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Electrostatic interactions in periodic Coulomb and dipolar systems

B. Cichocki: B. U. Felderhof, and K. Hinsen
lnstitutfiir Thearetische Physik A, Rheinisch- Westfiilische Technische Hachschule Aachen, femplergraben 55,

5100 Aachen, Federal Republic afGermany
(Received 7 December 1988)

We present a new method for calculating electrostatic interactions in periodic systems with
charged or dipolar particles. The method is appreciably faster than the Ewald summation method
used until now in computer simulations of ionic and dipolar systems. The method may also be used
for calculating the periodic crystal field in solids.

I. INTRODUCTION

For systems of charged particles, such as ionic solu-
tions, plasmas, and fused salts, and for systems of dipolar
particles, such as polar liquids, the long range of the in-
teractions causes severe problems. In computer simula-
tions one usually prefers to use periodic boundary condi-
tions, and this is difficult to combine with the long-range
Coulomb or dipolar interaction.! -3 Some attempts have
been made to simulate systems in finite geometry,4 but it
must be feared that in such situations surface effects are
difficult to overcome. In simulations with periodic
boundary conditions several methods have been em-
ployed, the main ones being spherical truncation of the
interaction, possibly in combination with a reaction
field,s and the method of Ewald summation. 6,7 In this ar-
ticle we propose a new scheme which in our opinion su-
persedes existing methods.

A prime condition for a successful simulation of sys-
tems with long-range interactions is a clear physical pic-
ture which permits a Hamiltonian formulation. Maxwell
theory allows a transparent description on the macro-
scopic length scale of large, but finite samples. Thus we
follow earlier work by de Leeuw et al.7 and by FelderhorB
in which periodic systems of finite extent are considered
and Maxwell theory is used for a calculation of the mac-
roscopic field which pervades the system in addition to
the periodic microscopic field. Such an approach allows
a simple derivation of macroscopic fluctuation theorems
and opens the way for a proper statistical-mechanical
treatment, including a discussion of the thermodynamic
limit. 9

Reaction field methods have also met with some suc-
cess, 10,II but the statistical-mechanical treatment and
macroscopic considerations are less straightforward. The
inherent difficulties have been discussed in some detail by
de Leeuw et al.2 In our view the method of finite periodic
systems is to be preferred.

Ladd 12has proposed a method for evaluating the elec-
trostatic energy of a periodic polar system by use of a
multipole expansion of the interaction of a molecule with
those outside its cell of nearest images. He investigated
the lowest-order contributions to the potential energy.

In a large, but finite sample of periodically repeated
cells the electrostatic potential is well approximated by

the sum of a macroscopic Maxwell potential, calculated
from Maxwell's equations, and a periodic crystal poten-
tial. If the shape of the sample is ellipsoidal, then the
macroscopic Maxwell field is uniform and linear in the
applied field and the polarization. The periodic crystal
potential may be constructed as a sum of Wigner poten-
tials, the latter being defined as the electrostatic potential
of a Wigner crystal consisting of a periodic cubic array of
identical point charges embedded in a neutralizing back-
ground.13 We show that the electrostatic interactions be-
tween particles may be expressed in terms of the Wigner
potential.

We present a method by which the Wigner potential
may be calculated quickly and accurately. The calcula-
tion is based on an expansion of the potential in harmonic
polynomials about suitably chosen points in the unit cell
of a simple cubic lattice. The coefficients of the expan-
sions may be evaluated once and for all by Ewald summa-
tion. A diskette with numerical values of the coefficients
is available from the authors upon request. Together
with the theory presented here this should allow easy for-
mulation of a computer algorithm. We have tested the
method in a calculation of the dielectric constant of a
nonpolar liquid. The results will be published elsewhere.

In the following we assume a simple cubic lattice, as is
usually employed in computer simulations. The theory
may be extended to general Bravais lattices and provides
a method for calculating the crystal potential in solids.

II. IONIC CRYSTALS OF FINITE SIZE

We consider a cube with sides L and volume V=L3
centered at the origin. The cube contains N charges

el"" ,eN situated at positions RI"" ,RN. We assume
charge neutrality

N
~ ej=O.

j=1

Hence the total dipole moment

(2.1)

N

M= ~ ejRj
j =1

is independent of the choice of origin. As a consequence,
if the cube is located in vacuum, the electrostatic poten-
tial 4>

v( r), which is the solution of Poisson's equation

(2.2)
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N
V24>v=-41T ~ e/~)(r-Rj)'

j=1

has asymptotic behavior

(2.3)

M'r4>v(r)::::;
--:3

for r »L .
r

(2.4)

Next we consider simple cubic crystals built out of
periodically repeated unit cells as described above. For
any large simply connected volume n we may find the
crystal of maximum size which just fits inside n. This
single crystal consists of N( n, L ) elementary cubes. The
total number of charges is NN and the system has total
dipole moment .M.=.NM. The origin is chosen to be in
the center of the central cube. We denote the central
cube as C (L). For r »NL the electrostatic potential
4>(r) has the behavior (2.4) with M replaced by the total
dipole moment.M.. We denote the crenellated single crys-
tal constructed above as C(n,L).

For the sake of generality we replace the vacuum out-
side n by a uniform medium with dielectric constant E'.
We denote the complete geometry obtained in this
manner as C(n,L,E'). At asymptotic distance the poten-
tial is a reduced dipole potential. The electrostatic poten-
tial inside n depends on the detailed positions of the
charges and is influenced by image or reaction field
effects.

In the case where n is a sphere the electrostatic poten-
tial 4>(r,E') may be found exactly everywhere in space by
use of the image method. However, this knowledge is of
no practical use when nand N are large. In general, for
sufficiently large bodies the potential inside n is well ap-
proximated by the sum of a macroscopic Maxwell poten-
tial 4>M(r,n,E') and a periodic crystal potential 4>c(r,L),

(2.5)

From a macroscopic point of view, i.e., when averaging
over a length scale large compared with L, we deal with a
neutral, uniformly polarized body with dielectric con-
stant I surrounded by a medium with dielectric constant
E'. The uniform polarization is given by P=MIV. The
Maxwell potential

4> M(r, n, E') is defined as the solution of

Maxwell's equations of electrostatics for this macroscopic
geometry. The crystal potential 4>c(r,L) has the periodi-
city of the lattice and accounts for the detailed positions
of the charges. We allow a uniform applied electric field
Eo which is included in the Maxwell potential. Hence at
large distances from n the Maxwell field is given by

.M.'.r4>M(r,n,E')::::; -Eo'r+~
'E'r

where ,M' is the external dipole moment. Outside n the
crystal potential

4>c continues to a constant which is not
relevant for our purposes and which we leave undeter-
mined. In the thermodynamic limit n-.. 00 the relation
(2.5) yields the exact potential in the bulk of the body.
Clearly, the limiting potential depends on sample shape
via the Maxwell term.

We consider in particular an ellipsoidal volume n. In
that case the Maxwell potential 4>M(r,n,E') may be found
exactly. We choose coordinate axes along the principal

(2.6)

axes of the ellipsoid. The Maxwell field inside the ellip-
soid is spatially uniform and has components 14

E'E -41Tn(alp
EMa(n,E')=

Oa ()a (a=x,y,z),
E' + ( I - E')n a

where n (x), n (Y), n
(z)

are the depolarization coefficients of
the ellipsoid. For a sphere nixl=n(Y)=n(z)=t. The
Maxwell potential inside the ellipsoid is given by

(2.7)

(2.8)

The considerations of this section may be extended to
crystals built out of unit cells which are not cubic. Any
Bravais lattice with basis vectors ai' a2' a3 may be used.
In the sequel we restrict ourselves to cubic cells.

III. CRYSTAL POTENTIAL

In this section we study the crystal potential 4>c(r,L)
introduced in (2.5) in more detail. By definition

4>c
(r,L)

is a solution of Poisson's equation which is periodic in the
infinite lattice of cubic cells. In the basic unit cell 4>c(r,L)
satisfies

N
V24>c(r,L)= -41T ~ e/)(r-Rj)' rE C(L) .

j=1

(3.1)

On account of periodicity the crystal potential satisfies
the boundary condition y'V4>c =0 at the cell surface,
where y is the normal to the boundary. Clearly,
Poisson's equation (3.1) and the periodic boundary condi-
tions determine 4>c

(r,L) up to an additive constant.
We may find an explicit expression for the crystal po-

tential 4>c(r,L) by relating it to the potential of a Wigner
solid.12 Thus we consider a simple cubic lattice with a
charge e at the center of each cube and with a neutraliz-
ing uniform background with charge density T= -e IV.
The cells may be indicated by the lattice vectors n, where

nx' ny, nz are integers. The charges are at positions nL.
The basic cube C (L) has the lattice point n = 0 at its
center. By definition the Wigner potential is periodic
throughout the lattice. In the basic cube it is given
by1S,16

A. ( L) -
r

l + 21TL -32
'l'W

r, -e -; 3 r

[ ]

1/2

+ ~L-I-I ~
1>0 2/+1

m

X Aim rlYlm (e,<p)
],

rEC(L)

(3.2)

where the second term arises from the neutralizing back-
ground, and where Ylm (e, <p) is a spherical harmonic.
The coefficients Aim must be such that the potential has
the lattice symmetry. As a consequence only even values
of I occur and the azimuthal quantum number m must be
a multiple of four. Furthermore A 20=0. The appropri-
ate linear combinations are the fully symmetric kubic
harmonics Kla(r) first introduced by Yon der Lage and
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Bethe.17 In addition, the coefficients must be chosen such
that y'V4>w=O at the cell boundary. Nijboer and de
WettelS have derived rapidly converging lattice sums for
the coefficients Aim'

By the requirement of periodicity the Wigner potential
is determined up to a constant and we have made a
definite choice in (3.2). Alternatively the potential may
be defined as a sum of Coulomb potentials from point
charges e placed at the lattice positions. Different values
for the constant have been obtained depending on how
the conditionally convergent lattice sum is performed. A
detailed discussion of this point has been given by de
Wette,19 Ihm and Cohen,20 and recently by Nijboer and
RuijgrokY The constant appears naturally in the calcu-
lation of the electrostatic energy of a Wigner solid. Of
course, the energy has a unique value.

We write the Wigner potential in the form

(3.3)

where the dimensionless potential w (x) is defined for a
simple cubic lattice with lattice distance unity. In later
sections we shall make a detailed study of this basic func-
tion.

The crystal potential 4>c(r,L) may now be written

I N
4>c(r,L)=L

j~l
ejw«r-Rj)IL).

This potential is clearly periodic. Note that an additive
constant proportional to e in (3.2) would drop out in (3.4)
on account of charge neutrality. The potential satisfies
the Poisson equation (3.1), since ~j Tj =0.

de Wette and NijboerlS have proposed a different ex-
pression for the lattice potential. However, in their ex-
pression new lattice sums must be evaluated dependent
on the positions of the charges in the unit cell. The ad-
vantage of (3.4) is that only the basic function w(x) is re-
quired.

(3.4)

IV. ELECTROSTATIC ENERGY

In this section we consider the electrostatic energy for
the geometry C(n,L,E') in the case where n is an ellip-
soid. We approximate the potential by the expression
(2.5). The Maxwell potential, given by (2.8), may be writ-
ten as a sum of two terms

4>M(r,n,E') =4>~(r, n,E') +4>~(r, n,E') (4.1)

corresponding to the decomposition (2.7). We define the
crystal potential acting on charge j in the basic cell by

e.
4>~j(r,L)=4>c(r,L)-

Ir-JRjl
.

Here we have subtracted the self-term. The electrostatic
energy of the whole system is then given by

N
UNW,L,E')= ~ ~ ej[ t4>~j(Rj,L)

nECW,LI j=1

(4.2)

+t4>~(Rnj,n,E' )

+4>~(Rnj,n,E')] , (4.3)

where Rnj is the position of charge j in cell n. By use of
(2.2) and (2.8) we find that there is an equal contribution
from each cubic cell, so that

UNW,L,E')=,NUW,L,E') , (4.4)

with an energy per cell
N

UW,L,E')=+ ~ ej4>~j(Rj,L)-+M'E~W,E')
j=1

-M'E~W,E') . (4.5)

It follows from (2.7) that the second term is quadratic in
the dipole moment M, whereas the third term is linear.

In particular, for the case of a sphere we put n =S and
obtain for the two contributions in (2.7)

E o (S '
) -

3E' EM , E -
2E' + I 0'

p , _ 41T MEM(S,E )--
2E'+1 V'

In that case the energy per cell is given by

U(S,L,E')=+
j~1

ej4>~j(Rj,LH
2E:: I

~2

(4.6)

_ 3E'

2E' + 1M' Eo . (4.7)

We now have constructed a system with periodic
boundary conditions with an electrostatic energy ex-
pressed in terms of the charges and positions of the parti-
cles in the basic unit cell. This may be used as a contri-
bution to the potential energy of a many-particle system
in a molecular-dynamics or Monte Carlo simulation. The
possibility of varying the potential through the choice of
ellipsoidal shape, the outside dielectric constant E', and
the applied electric field Eo permits selection of a suitable
situation. Macroscopic arguments from thermodynamic
fluctuation theory and Maxwell theory may be employed
in this selection. For example, putting Eo= 0 and E'= 00 ,
one finds from (2.7) that the Maxwell field vanishes and
the last two terms in (4.5) and (4.7) drop out. In this case
fluctuation theorems become particularly simple.

The first term in (4.5) is independent of the shape of the
macroscopic sample. It may be expressed as a sum of
pair interactions. Substituting (3.4) and using (3.2) and
(4.1), we find

+ i ej4>~j(Rj,L)=1 ~ ejekw«Rj-Rk)IL). (4.8)
j=1 2 }7ck

This shows that the crystal potential of the Wigner solid
plays the role of pair interaction in periodic Coulomb sys-
tems.

V. DIPOLAR SYSTEMS

Dipolar systems may be treated as a special case of the
ionic systems discussed in the preceding sections. In di-
polar systems we deal with pairs of charges of opposite
sign linked together at an infinitesimal distance. We
slightly change notation and consider N permanent
dipole moments 1£1"" ,I£N situated at positions
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RI, . . . , RN in the basic cell.
the basic cell becomes

N
M= ~ I£j .

j=1

We again consider the geometry C (n, L , E') for the case
where n is an ellipsoid.

We define the crystal field acting on dipole moment j in
the basic cell by

The total dipole moment of

(5.1)

E~/r,L)= -V4>c(r,L)

(r-R. )21-3(r-R. Hr-R.)J J J
+

I 1
5 'fl.j .

r-Rj

Here we have subtracted a self-term for dipole moment j.
The crystal potential 4>c(r,L) is found in analogy to (3.1)
from the Poisson equation

(5.2)

N
V24>c(r,L )=41T ~ fl.k .V8(r- Rk), rEC(L)

k =1
(5.3)

with periodic boundary conditions. In analogy to (3.4),
the solution is given by

I N
4>c(r,L)=-L 2fl.k'Vw«r-Rk)IL).

k=1
(5.4)

By comparison with (3.2) and (3.3) we therefore find that
at r=Rj

E~j(Rj,L)= 41T3fl.j +
L
I

2 fl.k 'Vj Vjw( (Rj - Rk )IL) .
3L kifj

(5.5)

The first term is a self-term due to the periodic images of
dipole moment j. We may rewrite (5.5) in the form

E~j(Rj,L)= 41T3M + ~ T w(Rj - Rk )'fl.k ,
3L kfj

(5.6)

where the Wigner dipole tensor in the second term is
given by

Tw(r)=L -IVVw(rIL)- 41T3I
3L

(5.7)

Here the last term cancels precisely against the second
derivative of the second term in (3.2). The total field act-
ing on dipole moment j in the basic cell is given by

(5.8)

where the first term is given by (2.7). For E' = I and a
spherical sample this takes the simple form

Ej(S,L, l)=Eo+ ~ T w(Rj - Rk )'fl.k .
k'i. j

(5.9)

In this special case there is no self-contribution.
For an ellipsoidal sample the electrostatic energy of the

dipolar system is again a sum of equal contributions from
the separate cubic cells, so that we may write the energy
as in (4.4). The energy per cel1 is given by

N
UW,L,E')= -+ ~ fl.j'E~j(Rj,L)-+M'E~W,E')

j=1

-M'E~(il,E') . (5.10)

This expression for the energy is essentially identical to
that derived earlier by one of US.8 In the previous article
the acting crystal field was called the Ewald inner field.
We abandon that nomenclature here, since the crystal
field need not necessarily be calculated by Ewald's
method. In the earlier articleS the crystal field was not
given explicitly.

The first term in (5.10) is independent of the shape of
the sample. It may be expressed as a sum of pair interac-
tions in analogy to (4.8). We find here by use of (5.6)

(5.11)

Substituting in (5.10) we find for the case of a sphere

U(S,L,E')=-+ ~ fl.j.Tw(Rj-Rk)'fl.k
j*k

41T E'-I M2 3E'
-3 2E'+1 V- 2E'+1

M'Eo.

The first term may be evaluated once the basic potential
w (x) is known.

(5.12)

VI. WIGNER POTENTIAL

In this section we study the basic potential function
w (x) in more detail. In Eq. (3.3) we have related w (x) to

the electrostatic potential of a Wigner solid.12 For lattice
distance unity and for unit charge the two quantities are
identical. We shall therefore simply call w (x) the Wigner

potential. In the literature22.23 the potential is sometimes
called the Ewald potential because it may be calculated
by use of Ewald lattice sums. However, on the one hand
Ewald's method is valid for more general models; on the
other hand it is not the only method by which the poten-
tial may be calculated. We prefer the name Wigner po-
tential, since it is uniquely associated with a Wigner crys-
tal consisting of an electron lattice embedded in a uni-
form neutralizing background.12

It follows from (3.1) and (3.2) that in the basic unit cell
the Wigner potential may be written

[ ]

1/2
41T I

21+1
Almr Ylm(8,<p),

I 21T 2w(r)=-+-r + ~
r 3 1>0

m

rEC(I) . (6.1)

Here the Ylm (8, <p) are spherical harmonics in the nota-
tion of Edmonds24 and we have chosen a convenient nor-
malization for the superposition coefficients A 1m' It has
been shown by de Wette and NijboerlS that each
coefficient Aim may be expressed as a lattice sum which
may be evaluated by the Ewald method.
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In (6.1) the potential is expanded about the origin,
where the unit charge is located. For our purposes it will
be convenient to also consider expansions about different
points in the unit cell. We denote coordinates defined
with respect to a chosen point RJ by rl =r- R1. We
show in the Appendix that the expansion of w (r) about a
point RI in the basic unit cell different from the origin is
given by

]

112
I41T _\fIlm(R)=

[ 21 + I ru ++)

(6.2)

where (rl,81,<Pl) are the polar coordinates of rl and
\film (R) is given by the Ewald sum

[ ~ru ++,1Tln- R12)ln - RI-I-1 Ylm (8n-R,'Pn-R)

+il1TI-1/2~' Inll-2exp(21Tin.R -1TlnI2)Ylm (8n,<Pn)
]

.

The first sum is over the real-space lattice, and the second
sum is over the reciprocal lattice with omission of the
term n=O. The coefficients Aim in (6.1) are given by

(6.4)

where the prime indicates that in the first sum in (6.3) the
term n = 0 must be omitted as well.

Clearly the sum in (6.2) converges only in a sphere cen-
tered at RI of radius R I' We obtain a more rapidly con-
verging sum by treating the potential from the nearest
lattice points separately. We shall consider special points
RI in the basic unit cell about which we expand the po-
tential. These are chosen such that many coefficients in
the expansion vanish by symmetry. It suffices to consider
the first octant of the basic unit cell, defined by the ine-
qualities O::Sx ::S+, O::Sy ::S+, and O::Sz ::S+. We call the

- . -
expansion (6.1) about the origin the A expansion. Simi-
larly there are three B expansions centered about
the three corners of the first octant B I = (+,0,0),

B2 =(0,+,0), and B3 =(0,0,+). There are three C expan-
- -

sions centered about the three corners C 1= (0, +, f),
C2 = (+,0, f), and C3 = (+, +,0). Finally there is one D ex-
pansion centered about the corner D = (+, +, +). We
denote coordinate vectors relative to each of these seven
corners by r' and the positons of the charges by n'.

The B expansions take the form

_ I 21T ,2w(r)- ~
I '- '1

+-
3

r
NN r n

(6.5)

where the first sum is over the lattice points nearest to
the B center. For example, for B 1= (+,0,0) the nearest
lattice points are (0,0,0) and (1,0,0). The number of terms
in the second sum may be minimized by choosing coordi-
nates x',y',z' such that the potential is symmetric under
inversion r' -.. - r' and the interchange x',y' y',x'.
Then only even values of I and values of m which are
multiples of four occur. For example, for B1 =(+,0,0)

(6.3)

the z' axis is taken in the positive x direction, the x' axis
is taken in the y direction, and the y' axis is taken in the z
direction.

The C expansions take the form

_ I 21T ,2w(r)- ~
I '- 'I

+-
3

r
NN r n

[ ]

1/2

+ ~ 2/4:1- Clmr,IYlm(8',<p') ,

rEC(1) (6.6)

where the first sum is over the lattice points nearest to
the C center. For example, for C 1= (0,+, +) the nearest
lattice points are (0,0,0), (0,1,0), (0,0,1), and (0,1,1). To
minimize the number of terms in the second sum the x',
y', and z' axes are chosen as above.

The D expansion takes the form

I 21T ,)
w(r)= ~ I '- 'I

+-
3

r-
NN r n

[ ]

1/2

+ ~ 2/4:1 Dlmr,IYlm(8',<p')
1m

rEC(I) (6.7)

where the first sum is over the eight lattice sites nearest
to D. In this case it is not necessary to rotate the axes.

It follows from (6.5)-(6.7) that the coefficients Boo,
Coo, and Doo are given by

Boo=w(BI )-4,

Coo=w(CI )-4V2 ,

Doo=wW)-16/V3,

where w(B1), w(CI), and w(D) may be evaluated by an
Ewald summation, as explained in Sec. VII. By compar-
ison of (6.2) and (6.5) for the point B 3 we find that the
coefficients B 1mfor I> 0 are given by

[ ]

1/2

Blm =\fIim(B3)- 2t: I ~
In,!'I-l YI~n(8n','Pn').

(6.8)

(6.9)



TABLE I. Table of coefficients Aim' Blm, Clm, and Dim as defined in (6.1), (6.5), (6.6), and (6.7).

m Aim Blm Clm Dim

0 0 0.000 000 0000 - 1.258 634 8255 -3.4020783016 -7.2022427976
2 0 0.000 000 0000 -0.9589795925 1.322988 5794 0.000 000 0000
4 0 3.1082266827 -0.7040569101 -0.3592213658 0.171 8047780
4 4 1.8575207277 1.164 502 6577 -0.0505753286 0.102672 9930
6 0 0.5733292894 1.3493322222 -0.8397029949 0.0073287913
6 4 - 1.072 600 8854 0.9679735193 -0.4873636202 -0.0137109131
8 0 3.2592930933 -0.5968315208 -0.0953548655 -0.0713093808
8 4 1.2256595032 -0.810 379 0941 -0.5165185628 -0.0268159438
8 8 1.8674436227 0.5915273908 -0.044 248 6756 -0.040 857 4021

10 0 1.009223 9881 -0.0500926226 0.208 323 5107 0.0067412457
10 4 -1.0169576183 0.1282059875 -0.2828084065 -0.0067929035
10 8 -1.2104216743 0.8393417583 0.046 109 2921 -0.0080851723
12 0 2.8912541083 0.403 068 5989 0.1447586191 -0.0042781638
12 4 0.8916802213 0.3257794828 -0.0033978318 -0.0058279130
12 8 1.0699741236 -0.200 118 3693 0.0760578581 0.004919 7960
12 12 1.5887797580 0.1895278766 -0.0068788937 -0.0039122739
14 0 1.1536367987 -0.2963449157 -0.0300769629 0.0014709727
14 4 - 0.848 339 9039 -0.3362747218 0.0979577582 -0.0010816965
14 8 -0.9103423018 -0.2676215265 0.105 855 1734 -0.0011607541
14 12 -1.1053666131 0.4768208425 -0.0009873432 -0.0014094246
16 0 2.7923562989 0.0527562980 -0.0651264296 0.000639 1092
16 4 0.8007193579 0.1082954025 0.055 8269227 -0.0001235872
16 8 0.8411315901 0.2571221571 0.0848074124 0.000351 4668
16 12 0.9479395892 0.104953 1998 -0.008578 8400 0.0005290829
16 16 1.500 584 7723 0.0765398444 0.000 5460670 0.0002202715
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More explicitly this reads

Rim = \{Iim(R3 )_21+1[1 +( - I )I]8mo . (6.10)

By comparison of (6.2) and (6.6) for the point C3 we find
for I > 0

Clm =\{Iim(C3)-

Similarly we find by comparing (6,2) and (6.7) for the
point D for I > 0

[ ]

1/2

Dim=\{Iim(D)- 2t: I ~
In'I-I-lY;:n(8n',<Pn') .

(6.12)

In the numerical evaluation of the expansions it is con-
venient to use the expressions for the spherical harmonics
in terms of Cartesian coordinates. These may be ob-
tained from the generating function given in Eq. (H-38) in
the monograph by Normand.2s Thus we write the expan-
sions (6.1), (6.5), (6.6), and (6.7) in the form

w(r)= ~ I
+

21T
r'2+

NN Ir'-n'l 3

(6.13)

where in the case of (6.1) the first sum is to be replaced by
llr. The second sum is a sum of solid spherical harmon-
ics of all orders I = 2( i + j + k). Explicit values for the

coefficients ajjk up to 1 = 14 for the four types of corners
of the first octant are listed on a diskette available from
the authors upon request. In Table I we list the values of
the coefficients Aim"'" Dim to an accuracy of ten de-
cimal places up to 1=16.

The advantage of our method is that the coefficients in
the series expansions (6.13) need be evaluated only once.
Using these coefficients one may evaluate the value of the
Wigner potential w (r) for any point in the first octant of
the basic unit cell quickly and with high accuracy. For
any given point one chooses the series expansion corre-
sponding to the nearest corner. By construction this ex-
pansion converges rapidly. Any point in the remainder
of the basic cell may be related to a point in the first oc-
tant by use of the cubic symmetry.

VII. COMPARISON WITH OTHER METHODS

Several methods of calculation of the Wigner potential
have been presented in the literature. In this section we
compare these methods with the one proposed above. To
introduce the other methods we note that an alternative
expression for the Wigner potential may be found by
solving Poisson's equation (3.1) by Fourier transforma-
tion. This yields

w(r)=.7+~~' In!-2exp(21rin'r) ,
1T n

(7. ])

where the constant takes the value .7=2.83729747948.
It was shown by Hasimot026 that the constant may be
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evaluated from the Ewald sum

r

erfc(alnl)
+ -Le -~n2/a2

]InI 1Tlnl2

(7.2)

in which

erfc(x)= 1-21T-I/2 fXe -t2dt
o

is the complementary error function. The parameter a
may be chosen to optimize convergence of the lattice
sums. With the choice a = V;' the above expression was
considered by Placzek et al.27 and by Nijboer.28 It has
been shown by Nijboer28 that the constant:; is related to
the electrostatic energy of the Wigner lattice. The factor
1.760 I 19 calculated for the simple cubic lattice by
Coldwell-Horsfall and Maradudin29 is related to :; by
1.760 119=(3/41T)1/3:;.

By Ewald's method the Wigner potential may also be
written as a sum of two contributions, the one a sum in
real space and the other a sum in reciprocal space. In the
notation of de Leeuw et al.7

(7.3)

(7.4)

where both 1/J(r) and £ may be expressed in terms of
Ewald lattice sums. The function 1/J(r) is given by

1/J(r)= ~ erfc(alr+nl)

n [r+nl

(7.5)

The constant £ is given by

1T
£=2-:; .

a

This shows by comparison with (7.4) that 1/J(r)also de-
pends on a. We note that

(7.6)

s-= lim [1/J(r)-lIr] .
r~O

(7.7)

The constants Boo, Coo, and Doo in (6.8) may be evaluated
from (7.4)-(7.6). The values are given in Table I.

We may write

(7.8)

where the first term

1/J
(r)=

erfc(ar)
1 r

(7.9)

is isotropic and the second term

1/J2(r)= ~
[

erfc(alr+nl)

n*O Ir+nl

+
~

Inl-2exp(21Tin'r-1T2InI2 la2)
]

(7.10)

is anisotropic. With the choice a = V;' the above decom-

position has been made by Brush et al.22 and by Han-
sen,23 apart from an additional -I in (7.9). As noted be-
fore, an additional constant in the potential does not
make any difference in the energy expressions (4.7) and
(5.11).

For numerical purposes Hansen23 approximates 1/J2(r)
by an expansion in kubic harmonics with coefficients
which are radial functions of Irl of a simple form chosen
such as to reproduce 1/J2( r) accurately at any point in the
basic cell. With his choice of functions the relative error
on the nonisotropic part of the potential is small (of the
order of I % or less) for all r. In absolute terms the po-
tential is calculated accurately to three of four decimal
digits. We have made a numerical comparison of
Hansen's method with ours. We find that if we use har-
monics up to 1=14 we need about the same amount of
computer time. At the center of the first octant, where
convergence is worst, we then find w (r)
accurate to seven decimal digits. At most other points
we find w(r) accurate to II decimal digits. For example,
at r=(0.3,0.3,0.3) we find w(r)=2.362032963950,
Hansen's method yields w(r)=2.364, and the exact value
calculated from (7.4) and (7.5) is w(r)=2.362 032 963 925.

It may be that for some calculations involving ionic
systems some inaccuracy in the potential may be tolerat-
ed. However, we have found that in dipolar systems,
where the second derivatives of the potential are needed,
the inaccuracy of the potential has disastrous conse-
quences, especially at the edges of the basic cell. For di-
polar systems an accurate calculation of the potential is
an absolute necessity. By taking second derivatives one
loses two decimal places of accuracy.

In the literature the expressions (7.4) and (7.5) have
been used with a large but finite value of a, such that in a
calculation using the minimum image convention only
one term of the first sum in (7.5) need be included. In nu-
merical calculations values of a between 4 and 6 have
been used. The advantage is that the remaining contribu-
tion to the total energy may be evaluated in Fourier
space. This leads to a single particle sum for each wave
vector, rather than a sum over pairs. We have found that
even for the total energy our method is more accurate for
the same amount of computer time. In other problems,
where the actual values of the potential w(r) or its
derivatives are needed, the Ewald sums in (7.5) are far too
time consuming.

The superiority of our method is due to the expansion
in solid spherical harmonics about judiciously chosen
points in the basic unit cell. This ensures that, even if the
expansion is broken off and a finite sum is used, the Pois-
son equation for w (r) is satisfied exactly at any point in
the basic cell different from the origin. This is not the
case for the Ewald sums in (7.5). In addition our method
involves only simple algebraic manipulations and the nu-
merical calculation may be easily vectorized.

VIII, DISCUSSION

We have developed a new method for calculating the
effective Coulomb potential in periodic ionic and dipolar
systems. The method allows fast and accurate ca1cula-
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tion of the interactions. We have tested the method in a
calculation of the dielectric constant of nonpolar liquids.
We shall report on this work separately.

Our method will be useful in computer simulations of
ionic and dipolar systems involving a large number of
particles in a unit cell, as well as in solid-state applica-
tions. As an example of an application in solid-state
theory we evaluate the Madelung constant of an NaCl
crystal. According to the prescriptions of Sec. II we
must choose a unit cell of vanishing total charge. Thus,
if a is the lattice distance of the NaCl crystal we choose a
cube with sides 2a centered about the origin containing
eight charges ::!::e of alternating sign at the points
(::!::ta,::!::ta,::!::ta). The dipole moment of the unit cell
vanishes, so that the energy per cell follows from (4.4)
and (4.7) with M =0. The energy per particle is aMe2 la,
where aM is the Madelung constant. From (4.7) we find

aM = tw( t, t,O)- tW(O,O,t)~ tw( t, t, t)

= -1. 747564 5946 . (8.1)

The separate contributions are, by use of (6.8) and Table
I,

w(O,0,t)=Boo+4=2.741365 1745 ,

w(t,t,O)=Coo +4V2=2.254 7759479 ,

w(t,t,t)=Doo+ 16IV3=2.035 3615094. (8.2)

For many applications in solid-state theory the crystal-
line structure will differ from the simple cubic lattice
studied in this article. The theory may be extended
without difficulty to general Bravais lattices.

In computer simulations it is necessary to use an ex-
pression for the energy which takes account of the long
range of the Coulomb interaction by including the
Maxwell field for a large ellipsoidal sample, as first point-
ed out by de Leeuw et al.7 and by Felderhof. 8 As dis-
cussed in Sec. IY, the possibility of including an applied
electric field and a dielectric constant E' of the outer
medium allows a flexibility which may be advantageously
used. In selecting a suitable expression for the energy one
may employ considerations from macroscopic Maxwell
theory and thermodynamic fluctuation theory.
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APPENDIX

In this appendix we discuss the derivation of the ex-
pansion (6.2) of the Wigner potential about an arbitrary
point RI in the basic unit cell different from the origin.

We begin by considering an arbitrary charge distribu-
tion per) in vacuum and decompose its potential into a
sum of two terms

(AI)

Here

(A2)

is the contribution from the charge density inside a
sphere of radius a about R!, and

(A3)

is the contribution from the charge density outside the
sphere. In the last expression we use the well-known ex-
panSIOn

(A4)

where rl =r- RI, r; =r' - RI, and r1 «r1 » is the lesser
(larger) of rl and r;. Using this expansion in (A3) we find
for rl < a

(AS)

with coefficients

(A6)

The integral may be decomposed according to the
method of Nijboer and de Wette.18 We write instead of
(A6)

<t>'m(RI,a )=<t>~;;(RI,a )+<t>~;;(RIH<t>~~(RI,a) ,

where the first term is given by the integral

YI~ W;,<p;)
,{

+ 1 'JI(r; )p(r' )dr' ,
rl

(A7)

<t>(1) ( R a)= J1m l' I
'1

>a

(A8)

(A9)

and the third term by

<t>(3)( R a ) =- J1m l'
,

'. <a

(AlO)

We leave <t>~;; and <t>~~ as they stand, but transform <t>~;;
into an integral over reciprocal space with the aid of
Parseval's theorem. We write

Ylm(8,<p)
Glm(r)= 1+1 [1-'JI(r)]

r
(All)

and define the Fourier transforms

(Al2)
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According to Parseval's theorem

<t>121( R ) =81T3 f G *
(k) fj{k)/k'R'dk1m 1 1m . (Al3)

The advantage of the decomposition (A 7) is that with a
proper choice of the function 'JI(r) the integrals in (AS)
and (A 13) may converge much more rapidly than the in-
tegral (A6).

We consider in particular the charge density of the
Wigner crystal with lattice distance unity

p(r)= ~ 8(r-n)-1 (AI4)
n

with the Fourier transform

fj{k)= ~'8(k-21Tn) .
n

(AI5)

We also choose

(AI6)

where rln,x) is the incomplete r function. Furthermore
we consider a point Rj in the basic unit cell and choose
a =R I -E, where E is infinitesimal. Then the integral in
(AS) yields for I > 0

(AI7)

The integral in (AI3) becomes

<t>j;!(R1)=S1T3~' Grm(21Tn)exp(21Tin'RI) .
n

(AI8)

From Eq. (AI3) of Nijboer and de WettelS we find

(AI9)

The integral in (A 10) vanishes for I > O. Combining the
above equations we find Eqs. (6.2) and (6.3). By consider-
ing in addition the potential 4>i(r,RI,R 1) and the 1=0
terms of the expansions we find

(A20)

where the value of :J is given below (7.1). The result
(A20) agrees with Hasimoto's26 expression (7.1).
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