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Normal Mode Theory and
Harmonic Potential Approximations

Konrad Hinsen

1.1 Introduction

Normal mode analysis (NMA) has become one of the standard techniques in
the study of the dynamics of biological macromolecules. It is primarily used
for identifying and characterizing the slowest motions in a macromolecular
system, which is inaccessible by other methods. This chapter explains what
normal mode analysis is and what one can do with it without going beyond
its limit of validity. The focus of this chapter is on proteins, although normal
mode analysis can equally well be applied to other macromolecules (e.g.,
DNA) and to macromolecular assemblies ranging in size from protein–ligand
complexes to a whole ribosome.

By definition, normal mode analysis is the study of harmonic potential
wells by analytic means. Section 1.2 of this chapter will therefore deal with
potential wells and harmonic approximations. Section 1.3 is about normal
mode approaches to different physical situations, and Section 1.4 discusses
how useful information can be extracted from normal modes.
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1.2 Potential Wells

The fundamental restriction of normal mode analysis is its limitation to the
study of dynamics in a single potential well. More specifically, normal mode
analysis studies motions of small amplitude in a potential well, where “small”
means“small enough that theapproximationshold.” What exactly thatmeans
in practice will be discussed later in this section. An immediate consequence
is that normal mode analysis is not well suited to the study of conformational
transitions, although it can play a complementary role to other techniques in
such applications.

The starting point for normal mode analysis is one particular stable con-
formation of the system that represents a minimum of the potential energy
surface. One then constructs a harmonic approximation of the potential well
around this conformation. This step involves the central approximation of
the method, which therefore deserves a more detailed discussion.

A harmonic potential well has the form1

U(r) = 1
2 (r − R) · K(R) · (r − R) (1.1)

where R is a 3N-dimensional vector (N is the number of atoms) describ-
ing the stable conformation at the center of the well and r is an equally
3N-dimensional vector representing the current conformation. The symmet-
ric and positive semidefinite matrix K describes the shape of the potential
well. A harmonic model for a potential well thus consists of R and K.

Before we can describe the options for constructing a harmonic approx-
imation, we have to review the properties of potential energy landscapes
of proteins. First and foremost, the potential energy landscape of a protein
has a multiscale structure (see Figure 1.1). On the length scale on which
one typically considers conformations from a structural point of view (0.1 to
10 nm), a stable conformation corresponds to a local minimum of a smooth,
slowly varying potential. If several local minima exist, they describe different
stable conformations, and are separated by local maxima and saddle points.
Looking closer (0.001 to 0.1 nm), one sees that the potential well is not smooth,
but has many local minima and energy barriers of smaller height. These are
referred to as conformational substates [1–3]. The differences between neigh-
boring conformational substates are, for example, different arrangements of
sidechains, whereas a different conformation would imply more important
geometrical changes involving the backbone.

By far the most frequently applied method to construct a harmonic potential
model consists of starting from an all- or united-atom potential V(r) and an

1We limit ourselves to harmonic potentials in Cartesian coordinates. Other coordinates can be
used as well, but are less convenient for numerical applications. Note that a potential that is
harmonic in one coordinate set is in general not harmonic in other coordinates.
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FIGURE 1.1
Aschematic one-dimensional view of the potential energy surface of a protein showing two kinds
of harmonic approximations: an approximation to a local minimum, and an approximation to
the smoothed-out potential well.

experimentally or otherwise obtained initial conformation. An energy min-
imization algorithm is then applied to find a local minimum Rmin near the
initial structure. Finally, the matrix K is obtained as the second derivative of
the potential:

Kij =
[

∂2U

∂ri∂rj

]

r=Rmin

(1.2)

The resulting harmonic model is thus an approximation to a conformational
substate, valid for very small motions around the local minimum. How-
ever, such models have been routinely used in the study of larger amplitude
motions, for example, the opening/closing motions that control the access
of ligands to the active site in enzymes. Most of the criticism aimed at
normal mode analysis concerns this use of a model for a conformational
substate beyond its theoretical limit of applicability. However, other kinds
of harmonic models exist, as will be shown below, and even the use of con-
formational substate models can be justified empirically because the outcome
of the subsequent normal mode analysis usually yields results that are in
agreement with experimental data. The low-energy motions in the local min-
ima and in the global potential must therefore be very similar in shape. This
is in fact plausible, because the motions that separate conformational sub-
states and those that characterize large-amplitude motions are very different.
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A low-energy motion on a large scale should also be a low-energy motion on
a smaller scale.

Alternatively, one can directly construct a harmonic model around a given
Rmin (e.g., an experimental conformation) by fitting the remaining parameters
to experimental or simulation data. This approach has been used in particular
for simplified protein models in which only the Cα atoms are represented
explicitly. A reasonable and simplifying assumption is

U(r1, . . . , rN) =
∑

all pairs α, β

Uαβ(rα − rβ) (1.3)

with
Uαβ(r) = 1

2k(|Rα − Rβ |)(|r| − |Rα − Rβ |)2 (1.4)

that is, the harmonic potential consists of a sum of pair terms that rep-
resent springs whose force constants k(r) decrease with an increasing
distance between the two atoms in the configuration that represent the
minimum.

Such a potential, with a step function for k(r), was first used with an all-atom
model by Tirion [4], who showed that it reproduces the low-frequency end of
the density of states rather well. Hinsen [5, 6] then used another variant (with
k(r) exponentially decreasing and a reduced description of the backbone by
the Cα atoms) for characterizing slow protein motions by dynamical domains.
The Anisotropic Network Model [7], although derived in a different way, is
also equivalent to a potential of the form (1.3) for the Cα atoms, again with a
step function for k(r). As long as only an identification of the low-frequency
modes is required, the form of k(r) is indeed not critical.

On the other hand, a quantitative description of a potential well requires a
more careful approximation. By fitting to a local minimum (substate) of the
Amber 94 force field [8], Hinsen et al. [9] obtained the form

k(r) =



















8.6 × 105 kJ

mol nm3
· r − 2.39 × 105 kJ

mol nm2
, for r < 0.4 nm

128 kJ nm4/mol

r6
, for r ≥ 0.4 nm

(1.5)

and found that the global potential well can be described by scaling the local
potential well down by a factor that must be evaluated for each protein
individually. The special case for r< 0.4 nm takes care of nearest neigh-
bors along the backbone, which are strongly bound through the very rigid
peptide group. For other pairs, the interaction is mediated mostly by a
large number of sidechain atoms. This model has been shown to reproduce
the long-time dynamics of proteins remarkably well, as will be shown in
Section 1.3.2.
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1.3 Normal Modes

The basic idea of normal modes is illustrated in Figure 1.2 for a system with
two coordinates, labeled r1 and r2. The harmonic potential well shown has
two special directions, labeled e1 and e2, which correspond to the normal
modes. Imagine the potential well as a real bowl in which a small ball moves
around. The normal mode directions are special because the ball can move
along any one of them back and forth. If it starts along any other direction
(say, r1), then it will be deflected by the potential along the perpendicular
direction (r2) as well, and thus move along both directions. Only the normal
mode directions are independent. This independence greatly simplifies the
analysis of the motions. In particular, oscillations of the ball along any one of
the normal mode directions have a well-defined frequency, which is related
to the curvature of the potential along the direction of motion. Any com-
pound motion contains both frequencies. Knowing the normal modes thus
permits the explicit evaluation of all possible vibrational frequencies in a sys-
tem, assuming of course that the system has vibrational dynamics, that is,
that friction can be neglected.

There is another important feature of normal modes that can be seen
in Figure 1.2. The thick line describes a particular constant energy value.
A ball that is dropped from a position on that line will bounce back to
the same energy level again (assuming the absence of friction). If the ball
moves along the lower normal mode (e1, the one with the lower curvature
and lower oscillation frequency), it can move further away from the min-
imum at a given energy than if it moved along the higher normal mode.
This illustrates that the low normal modes describe large-amplitude motions.
In a molecular system, the level of available energy is defined by the
temperature.

r1

r2

e1

e2

FIGURE 1.2
A two-dimensional harmonic potential well. The two Cartesian coordinate axes of the system
are r1 and r2, the two normal mode directions are e1 and e2.
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In the case of a protein with N atoms, there are 3N Cartesian coordin-
ates and thus also 3N normal mode directions. It is useful to consider the
3N-dimensional space defined by the 3N Cartesian coordinates, which is
called configuration space. A 3N-dimensional vector in this space can either
represent a point, that is, a configuration of the protein, or a direction, that is,
the change of a configuration. Normal mode vectors represent directions, as
do velocity vectors and force vectors. Anormal mode vector thus describes in
which direction each atom moves, and how far it moves relative to the other
atoms. However, a normal mode vector does not describe an absolute amount
of displacement for any atom. Additional information (e.g., the temperature)
is required for fixing the global amplitude of the atomic displacements.

Mathematically, the normal mode vectors are obtained as the eigenvectors
ei of the matrix K, which are defined by

K · ei = λiei, i = 1, . . . , 3N (1.6)

The 3N numbers λi are the associated eigenvalues that describe the curvature
of the potential along the normal mode directions.

The independence of the normal modes makes it possible to rewrite the
harmonic potential in the simpler form

U(c) = 1
2c · � · c (1.7)

The new interaction matrix � is diagonal and has the eigenvalues λi as its
elements. The new coordinates c are given by

ci = (r − R) · ei (1.8)

and the original coordinates r can be recovered through

r = R +
3N
∑

i=1

ciei (1.9)

Each of the coordinates ci measures the distance from the minimum along
one of the normal mode directions.

More important to us is, however, the physical interpretation of the normal
modes. The eigenvalue λi describes the energetic cost of displacing the system
by one length unit along the eigenvector ei. Normal mode analysis therefore
classifies the possible deformations of a protein by their energetic cost. For
realistic potentials, low-energy deformations correspond to collective or deloc-
alized deformations, whereas high-energy modes are local deformations. This
is a consequence of the nonlinearity of the interaction terms, plus the fact that
short-range interactions (e.g., bond stretching) are stronger than long-range
interactions (e.g., electrostatic).
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This can be illustrated by a simple example: a linear chain ofN equidistant
particles, each of which interacts with its two neighbors through a spring
of equilibrium length d, the pair potential is then given by Equation (1.4)
with k(r) = k0. Displacing a particle in the middle by a distance a causes

two pair terms to increase by 1
2k0a

2. Displacing a group of ten particles in
the middle by the same distance a (all in the same direction) also causes two
pair terms to increase, by exactly the same amount. However, we should be
comparing 3N-dimensional displacement vectors of the same length, that is,
the same norm in 3N-dimensional space. Moving a group of M particles as

a unit by a distance a yields a displacement vector with a norm of
√
Ma.

The incurred energy increase is thus proportional to 1/M, that is, collective
motions (large M) are energetically cheaper than local ones. This would not
be the case if the potential were linear in the pair distance, local and global
motions would then have equal energetic costs. A potential with a less than
linear growth would even favor local moves. However, such potentials do
not exist at the atomic scale. Finally, global displacements would be penalized
if there were strong interactions at longer distances, beyond nearest neigh-
bors. But such situations are not found on the atomic scale, the short-range
interactions (the chemical bond structure) are the strongest ones.

When normal mode analysis is applied to an isolated protein, the first six
eigenvalues λi are zero. They describe the six rigid-body movements of the
protein (translation along three independent axes plus rotation around three
independent axes) that incur no energetic cost at all. They are usually of no
interest and ignored in the analysis, such that “the lowest-energy modes” in
practice means “the lowest-energy modes with nonzero energies.”

1.3.1 Vibrational Modes

If one assumes that the atoms in a molecule are classical particles, then the
equations of motion for a molecule with a harmonic interaction potential of
the form (1.1) are given by

M · r̈ = −K · (r − R) (1.10)

The matrix M is a 3N×3N diagonal matrix, which contains the masses of the
atoms on its diagonal, each mass being repeated three times, once for each
of the three Cartesian coordinates. A system with these equations of motion
is known as a 3N-dimensional harmonic oscillator and is discussed in all
textbooks on classical mechanics (see, e.g., [10]). We will therefore only give
a summary of the solution.

With the introduction of mass-weighted coordinates,

r̃ =
√
M · r (1.11)

R̃ =
√
M · R (1.12)

K̃ =
√
M

−1 · K ·
√
M

−1
(1.13)
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the equations of motion can be rewritten as

¨̃r = K̃ · (r̃ − R̃) (1.14)

The 3N independent solutions of these equations have the form

r̃(t) = R̃ + Ãi cos(ωit+ δi), i = 1, . . . , 3N (1.15)

where δi is an arbitrary phase factor and ωi and Ãi are the solutions of the
eigenvalue equation

K̃ · Ãi = ωiÃi (1.16)

This is identical to Equation (1.6) except for the use of the mass-weighted
force constant matrix.

The combination of the 3N-dimensional vector Ai and the eigenvalue ωi
is known as a vibrational normal mode. Since this was historically the first
type of normal mode analysis, and remains the most frequently used one, it
is common to use the term “normal mode” for this form only.

The physical interpretation of Ai and ωi can be obtained from
Equation (1.15): ωi is a vibrational frequency, and Ai is an amplitude vector
that specifies how far and in what direction each individual atom moves.
Vibrational normal mode analysis thus classifies all possible motions around
a stable equilibrium state by vibrational frequency. Note that since the range
of atomic masses is much smaller than the range of eigenvalues, the dif-
ference between energetic (Equation [1.6]) and vibrational (Equation [1.16])
analysis is not very large. Low-frequency modes are therefore to a very good
approximation also low-energy modes, and vice versa. For historical reasons
(normal mode analysis in chemistry was originally developed for describ-
ing the vibrational spectra of small molecules), most published normal mode
studies on proteins use vibrational modes, even though the interpretation is
often in terms of energetic modes.

Figure 1.3 shows the frequency spectrum of three proteins, crambin, lyso-
zyme, and myoglobin, obtained from vibrational normal mode analysis using
a conformational substate approximation to the Amber 94 potential [8]. The
main observation is that the three spectra are nearly identical. The reason for
this is that most of the modes describe motions that are common to all pro-
teins, ranging from hydrogen vibrations (the well-separated block beyond
85 ps−1) at the high end through internal vibrations of single amino acids
down to vibrations of secondary-structure elements (helices, β-sheets). The
small differences are due to the different amino acid distributions and differ-
ent percentages of secondary structure motifs. The motions that are specific
to a particular protein, and thus of interest for understanding its function, are
at the far lower end of the spectrum.

It should be stressed that this analysis describes only vibrational motion
in a conformational substate. There are larger amplitude motions along
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FIGURE 1.3
The vibrational frequency spectrum (number of modes per frequency interval) of three different
proteins in a local minimum of the Amber 94 force field. The vertical line indicates the quantum
limit for T = 300 K.

the lower-frequency modes as well, but they are diffusive, not vibrational.
They will be discussed in Section 1.3.2.

It should also be noted that at the high frequency end, quantum
effects become important. The criterion for the applicability of classical mech-
anics is hν ≪ kBT. At 300 K, this yields ν ≪ 6 psec−1, which, as Figure 1.3
shows, is satisfied for only a very small part of the vibrational spectrum.
However, since the transformation to normal mode coordinates remains
valid in a quantum description, only the dynamic interpretation must be
adapted.

1.3.2 Langevin and Brownian Modes

The real large-amplitude motions in proteins traverse many conformational
substates. The transition fromoneconformational substate to thenext requires
crossing a small energy barrier. At the structural level this means, for
example, that some sidechain rearrangements are necessary before the back-
bone motion can proceed. An explicit treatment of these barrier crossings
is not desirable, and also not necessary. One can model such situations by
a smoothed-out potential (see Figure 1.1) and replace the barrier crossings
by the introduction of friction and random forces into the dynamics. The
simplest model involving friction is known as Langevin dynamics. It consists
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of augmenting Equation (1.10) by two terms:

M · r̈ = −K · (r − R) − Ŵ · ṙ + ξ(t) (1.17)

The first term, proportional to the velocities, is a friction term, defined by
a 3N × 3N matrix Ŵ, called friction matrix, which will be discussed later.
The second term describes a random force that satisfies the conditions

〈ξ(t)〉 = 0 (1.18)

〈ξ(t)ξ(t′)〉 = 2kBTŴδ(t− t′) (1.19)

The second condition specifies that the random force is a white noise signal
(i.e., uncorrelated in time) with an amplitude defined to add on average just
as much energy to the system as is taken out by the friction term.

A method for solving this equation numerically has been given by Lamm
and Szabo [11]. However, it will not be discussed here because a further useful
simplification can be made for the case of large-amplitude motions in proteins.
In general, Langevin modes describe damped oscillations plus random dis-
placements along a normal mode coordinate. When the friction coefficients
are very large, the oscillations become overdamped: the molecule moves
slowly back toward its energetic minimum, but reaches it only asymptotic-
ally and never swings back. The random displacements become the dominant
aspect of the dynamics, and one observes Brownian motion (diffusion) with
preferential movements toward the minimum. This is the dynamic behavior
that the large-amplitude motions of proteins display. It can be described by the
formalism of Brownian Dynamics, which consists of a differential equation
(known as the Smoluchowski equation) for the probability distribution of the
random displacements. This equation can be solved analytically for a har-
monic potential. The derivation is too lengthy to be reproduced here, the
reader is therefore referred to Reference 9 and to Section 2.2 of Reference 12.
The result is again an eigenvalue problem, this time for the matrix

K̂ =
√

Ŵ
−1 · K ·

√
Ŵ

−1
(1.20)

that is, a friction-weighted force constant matrix. Its eigenvalues λ̂i, i =
1, . . . , 3N, are the relaxation coefficients of the Brownian modes, whose direc-
tions are again given by the eigenvectors. If the protein were deformed along
Brownian mode k by an amplitude A, and if then the random forces were
switched off, the protein would return toward the energetic minimum along
the same direction and its position along this direction would be given by

A exp(−λ̂kt).
Like other normal mode techniques, Brownian mode analysis requires a

stable conformation of the protein as input and a harmonic model for the
global potential well. In addition, a model for the friction matrix Ŵ is required.
Since friction manifests itself already on short time scales, it can be measured
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from molecular dynamics (MD) simulations of proteins. With the simplifying
assumption that each particle of the protein has an independent friction
constant (which implies that Ŵ is diagonal), it is sufficient to calculate the
mean-square displacement of each particle from the simulation trajectory and
fit the short-time behavior to a straight line in order to obtain approximate
values of the elements of Ŵ. It turns out that the friction constant can be well
described by a linear function of the local density in the protein around the
particle of interest, averaged over a sphere of 1.5 nm radius [9]. In a typical
compact protein, the local density is uniform on that length scale, the vari-
ations are thus due to surface effects: for particles near the surface, the sphere
contains water, whose density is much smaller than that of the protein itself.
The correlation between friction constant and amount of protein matter in
the vicinity of the particle is not surprising in view of the explanation of the
origin of friction given above, that is, interactions with other atoms in the
protein, in particular sidechain atoms. However, the idea that friction is a
solvent effect is quite popular in the literature, although it has never been
backed by any data.

Several experimentally observable quantities, in particular time correla-
tion functions, can be calculated from Brownian modes analytically [12],
which permits the study of protein dynamics at arbitrarily long time scales.
Figure 1.4 shows that such a model can yield surprisingly good results. It
shows the incoherent intermediate scattering function for a C-phycocyanin
dimer from a two-level normal mode calculation (Brownian modes for the
long-time dynamics plus vibrational modes for short-time effects) and from a
standard MD trajectory. It should be noted that the MD results should tend to
the same asymptotic values as the normal modes curves; the fact that they do
not indicates that the trajectory of 1.6 nsec is not long enough for sampling all
the motions. Alook at the relaxation times obtained from the Brownian modes
confirms this: the largest relaxation time is 4.5 nsec. The absence of sampling
problems is in fact an important advantage of normal mode techniques in the
study of slow protein dynamics.

In summary, Brownian mode calculations demonstrate that a very simple
harmonic potential with few parameters can reproduce the backbone dynam-
ics of a protein very well if an appropriate dynamical model is chosen.
The major limitation is the restriction to motions around a stable energetic
minimum.

1.4 Interpretation and Analysis of Normal Modes

In the study of molecular systems, normal modes are used to answer partic-
ular scientific questions. In order to draw valid conclusions, it is important to
understand the methods and, in particular, their limitations.
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FIGURE 1.4
The incoherent intermediate scattering function Finc(q, t), a quantity observable in neutron scat-
tering experiments, calculated from a mixed Brownian/vibrational modes model and from an
MD trajectory for a C-phycocyanin dimer. Both calculations are for a coarse-grained model
in which a single point mass located at the Cα position represents a whole residue. The normal
modes were calculated directly for this model, the MD trajectory was generated from an all-atom
simulation.

The applications of normal modes can be broadly classified into two groups.
Those in the first group use all modes or a large subset (usually the lowest
energy modes) as a convenient analytical representation of the potential well.
In that case the only limitations are due to the necessarily approximate nature
of the harmonic model, and due to the choice of a subset. The other group
contains all analyses that look at the properties of individual modes. In this
case, care must be taken to avoid an overinterpretation of the data.

One potential pitfall of single mode analysis is discussing the differences
of modes that are nearly equal in energy. In the extreme case of exactly equal
energies (the modes are then called degenerate), the modes that come out
of a numerical calculation represent arbitrary choices of the algorithm. Any
combination of such modes would be an equally valid mode. Interpreting the
characteristics of any one such mode or the differences between the degen-
erate modes is no more meaningful than discussing the differences between
motion along the x and the y coordinates in an arbitrarily chosen Cartesian
coordinate system. Although this is strictly true only for equal energies, it is
also approximately true for approximately equal energies. A small difference
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in energy between two modes should be considered a probably unreliable
detail of the numerical model, rather than something fundamental about the
system being studied. In practice, only a few of the lowest modes in a protein
are sufficiently well separated to merit an individual discussion, and even
that is not always the case. In all other cases, it is preferable to analyze the
coordinate subspace spanned by all modes in a certain range of timescales.

Asecond pitfall is placing too much importance on the frequency of a mode
obtained from a vibrational normal mode calculation. As discussed above, the
slow modes that are characteristic of a particular protein and often related to
its function show diffusional behavior on long timescales. Vibrational dynam-
ics occurs only inside a conformational substate for a short duration and is
rarely of interest. Vibrational normal mode analysis is thus useful mostly for
higher frequencies, for example, when comparing to spectroscopic measure-
ments. For assessing the time scales of slow motions, Brownian modes are
the appropriate approach.

A very useful approach in the analysis of normal modes is to turn attention
away from individual modes and toward the types of motion in the protein
that one would like to analyze. For example, one can ask the question: “Which
modes (and thus which energies and which time scales) are involved in the
rotation of this domain?” Or, turning to higher modes, “Which frequencies
are involved in helix bending motions?”

Such questions can be answered using projection methods [13], which are
based on an important mathematical property of normal modes: the normal
mode vectors ei (see Equation [1.6]), being the eigenvectors of a matrix, form
a basis of the 3N-dimensional configuration space of the protein. This means
that any vector d in configuration space, and thus any type of motion, can be
written as a superposition of normal mode vectors with suitable prefactors
pi, which are the projections of d onto mode i. Mathematically, the projections
are defined by

pi = d · ei (1.21)

and satisfy the relation

∑

i=1

3Np2
i = 1 (1.22)

because the normal mode vectors form a basis of configuration space. It
is therefore possible to interpret p2

i as the contribution of mode i (and its
associated energy and time scales) to the motion described by d.

Many interesting types of motion are described by more than one degree of
freedom. For example, the rigid-body translation of a helix has three degrees
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of freedom, one for each independent direction in 3D-space:

dx =






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(1.23)

The nonzero entries in these vectors correspond to the atoms that make up
the helix. For the case of M vectors (in this example we have M = 3), the
projections are defined as

pi =
1√
M

M
∑

k=1

dk · ei (1.24)

such that the sum of p2
i is again 1, and pi can again be interpreted as the quant-

itative contribution of mode i to the motion under consideration. Aconvenient
graphical representation is a plot of

Ck =
k

∑

i=6

p2
i , k = 1, . . . , 3N (1.25)

against k, ωk (for vibrational modes), or λ̂k (for Brownian modes). This yields
a curve that increases from 0 to 1, with the steepest increase in the time scales
that contribute most to the type of motion being studied.

An example for such an analysis is shown in Figure 1.5. It is taken from a nor-
mal mode study of the dynamics and conformational changes of Ca-ATPase
[14] and shows how helix translations and rotations are distributed over
the normal modes. In particular, it shows that different helices move on
different timescales, and also that some helices have a wider time scale spec-
trum than others. In the case of Ca-ATPase, the helices near the A domain
are characterized by longer timescales and larger amplitudes than the other
helices. No explicit time scales were obtained in this calculation, but this
would have been possible by performing a Brownian mode analysis (see
Section 1.3.2).
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FIGURE 1.5
The cumulative projectionsCk (see Equation [1.25]) of rigid-body translations (a) and rotations (b)
of the transmembrane helices in Ca-ATPase onto the normal modes. Only translations along and
rotations around the helix axes were taken into account. The plot shows the different timescales
and amplitudes that characterize the motions of the different helices.

1.5 Conclusion

The goal of this chapter is to give an overview of the harmonic models and
normal mode techniques that are used in studying the behavior of proteins.
Any such overview is necessarily incomplete, and this chapter is no exception.
Quasi-harmonic analysis, which derives a force constant matrix from thermo-
dynamic calculations obtained from an MD trajectory, was left out because it
is a technique for analyzing trajectories rather than an independent method.
Normal mode calculations on continuous deformable media models were left
out as well, because they are of interest mainly to the community of electron
microscopists. Other rather specialized techniques have not been mentioned
either. Finally, the actual numerical algorithms that are useful for identify-
ing normal modes were not covered because they are either straightforward
textbook algorithms (for sufficiently small systems) or specialized techniques
discussed in Chapters 17 and 18. As for applications, the possibilities are
numerous and the reader can find ample inspiration in the other chapters of
this book.
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