harmonics. It
is believed to be a consequence of unsteady loading. As
a result, it is not retrieved by the optimization tool as a
consequence of the steady aerodynamic input data.
Unsteady loading increases the strength of the first
BPF, induces sub-harmonic peaks and high frequency
broadband content. Such high-frequency broadband
content is a consequence of the typical small wave-
length of turbulence found in this configuration32 that
impinges the leading edge and induces force fluctua-
tions on the blade. Hence, it is observed that unsteady
loading is the responsible mechanism for most of the
noise produced in this configuration and leads the tur-
bulence ingestion noise to be the dominant source of
broadband noise. This is consistent with the work of
George and Chou.40 Additional analysis on broadband
and tonal components is needed and will be addressed
in a future work from measurements in anechoic envi-
ronment. In the context of a steady loading framework,
turbulence ingestion noise model such as the model
proposed by Roger and Moreau17 is then essential to
estimate most of the acoustic energy radiated by MAV
rotors in hover. In Figure 17, the first BPF is particu-
larly higher in the experiments. In addition to unsteady
loading, it may more specifically be a consequence of
installation effects. The experimental test bench holds
the rotor in such a way that its axis of rotation is par-
allel to the ground. As a consequence, a stand that
includes the aerodynamic balance is mounted vertical-
ly, behind the rotor and it might yield additional noise
radiation at the BPF and its harmonics. Moreover, the

motor radiates its own noise. A sharp tonal peak can be

identified on narrow band measurements at a passing

frequency based on the number of magnetic poles in

the motor but broadband noise possibly yielded by the

motor cannot be identified so far. Additional noise may

also be provided by the fact that the motor rotational

speed is actually fluctuating but standard deviation is

found to be approximately 2% around the aimed rota-

tional speed. As long as these additional sources of

noise are not isolated, a straightforward identification

of the sources of noise in the rotor cannot be carried

out from a typical narrow-band frequency spectrum.

This is left for future work. Eventually, the following

tables exhibit comparison between numerical predic-

tions and experiment on the aerodynamic power and

on the total acoustic power (Table 2). The aerodynamic

power, defined as Ap ¼ xQ where Q is the torque and

x is the rotational frequency, is underestimated by the

optimization tool by almost 6 W but the power reduc-

tion is higher in the experiment (Table 2). That under-

estimation was expected from the underestimation of

the drag coefficient by Xfoil software as discussed in

the aerodynamic modeling section on page §. The total

acoustic power is underestimated by the optimization

tool with the trailing-edge noise model but is efficiently

predicted by the optimization tool with the turbulence

ingestion noise model, a slight underestimation for the

final configuration notwithstanding. As a result, the

reduction of the total acoustic power is amplified by

the numerical method (Table 2). The general trend of

the optimization process as shown in Table 2 is prom-

ising: a reduction by 9 dB(A) in the total acoustic

power reduction is experimentally observed together

Figure 17. Sound power level of the acoustic spectrum of the
final optimized rotor for a 2 N thrust.

Table 2. Aerodynamic power Pshaft in Watts and total acoustic
power LwA in dB(A) for the four successive rotors for a 2
N thrust.

Units: Watts (W) N: Pshaft E: Pshaft

Baseline 19.6 25.2

Twist 17.2 22.1

Chord and twist 17.9 23.1

Airfoil 16.9 21.3

Units: dB(A) NTE: LwA NTI: LwA E: LwA

Baseline 72.0 85.0 83.3

Twist 61.9 81.2 81.3

Chord and twist 57.0 77.1 76.6

Airfoil 46.6 71.1 74.5

N: numerical prediction; E: experiment; TE: trailing-edge noise model; TI:

turbulence ingestion noise model.

Note: The boldface values (Pshaft and LwA of both the baseline and the

airfoil optimization) highlight the improvement yielded by the optimiza-

tion. We chose to put in bold the baseline and the final optimization to

emphasize the noise reduction and the power.
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with a reduction by 4 W in the aerodynamic power and

that is achieved at a minimum cost thank to the opti-

mization tool. Closer views of the most efficient rotor

of the successive configurations are shown in Figure 18.

Designing quiet and long endurance MAVs

From materials exposed in this contribution, general

recommendations can be expressed for the design of

quiet and efficient MAV rotors. This contribution

aimed at highlighting the effects of twist, chord and

airfoil section on noise and aerodynamic power.

Other parameters that contribute to reduce the noise

in MAVs and that have not been addressed in this con-

tribution are for instance the tip radius and the number

of blades. Both parameters would allow to increase the

aerodynamic efficiency and lower the rotational speed.

However, there is always a limit. Beyond the limit in

the tip radius, the Mach number will increase which in

turn will increase the radiated acoustic power. Loss in

acoustic compactness should also be avoided for it will

increase the strength of the sources of noise, although

MAV should not be concerned: the rotational speed is

generally about 5000 r/min, inducing fundamental fre-

quency around 300 Hz and yielding a dominant wave-

length of about 1 m. Beyond the limit in the blade

number, blade-to-blade interactions and high intensity

wake will start to occur eventually increasing the tur-

bulence ingestion noise and as a consequence, the radi-

ated acoustic power. In addition, an odd number of

blades is perceived as less annoying as mentioned in a

recent study on psychoacoustics.35 Three-bladed rotors

are generally considered as a good candidate.
Destructive interference between the blades is not
believed by the authors to be possible at least in a
steady loading framework: each blade will act in the
same way but with a time delay of 2p=Bx, where B is
the blade number and x is the rotational frequency.
Destructive interference will occur if and only if this
time delay equals half of the main acoustic wave
period. However, this practically never holds:
2p=Bx 6¼ 1=2Bx, except for high blade numbers B or
high rotational frequencies x. As an additional param-
eter for the design of quiet and efficient MAV rotors, a
specific leading-edge design41,42 might help reach
higher levels of noise reduction because turbulence
ingestion noise is believed to be the dominant source
of broadband noise in MAV rotors and is generated in
the vicinity of the leading-edge. In addition, the motor
selection should be a part of these design recommen-
dations. Brushless motors that are currently used for
MAV propulsion have a mechanical efficiency that
evolves with the rotational speed as stated by
Bronz.43 Once the optimum rotor geometry has been
selected, the motor can be selected to provide the high-
est mechanical efficiency for the specific optimum rota-
tional speed imposed by the rotor. The general
guidelines for quiet and long endurance MAVs are
now proposed as follows: (i) consider three-bladed
rotors with the highest tip radius; (ii) optimize the
chord and the twist distribution laws combined to min-
imize the OASPL and the aerodynamic power for a
thrust objective; (iii) optimize the airfoil sections to
maximize the lift-to-drag ratio for a given Reynolds
number and angle of attack; (iv) modulate the chord
distribution law with a sine function described in terms
of wavelength and amplitude and (v) eventually select
the most appropriate motor from the operating condi-
tions of the now optimized rotor. These recommenda-
tions have been brought to a flight test in ISAE-
Supaero which demonstrated the possibility to effec-
tively reduce noise (Figure 19). A first flight test was
carried with a commercially available rotor, the

Figure 18. CAD representation of the optimized rotor. It
radiates 10 dB(A) less and consumes 4 W less for the same
thrust production. (a) Top view. (b) Side view. (c) Front view.

Figure 19. Indoor flying platform at ISAE-SUPAERO and flight
test of MAV with optimized rotor.
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APC7x5 and a second one with the optimized rotor.

The reader is referred to Serré et al.32 for the character-

istics of both the reference and the optimized rotors. In

the flight test depicted in Figure 19, the MAV was

programmed to follow a simple path: take-off to

reach 2 m high, fly steady on a straight line, stop and

land. A sound level meter was localized in the middle of

that path at the same height, following a fly-by

approach. The measurements from the sound level

meter are shown in Figure 20 for the equivalent

sound pressure level in the time domain (LAeq) and

the sound pressure level in the third-octave bands.

Figure 20 suggests that noise reduction is effective

and occurs in every situation along the flight path

and in every frequency band.

Conclusion

This contribution has presented an innovative blade

design methodology to reduce the noise and increase

the endurance of MAVs in hover with fabrication

method and experimental validation in non-anechoic

environment. Acoustic models for tonal and broad-

band noise are implemented in a general low-cost

numerical tool with satisfying accuracy. The method-

ology is mainly based on low-order computational

tools and applied for successive modifications of the

chord and twist radial distribution laws and airfoil sec-

tions to identify the best individuals. The successive

optimizations presented in this study showed that

adapting only the twist increases the lift but increases

the drag coefficient more severely, while adapting both

chord and twist significantly decreases the drag without

affecting the lift. Adapting the airfoil sections gives an

important additional increase of lift without significant

drag increase. On the acoustic reduction, the main

effect of the optimizations is seen to provide higher

aerodynamic efficiency allowing reduction of the rota-

tional speed, which has three effects: ( i) lower the tip

Mach number driving the intensity of the radiated

acoustic energy, (ii) lower the main frequency of the

tonal noise and (iii) weaken the intensity of the small

turbulent eddies that create turbulence ingestion

noise at high frequencies. The consequence is a

direct reduction in the radiated acoustic energy.

This study suggests that unsteady loading is respon-

sible for most of the noise produced by MAV rotors

in hover. It strengthens the first BPF, induces sub-

harmonic peaks and high frequency broadband con-

tent that is turbulence ingestion noise, considered as

the dominant source of broadband noise in such con-

figurations. The model for this source of noise dis-

cussed in this study is a good candidate for

relatively accurate prediction of the total acoustic

power radiated by MAV rotors in hover and should

be seriously considered for aeroacoustic optimization

purposes. Further investigations on other sources of

broadband noise are left for future work. The acous-

tic estimation from unsteady aerodynamic input data

should be thoroughly investigated to gain new insight

in aeroacoustic prediction and optimization. An

accurate modeling of unsteadiness could alleviate

the problem of broadband noise prediction at high

frequencies but the resultant increase of computation-

al cost might possibly be prohibitive for an optimiza-

tion process. Key parameters driving the acoustic

power radiated from MAV rotors have been

highlighted and general recommendations have been

suggested, including blade number, rotor tip radius,

chord and twist distribution laws, airfoil sections and

alternative designs. This study has contributed to the

validation and the demonstration of an efficient blade

design methodology for reducing rotor noise and

increasing endurance of MAVs. The noise from a rep-

resentative MAV rotor has been reduced by 10 dB(A).

The optimization tool and the experimental protocol

described in the present paper are suitable for engi-

neering purposes. Reducing the noise from MAVs in

hover can be achieved without expensive means.

High-order computational tools could then be saved

for further reduction of noise levels.
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42. Serré R, Gourdain N, Jardin T et al. Analysis of the flow
produced by a low-Reynolds rotor optimized for low
noise applications. part II: acoustics. In: 43rd European

rotorcraft forum, Milan, Italy, September 2017.
43. Bronz M. A contribution to the design of long endurance

mini unmanned aerial vehicles. PhD Thesis, Institut
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