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Abstract 

Most of the current amines are issued from petrochemical resources and only a few of them are derived 

from biomass. Hence, there are increasing expectations for bio-based amines, particularly for aromatic 

ones. We have designed and synthesized new bio-based amines containing aromatic moieties from 

cardanol, an aromatic non-edible co-product from agri-food industry of cashew nut. We used green 

amination reaction  of epoxy monomers with ammonia under microwave irradiations, from two 

commercial epoxidized cardanol monomers with different epoxy functions: NC-514 and GX-2551 

(Cashew, nutshell liq., polymer with epichlorohydrin). We studied the efficiency of our amination route 

onto both glycidyl and epoxy functions at the middle of the chain and the reactivity of synthesized 

amines toward ring opening of epoxy function. The synthesized bio-based amines were further evaluated 

as curing agents for epoxy resins. The thermo-mechanical properties of final bio-based thermosets 

synthesized therefrom are almost similar (Tg = 51 °C, Td5% = 332 °C and Tα = 64 °C for T-NC thermoset, Tg 

= 58 °C, Td5% = 340 °C and Tα = 78 °C for T-GX thermoset). Moreover, another aim of this study was to 
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reduce the viscosity of hardeners compared to DHAVA hardener (400 000 mPa.s at 50 °C), which was 

synthesized in previous work. Lower viscosities were observed in the case of cardanol-based hardener 

(362 000 and 33 000 mPa.s at 50 °C for respectively NC-A and GX-A hardener).  

 



 

1. Introduction 

The epoxy-amine networks are widely used in a broad range of industrial domains such as composites, 

adhesives, paints and coatings due of their high thermal and mechanical properties.1 The research 

concerning the reduction of the carbon footprint of these materials is growing rapidly with the increasing 

development of bio-based aromatic epoxy monomers from tannins,2,3 lignin,4, 5 eugenol,6, 7 plant oils8,9 

and cardanol.10 More recently, the interest for bio-based amines is also increasing with the synthesis of 

amines from lignocellulose,11, 12 chitin,13 amino acids,14 fatty acids and oils15. However, only a few bio-

based amines were still reported and their syntheses often require some toxic reactants or hard reaction 

conditions.16, 17 For instance, direct alcohol or phenol amination with NH3 in gas phase is a common 

process to obtain amines, but it requires a high temperature (around 400 °C) or/and pressure, H2 or a 

catalyst.18,19,20 Similarly, reductive amination of carbonyl functions is a route to synthesize amines from 

vegetable oils with similar drawbacks.21,22 In an eco-friendly context, we have recently reported an easy 

and cheap method to synthesize primary amines from glycidyl monomers, in accordance with green 

chemistry principles,23 using aqueous ammonia solution which is a non-toxic reactant, in mild 

conditions.24 Hence, dihydroxyaminopropane of vanillyl alcohol (DHAVA, Figure 2), a new bio-based 

amine hardener for epoxy curing, was synthesized from diglycidyl ether of vanillyl alcohol (DGEVA). 

However, despite the good thermo-mechanical properties of the DHAVA-based thermoset, we faced two 

main drawbacks for further industrial applications. First, the viscosity of the β-hydroxylamine DHAVA was 

very high due to hydrogen bonds, which may be formed between methoxy and hydroxyl moieties. The 

short backbone structure of DHAVA also induces a decreased mobility and therefore a higher viscosity. 

Moreover, the initial epoxy monomer was not commercial and needed to be synthesized. Therefore, we 

were interested in the use of commercial bio-based epoxy monomers with a longer backbone, exhibiting 

long alkyl chain in order to overcome both viscosity and supplying issues. In this view, we turned to 

cardanol derivative, which is cashew Nut Shell Liquid (CNSL) oil.   

Cardanol is a fast-growing renewable resource, which is commercially available as epoxidized monomer, 

and with a great potential in the epoxy thermoset field.25 In fact, cardanol is a non-edible co-product 

from the agri-food cashew nut industry, with natural phenolic function, bearing long unsaturated 

aliphatic chain. Cardanol is a mixture of m-[(Z)-8-Pentadecenyl]phenol, m-[(Z)-8,11-Pentadecenyl]phenol 

and m-[(Z)-8,11,14-Pentadecenyl]phenol. Epoxidized cardanol is widely used as reactant in various 

applications of epoxy thermoset industry, such as coatings,26 high-performance thermosetting resins,27 

epoxy foams,28 flame retardant thermoset.29, 30 To the best of our knowledge, only a few amines were 
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synthesized from cardanol such as phenalkamine, the most commonly developed curing agent from 

cardanol which is synthesized by Mannich reaction between cardanol, formaldehyde and diamines.31 

Moreover, thiol-ene chemistry allowed synthesizing a cardanol-based amine containing aromatic 

moieties.32
 Indeed, first, cardanol was allylated with allyl bromide and then, all the unsaturations of the 

cardanol (allyl and alkyl) were functionalized with cysteamine. Nevertheless, these syntheses require 

toxic reactants. Therefore, we have chosen to adapt our previously developed amination method to 

obtain new cardanol-based β-hydroxylamines. Moreover, cardanol stands out as a possible green 

precursor for β-hydroxylamine hardener of lower viscosity than previously developed DHAVA due to its 

long unsaturated aliphatic chain.  

Two different di-epoxidized cardanol are commercialized: cardanol NC-514 and cardanol GX-2551 

(Cashew, nutshell liq., polymer with epichlorohydrin) showing both different epoxy equivalent weight 

(EEW) values and different reactivity regarding to nucleophiles (Figure 1). Cardanol NC-514 is well known 

in the literature,26, 33-35 and accurately described recently by Jaillet et al. as a mixture of polymer 

structures with closed and opened epoxy rings, induced by phenol addition and oligomerization.36 It is 

indeed obtained by the phenolation of unsaturations, and then, by the incorporation of epoxy units in 

the phenol substrate by means of the epichlorohydrin (ECH) addition. Cardanol GX-2551 is a new 

industrial epoxidized cardanol, which was never reported so far, to the best of our knowledge. The GX-

2551 synthesis involves adding ECH to introduce epoxy functions into the cardanol structure, followed by 

the epoxidation of the unsaturations. NC-514 is highly reactive towards nucleophiles, due to its two 

terminal epoxy moieties, but it requires the use of phenol, which is carcinogenic. In contrast, the 

synthesis of the GX-2551 does not require any phenol, intern epoxies are present and they are well 

known to exhibit a lower reactivity compare to terminal ones.37 Furthermore, the long aliphatic chain of 

GX-2551 contains either β-unsaturated intern epoxy or intern epoxy with saturated chain as substituent. 

It is reported in the literature that allyl epoxy functions (similar to β-unsaturated intern epoxy functions 

found in the epoxidized cardanol) are more reactive to ammonia than alkyl intern epoxy due of inductive 

effect.38 Hence, the higher are the inductive or mesomeric effects, the higher is the reactivity of epoxy 

groups (allyl < vinyl < aromatic).39 To the best of our knowledge, this amination method was never 

applied so far to long aliphatic chain carrying unsaturations. 

In this work, the amination reaction of each epoxidized cardanol (NC-514 and GX-2551) was 

performed using the ammonium hydroxide solution as reagent in order to obtain new fully bio-based 
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amines derived from cardanol, expecting lower viscosity than previously synthesized DHAVA hardener. 

The amination of intern epoxy was studied for the first time. The reactivity of each epoxy function 

toward ammonia was studied. The obtained amines were then used as curing agents for the production 

of bio-based epoxy thermosets. The optimal ratios were determined by DSC analyses for each 

thermoset. Then, bulk thermosets were synthesized and their thermo-mechanical properties were 

determined and compared.  

2. Experimental section 

Materials and methods 

Aqueous ammonia solution (25% NH3 basis) and 2-methyltetrahydrofuran (purity 99.5%) were 

purchased from Sigma-Aldrich. 1,4-dioxane was purchased from Honeywell. Epotec YD 128® (Aditya Birla 

Chemicals (Thailand) Ltd., Epoxy Division) is a general-purpose DGEBA described as an unmodified 

compound with a medium viscosity (EEW = 185-194 g.eq-1). Cardanol and epoxy monomers 

Cardolite GX-2551 and Cardolite NC-514 were supplied from Cardolite Corporation and used as 

received. Cardanol is a mixture of m-[(Z)-8-Pentadecenyl]phenol. m-[(Z)-8,11-

Pentadecenyl]phenol and m-[(Z)-8,11,14-Pentadecenyl]phenol. Epoxy cardanols are polymers of 

cardanol and epichlorohdyrin. For each epoxy cardanol, we used EEW given by Cardolite. The 

same GX-2551 and NC-514 cardanol batches were used during the study. Cardolite GX-2551 is di-

functional epoxy resin based on cashew nutshell liquid with a low viscosity (EEW = 165-200 g.eq-

1). Cardolite NC-514 is a di-functional glycidyl ether epoxy resin with a medium viscosity (EEW = 

350-500 g.eq-1). Deuterated solvents were obtained from Sigma Aldrich for NMR study. 

Characterization techniques 

1H and 13C NMR analyses were recorded in deuterated solvents on a 400 MHz Bruker Aspect NMR 

spectrometer (temperature of 23 °C). The chemical shifts are in parts per million (ppm) relative to 

tetramethylsilane. 

Thermogravimetric Analyses (TGA) were recorded with a Netzsch F1-Libra analyzer at a heating rate 

of 20 °C.min-1 between 25 and 600 °C (under a stream of nitrogen). 9-10 mg of each sample was placed 

in an alumina crucible and heated. The analyses allow to determine the moisture and volatile content, 

the percentage of residue at 600 °C, and the degradation temperature (Td). 

Differential scanning calorimetry (DSC) measurements were performed using a NETZSCH DSC200F3 

calorimeter F3 calibrated with indium standard under nitrogen atmosphere. Approximately 10 mg of 
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each sample was placed in pierced aluminum crucible. The thermal properties were recorded from -100 

°C to 120 °C at 20 °C.min-1 and the glass transition temperature (Tg) values were measured on a second 

heating ramp.  

Dynamic Mechanical Analyses (DMA) were carried out on Metravib DMA 25 with Dynatest 6.8 

software. Uniaxial stretching of samples was performed while heating at a rate of 3 °C.min-1 from Tg -80 

°C to Tg +100 °C, keeping constant frequency of 1 Hz with a fixed strain (corresponding to the elastic 

domain of the network samples). The elastic domain of each sample was previously determined by the 

application of a variable stress to the material at a fixed temperature (>Tg +30 °C). The dynamic strain 

applied was chosen on this elastic domain for the second test.  

Cross-linking density: From rubber elasticity theory,40 the uniaxial stretching was studied on the 

rubbery plateau at T = Tα +80, and at very small deformations. Under these hypotheses, the cross-linking 

density ( ’), was obtained from Equation (1), where E’ is the storage modulus, R is the universal gas 

constant and Tα is the temperature, in K, of the transition from vitreous to the elastic domain of the 

material determined at the maximum of the tan δ curve. The calculated values are given for information 

purposes only, and they can only be compared.  

Equation (1)      
        

 

       
 

Swelling indices (SI) were measured with three samples which were separately placed in THF for 24 h. 

The swelling index was calculated according to Equation (2), where m1 is the mass of the material after 

swelling in THF during 24 h and m2 is the initial mass of the material. 

Equation (2)       
       

  
       

Gel contents (GC) were measured after SI measurements when the three samples were dried in a 

ventilated oven at 70 °C for 24 h. The gel content was calculated according to Equation (3), where m3 is 

the mass of the material after drying and m2 is the initial mass of the material. 

Equation (3)       
   

  
     

Viscosities measurements were performed at 22 °C on the AR-1000 rheometer (TA Instruments). A 20 

mm diameter and 4° cone-plan geometry were used. The flow mode was used with a gradient from 1 to 

0.01 rad.s−1 . 
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Synthesis of NC-A by amination of NC-514  

8.4 mL of 2-MeTHF or 1,4-dioxane were added to 1.4 g (2.5 mmol) of the NC-514 epoxy mixture in a 35 

mL microwave flask. Then, 9.6 mL of ammonium hydroxide (25% solution of NH3.H2O), were added. The 

mixture was homogenized using a vortex. The reactor stayed under stirring and microwave irradiations 

during 2 h at 120 °C. The solution was then cooled down to room temperature. The solvent and residual 

ammonium hydroxide were removed under reduced pressure. A brown and high viscous compound was 

obtained (>99%).  

Synthesis of GX-A by amination of GX-2551 

8.4 mL of 2-MeTHF or 1,4-dioxane were added to 1.0 g (2.8 mmol) of the GX-2551 epoxy mixture in a 35 

mL microwave flask. Then, 9.6 mL of ammonium hydroxide (25% solution of NH3.H2O), were added. The 

mixture was homogenized using a vortex. The reactor stayed under stirring and microwave irradiations 

during 1.5 h at 110 °C. The solution was then cooled down to room temperature. The solvent and 

residual ammonium hydroxide were removed under reduced pressure. A brown and high viscous 

compound was obtained (>99%).  

Epoxidation of cardanol 

Cardanol (5 g, 16.5 mmol), formic acid 60% (1.26 g, 16.5 mmol), p-toluenesulfonic acid (0.280 mg, 1.6 

mmol) in toluene (4 mL) was mixed and then heated to 50 °C. Then, a hydrogen peroxide solution (30% 

(w/w) in H2O) (6.79 g, 65.9 mmol) was added dropwise. The reaction mixture was stirred at 65 °C for 24 

hours. The organic layer was washed successively with saturated sodium bicarbonate, brine and 

deionized water. The organic layer was dried with anhydrous magnesium sulfate, filtered and then, the 

solvent was removed under reduced pressure.  

Synthesis of 1-Amino-3-phenoxy-2-propanol 

2.3 mL of 2-MeTHF were added to 0.3 g (2 mmol) of the 1,2-epoxy-3-phenoxy-propane in a 10 mL 

microwave flask. Then, 2.7 mL of ammonium hydroxide (25% solution of NH3.H2O), were added. The 

mixture was homogenized using a vortex. The reactor stayed under stirring and microwave irradiations 

during 1 h at 85 °C. The solution was then cooled down to room temperature. The solvent and residual 

ammonium hydroxide were removed under reduced pressure. A white solid was obtained (>99%). 

Descripted in the literature.41 
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Synthesis of epoxy thermosets  

For a theoretical molar ratio of 1:2 between amine groups and epoxy groups, the necessary amount of 

hardener for 100 g of epoxy prepolymer is calculated according to equations (4) and (5): 

           
      

            
                    

         

   
 

With: AHEW (or HEW) is the amine hydrogen equivalent weight and EEW is the epoxy equivalent 

weight 

An optimal molar ratio can be determined by the adjustment of Equation (5) by multiplying the 

amount by the desired ratio of amine/epoxy. Then, Tgs were recorded by DSC analysis and the network 

with the highest Tg corresponds to the optimal molar ratio. 

For the synthesis of epoxy thermosets, epoxy prepolymer and amine were mixed with a previously 

determined optimal molar ratio and the mixtures were cured at 90 °C for 8 h to obtain the final 

thermosets. 

3. Results and discussion 

Amination of the two cardanol derivatives 

The goal of this study is to synthesize two new cardanol-derived amines. For this purpose, two epoxy 

cardanol monomers were chosen and the same two batches were used during the study to ensure 

reproducibility. The first monomer is Cardolite NC-514, obtained by the phenolic condensation of 

cardanol followed by the incorporation of epoxy units in the phenol substrate by means of the ECH 

addition. Cardolite NC-514 is a flexible di-functional glycidyl ether epoxy prepolymer with a EEW 

between 350 and 500 g.eq-1(determined by nitration by Cardolite, EEW of used batch was 438 g.eq-1). 

The second monomer is Cardolite GX-2551, obtained by the addition of ECH in order to introduce epoxy 

functions into the cardanol structure, followed by the direct epoxidation of the unsaturations of alkyl 

chain (spectra given in Supporting Information, a. and b. parts). GX-2551 is also a di-functional epoxy 

prepolymers with a lower viscosity and EEW between 165 and 200 g.eq-1(EEW of used batch was 182.5 

g.eq-1). NC-514 exhibits a higher reactivity thanks to its glycidyl function, but it is only partially bio-based 

due to the use of phenol for its synthesis. In contrast, GX-2551 is fully bio-based but presents intern 

epoxies that exhibit a lower reactivity compare to terminal ones.34 
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NC-514 and GX-2551 aminations were carried out, according to the methodology developed in our 

previous study (Figure 1).24 The direct amination by aqueous ammonia solution was performed under 

microwave irradiations allowing to work at higher temperature (120 °C) than conventional heating 

without losing ammonia solution (boiling point = 35 °C). This methodology allows obtaining quantitative 

conversion and isolated yield with a low reaction time.  

 

Figure 1: aminations of NC-514 (R1) and GX-2551 (R2) 

1H NMR spectrum of NC-A is displayed in Figure 3 (13C DEPT 135 NMR and IR spectra given in Supporting 

Information, c. part). Two typical ABX signals are induced by the formation of non-equivalent protons 

during the ring opening reaction. The first one at 3.20 ppm (3J = 4.6 Hz and 2J = 12.2 Hz), corresponds to 

the α-CH2 of the amine groups designated as 3 and 3’ in the spectrum. The second one corresponds to 

the O−CH2 protons of the opened epoxy group (1 and 1’ in the spectrum) at 3.90 ppm (3J = 5.6 Hz and 2J = 

9.1 Hz). Then, the α-CH of the hydroxyl function is observed at 4.18 ppm with a typical quintuplet (3J = 

5.6 Hz). The signals 1, 1’ and 2 are overlapped with oligomers signals (thus, the exact oligomers amount 

cannot be calculated). The formation of these oligomers can be explained by the autocatalytic effect of 

β-hydroxylamine on the epoxy-amine reaction due to hydrogen bonding, which was highlighted in our 

previous work (Figure 2). Due to this autocatalytic effect, the reactivity of β-hydroxylamine toward 

glycidyl ethers is clearly enhanced.  
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Figure 2: autocatalytic effect of β-hydroxylamine on the epoxy-amine reaction 

In order to prove the formation of oligomers during amination reaction by aqueous ammonia, an amine 

was synthesized from 1,2-epoxy-3-phenoxy-propane in the same conditions and used as model. From 

NMR (scheme and spectra given in Supporting Information, d. part), we can observe that the same 

signals are obtained, corresponding to dimers and/or trimers. The presence of such oligomers was also 

confirmed by LC-MS analyse. However, quantitative analysis is complex. Therefore, these results show 

that some oligomers can be obtained during the amination reaction, competing with the ring opening 

reaction by aqueous ammonia solution.  

 

Figure 3: 1H NMR spectrum of NC-A obtained from NC-514 amination in deuterated acetone. 
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For the GX-2551, the reactivity of the intern epoxy functions is much lower than the reactivity of 

terminal ones, but the formation of oligomers is also expected due to the presence of one glycidyl 

function per molecule. The 1H NMR spectrum of GX-A (Figure 4) is more difficult to analyze than that of 

NC-A spectrum because of its two different epoxy functions on the aliphatic chain: one terminal epoxy 

group and epoxy functions at the middle of the chain (Figure 1, 13C, 1H - 13C HSQC NMR and IR spectra 

given in Supporting Information, e. part).). The amination by ammonia of the first one is favored whereas 

the intern epoxy function is more difficult to open due to the steric hindrance.  

 

Figure 4: 1H NMR spectrum of GX-A synthesized by GX-2551 amination in deuterated acetone. 
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In the 1H NMR spectrum, all epoxy groups are opened. As for NC-A, amine from the glycidyl group 

amination was assigned to three signals at 3.21 ppm with ABX signal (3J = 4.8 Hz and 2J = 12.2 Hz), 

designated as 3 and 3’ in the spectrum, at 3.93 ppm with ABX signal (3J = 4.8 Hz and 2J = 9.6 Hz), 

designated as 1 and 1’, and at 4.20 ppm with a quintuplet (3J = 5.4 Hz), designated as 2. The signal of the 

α-CH of the amine groups (designated as x), that result from the intern epoxy ring opening was 

overlapped mainly at 2.84 ppm with an intense multiplet. There was also a low signal between 2.79 to 

2.91 ppm corresponding to less favourable amination reaction. For the opening of the intern epoxy ring 

by the aqueous ammonia solution, the α-CH of the hydroxyl functions (v) was around 3.23 ppm with a 

broad multiplet appearance because of the two possibilities of ring opening of the intern epoxy function. 

In fact, the intern epoxy ring can be opened on both sides because of the equivalent steric hindrance 

induced by the aliphatic chain. Furthermore, the nature of the chain (alkyl, mono or di-alkene) may have 

an influence on the α-CH signal shift, corresponding to the hydroxyl functions. The broad multiplet is due 

to a group of overlapping multiplets. 

As for NC-A, the formation of oligomers was proved by the overlapping of signals 1, 1’ (with a multiplet 

signal between 3.95 and 4.01 ppm). Two different reactions may lead to these oligomers. First, the 

opening of the glycidyl by a newly formed β-hydroxylamine, as observed in the synthesis of NC-A. Then, 

such β-hydroxylamine may successfully open intern epoxy functions thanks to the autocatalytic effect 

previously described, and to the inductive effect on intern epoxy function provided by the β-unsaturated 

double bond in the GX-2551 structure (Scheme 1). 

 

Scheme 1: representation of the competition between new β-hydroxylamine and aqueous ammonia solution on intern epoxy 
functions. 
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Therefore, the ring opening reaction of intern epoxy ring was investigated with epoxidized cardanol (EC) 

as model (Scheme 2). First, cardanol was epoxidized with hydrogen peroxide, and then four reactions 

were carried out in the same conditions for different times: 0.3 g of EC was mixed with 2.3 mL of 

aqueous ammonia solution and 2.4 mL of dioxane in 10 mL micro-waves flask. Then, the four reactions 

were sampled respectively at 20 min, 40 min, 1 h and 1.5 h (Figure in Supporting Information, f. part). 

Due to the overlap of the signal of α-CH of epoxy ring (around 3.1 ppm) by the water signal, it was 

difficult to accurately quantify the ring opening reaction over time. However, the signal of α-CH of epoxy 

function completely disappeared after 1 h. Then, four reactions were performed between EC and 1-

Amino-3-phenoxy-2-propanol as an amine model), corresponding to the aminated glycidyl phenol of GX-

A, in the same conditions for different times (20 min, 40 min, 1 h and 1.5 h, Figure in Supporting 

Information, g. part). These reactions did not allow opening epoxy rings despite the presence of β-

hydroxylamine and phenol groups of cardanol, which may act as a catalyst for the reaction.42 In 

conclusion, there was no competition between β-hydroxylamine and aqueous ammonia solution on 

intern epoxy groups and the presence of β-hydroxylamine or phenol moieties as catalyst is not sufficient 

to allow the ring opening reaction between an intern epoxy function and a β-hydroxylamine. 

 

Scheme 2: kinetic study between EC and A) aqueous ammonia solution or B) 1-Amino-3-phenoxy-2-propanol as an amine model 

The two new bio-based diamine hardeners were then characterized (Table 1). The HEW of NC-A is almost 

twice higher than GX-A with respectively 227.5 and 99.8 g.eq-1, according to the number of epoxy 

functions for the initial epoxy groups (1.3 per molecule for NC-514 and 1.9 for GX-2551). The two 

obtained amines show a lower viscosity than that of DHAVA, the previously synthesized amine, due to 

the long aliphatic chain present in their structures (33 000 mPa.s for GX-A, 362 000 mPa.s for NC-A and 

400 000 mPa.s for DHAVA at 50 °C). Moreover, the HEW values of DHAVA and GX-A were close (75.1 
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against 99.8 g.eq-1 respectively). It is thus interesting to compare their viscosities. GX-A exhibits a 

viscosity which was almost twelve times lower than DHAVA. The use of commercial epoxidized oil as 

reagent is thus an interesting pathway to synthesize bio-based amines. 

Thermoset syntheses 

An easy and inexpensive method to synthesize primary amines was previously developed, in accordance 

with green chemistry principles. Based on this work, new bio-based amines were interestingly 

synthesized from cardanol. Hence, cardanol has a unique chemical structure, with an aromatic ring 

leading to materials with high thermo-mechanical properties and a long aliphatic chain conferring low 

viscosity during formulation. For this study, diglycidyl ether of bisphenol a (DGEBA) was chosen as epoxy 

monomer, despite its petro-sourced origin, because of its widespread use in the epoxy polymer industry. 

Epotec YD 128 was chosen as DGEBA prepolymer due to its liquid form (presence of 15% of oligomers). 

For each amine, a theoretical HEW was used to determine the optimal amine/epoxy molar ratio. This 

HEW was calculated from the following equation: 

(6)        
                         

            
  

The value of 17 g.mol-1 corresponds to the mass of additional atoms (NH2 + H) 

The difference with the theoretical ratio (2 epoxy for 1 amine) can be explained by several factors such 

as the use of non-pure DGEBA (Epotec YD 128), or by the method of HEW determination (calculated 

from commercial data). Therefore, as it was previously explained, oligomers were synthesized during the 

amination of GX-2551. The determination of the optimal ratio allows to fix the theoretical HEW of GX-A. 

The compositions of the epoxy-amine mixtures are summarized in Table 1: 

Table 1. Composition of epoxy thermosets and characterization of reactants.  

Network Composition 
amine/epoxy 

Optimal 
ratio 

mamine

(mg)
a
 

EEWth of initial 
epoxy (g.eq

-1
) 

Number of epoxy 
function of initial 

epoxy (per molecule) 

HEWth 

(g.eq
-1

) 

Amine viscosity 

(mPa.s at 50 °C) 

T-DH DHAVA/DGEBA
b
 1.2-2.0 48.2 133.1 2.0 75.1 400 000 

T-NC NC-A/DGEBA  1.2-2.0 136.6 438.0
c
 1.3 227.5 362 000 

T-GX GX-A/DGEBA  1.4-2.0 76.8 182.5
c
 1.9 99.8 33 000 

a  
For 100 mg of epoxy, 

b 
previously determined results, in the same conditions, 

c
 EEW given by Cardolite 

The optimal molar ratios were determined by the method described in the experimental section (DSC 

values given in Supporting Information, h. part). Then, the thermosets with the highest Tg were 
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synthesized and characterized by DSC, TGA, DMA and their swelling index (SI), gel content (GC) and 

cross-linking density were determined. All results are summarized in Table 2. 

Table 2. Characteristics of synthesized epoxy thermosets.     

 
Td5% 
(°C) 

Char yield
a
 

(%) 
Tg

b
 

(°C) 
Tα 

(°C) 

ν’ 

(mol/m3) 

E’glassy 

(Pa) 

E’rubbery 

(Pa) 

SI 

(%) 

GC 

(%) 

T-DH
c
 320 12 63 66 61 1.4.10

9
 6.4.10

5
 134 100 

T-NC 332 8 51 64 124 1.1.10
9
 1.3.10

6
 176 93 

T-GX 340 12 58 78 318 1.6.10
9
 3.4.10

6
 137 96 

a
 at 600 °C. 

b
 mid value. 

c
 previously determined, in the same conditions   

Thermosets were synthesized by curing the epoxy-amine mixture at 90 °C for 8 h according to the 

corresponding ratios. The DSC analysis of the materials after curing proved that the conversion was 

complete, since no residual enthalpy was observed in the thermogram. Furthermore, the determination 

of gel content (GC) allowed confirming the complete conversion with a highly cross-linked material. 

When the density of cross-links is high, the solvent cannot penetrate into the network to solubilize 

unreacted molecules and, consequently, the GC value is high. The thermosets exhibited a gel content 

value lower than 100% due to non-functionalized cardanol chains, as already described in literature.33 

Then, the 5% weight loss (Td5%) temperature was determined by TGA for each thermoset (data given in 

Supporting Information, i. part). The two thermosets showed similar Td5% and char yield at 600 °C. We 

could have expected a higher thermal stability for T-NC due to the presence of more aromatic moieties 

in the NC-514 epoxy structure compared to GX-2551. However, we observed a similar stability, which 

can be explained by the number of epoxy functions (per molecule) of initial GX-2551 which is almost 

twice higher than NC-514 with respectively 1.9 and 1.3. These values correspond to a lower amount of 

aromatic moieties than suggested by the theoretical structure of NC-514. 

The glass transition temperature values (Tg) and the alpha transition temperature values (Tα) were 

recorded by DSC and DMA respectively, from bulk materials. DMA thermograms are presented in Figure 

5 with the storage modulus (E’) and tan δ as a function of the temperature. First, results allow checking 

the homogeneity of the thermosets with narrow peaks observed for both tan δ curves. Then, Tα were 

determined at the maximum of the tan δ curve. Results showed that Tgs and Tαs follow the same trend 

with a slightly higher value for T-GX (Tα(T-NC) = 64 °C and Tα(T-GX) = 78 °C), meaning good thermo-mechanical 

properties for both. For the storage modulus characterization, results were similar in the vitreous 

domain with an E’glassy around 1.109 Pa, which corresponds to a high level of hardness and stiffness for 
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thermosetting resins. In the elastic domain, the storage modulus (E’rubbery) allows to give insight on the 

rigidity of a material and is linked to the cross-linking density (ν’), according to the rubber-elasticity 

theory.40 E’rubbery of each thermoset was within an order of magnitude (106 Pa), with a slightly higher 

value for the T-GX network meaning that this thermoset was more cross-linked and thus more rigid than 

that of the T-NC thermoset. Furthermore, the swelling index values (SI) were consistent with the cross-

linking densities since they were inversely proportional.  
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Figure 5: DMA analysis of T-NC and T-GX thermosets 

These results were compared to the previously synthesized reference thermoset composed of DHAVA 

and DGEBA.24 DHAVA has a short backbone structure compare to cardanol, indicating theoretical lower 

internode distance, and thus higher cross-linking density and higher rigidity resulting in higher E’rubbery 

value. However, the reference shows lower cross-linking density and lower E’rubbery value than cardanol-

based thermosets. It could be explained by the presence of more DGEBA content in reference system 

due to the lower HEW of amine used, which may lead to an increase of the average internode distance. 

4. Conclusions 

New bio-based amines were synthesized from both cardanol-based epoxy monomers NC‐514 and GX-
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2551 by using a green amination route, using aqueous ammonia solution as reactant, under microwave 

irradiations. Due to the presence of the long aliphatic chain in cardanol structure, lower viscosities were 

obtained for cardanol-based hardeners compared to the previously synthesized DHAVA hardener, as 

expected. Moreover, the use of cardanol-derived monomers is very interesting since cardanol is a 

commercially available non-edible side-product from cashew industry which interestingly contains 

phenol group and unsaturated alkyl chain. 

Generally, when directly linked to aromatic rings amines usually exhibit quite high toxicity. The β-

hydroxyl amines obtained in this study still contain aromatic moieties, which are not directly connected 

to amine groups. Consequently, these amines should be less toxic. Moreover, epoxy monomers exhibit 

generally a higher toxicity than amines. Indeed cardanol epoxy monomers are non CMR and food contact 

approved. Therefore the amines synthesized therefrom, owing to a safe route, without toxic solvent nor 

catalyst, should exhibit a low toxicity profile. However, evaluation of their toxicity will be a necessary 

step forward for their industrial use. 

 

Then, these amines were used in epoxy thermoset formulations with an optimal epoxy-amine ratio. Both 

of them exhibited good thermo-mechanical properties and also high thermal stabilities, with almost 

similar properties (Tg = 51 °C, Td5% = 332 °C and Tα = 64 °C for T-NC thermoset, Tg = 58 °C, Td5% = 340 °C 

and Tα = 78 °C for T-GX thermoset). Moreover, the synthesis of GX-2551 does not require phenol, unlike 

that of NC-514, leading to a fully bio-based amine. Therefore, the bio-based amine GX-A is very 

interesting due to its full bio-based origin and the use of non-toxic amination route, which is in 

agreement with the green chemistry principles with the reduction of the use of hazardous substances.  
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