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2 TTK Contributors

Abstract This software paper gives an overview of the features supported by the
Topology ToolKit (TTK), which is an open-source library for Topological Data
Analysis (TDA). TTK implements, in a generic and efficient way, a substantial
collection of reference algorithms in TDA. Since its initial public release in 2017,
both its user and developer bases have grown, resulting in a significant increase in the
number of supported features. In contrast to the original paper introducing TTK [32]
(which detailed the core algorithms and data structures of TTK), the purpose of this
software paper is to describe the list of features currently supported by TTK, ranging
from image segmentation tools to advanced topological analysis of high-dimensional
data, with concrete usage examples available on the TTK website [34].

Fig. 1 Extraction of the covalent and non-covalent interactions in a molecular system with TTK.
Covalent and hydrogen bonds are captured by the blue separatrices of the Morse-Smale complex,
and steric repulsion is captured by saddle connectors (green).

1 Introduction

Topological data analysis (TDA) [9, 26, 30] is a vibrant field of study at the cross
roads between mathematics and computer science, that suggests to look at complex
data under the perspective of its structure. In particular thanks to advanced concepts
such as Persistent Homology [9], TDAprovides theories and algorithms for themulti-
scale representation and analysis of the structural features of interest present in the
data. It has been shown to be particularly useful in a variety of fields, ranging from
machine learning [7] to geometry processing [38]. In scientific applications, TDA
is particularly effective for the analysis of large-scale data sets [13]. The Topology
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ToolKit (TTK) [32] is an open-source library for TDA that has been released in 2017
under the permissive BSD license. It features a generic, efficient, and substantial
collection of implementations of reference TDA algorithms. TTK is mostly written
in C++ (∼100k lines of code) to offer the best possible performances. To date,
11 institutions have contributed code to TTK, including 8 academic organizations
(CNRS, INRIA, Linkoping University, Sorbonne Universite, TU Kaiserslautern,
University of Arizona, University of Utah, Zuse Institute Berlin) and 3 companies
(Kitware, Total, Caboma). Since its initial release, TTK’s website has collected more
than 135k page-views, from more than 14k unique visitors, and its video tutorials
have collected more than 8.5k Youtube views. TTK is accessible to developers
through several APIs: C++, VTK/C++ or Python. For end users, TTK is directly
accessible in the form of a plugin for ParaView [1]. Data can be provided to TTK
in multiple forms: it can be sampled along 1D, 2D, or 3D regular grids, or 1D, 2D,
or 3D meshes (simplicial complexes). It can also be provided as point clouds of
arbitrary dimension.

The internal data structures and algorithms of TTK have already been presented
in its companion paper [32], its end-user features have not been formally presented,
other than in oral tutorials [12]. This software paper fills this gap by describing the
high-level features of TTK through a list of concrete examples. Note that although
the following examples will be discussed based on a usage of TTK with ParaView,
the entire discussion holds for all TTK’s APIs (C++, VTK/C++, Python) as each
TTK item in the presented ParaView pipelines (green box in the Pipeline Browser,
top left of each screenshot) represents an individual TTK object. We also note that
ParaView state files can be automatically exported to Python scripts. All the material
necessary to reproduce the examples presented in this paper (data, ParaView state
files, etc.) is available on the TTK website (section Tutorials [34]).

2 Scalar data

TTK suppports the computation of a large number of topological abstractions for
scalar data. Critical points [5] can be used to extract points of interest. Merge/contour
trees and Reeb graphs [15, 16, 17, 18] can be used to estimate skeletons and to
segment data along level sets. Persistence diagrams [9] can be used to visually
represent the population of points of interest (critical points) as well as their salience
(topological persistence). The Morse-Smale complex can be used to extract filament
structures in data. Typically, to explore the data at multiple scales, the persistence
diagram [9] is first computed to identify the main topological features present in the
data and to discard the irrelevant features that correspond to noise. To reflect this
noise removal on the original data, Topological Simplification [33] is implemented
in TTK. Then, any topological object mentioned above (critical point, merge/contour
tree, Reeb graph,Morse-Smale complex) computed after this data simplification step
will therefore be simplified, allowing multi-scale feature exploration.
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Fig. 2 Gallery of scalar data analysis. Top left: Typical persistence-driven analysis pipeline applied
to vortex tracking in computational fluid dynamics. Top right: Typical persistence-driven analysis
pipeline, combined with Morse complex computation for cell enumeration in confocal microscopy
(example reproduced from [9], page 217). Bottom left: Typical persistence-driven merge-tree based
segmentation applied to bone extraction in medical imaging. Bottom right: Skeleton estimation
from the Reeb graph [18] of a user designed harmonic field [39].

Note that TTK also offers functionalities to design harmonic scalar fields by
solving the Laplace equations subject to Dirichlet constraints [39] provided by the
user at key locations (typically at extremities of prominent shape features). TTK
also implements efficient algorithms [25, 28] for the estimation of distances between
Persistence diagrams (such as the Bottleneck and Wasserstein distances [9]).

Figure 2 provides typical usage examples illustrating classical topological data
analysis pipelines, where data is pre-simplified by preserving only themost persistent
features (highlighted in the corresponding persistence diagrams). This simplification
is combined with critical point extraction (top left) to extract the center of each
vortex in a computational fluid dynamic example. The simplification is combined
with the Morse complex (top right) to extract cells in confocal microscopy. In this
example, the segmentation is obtained by representing the manifold of each local
maximum with a distinct color. Data pre-simplification is combined with the merge
tree (bottom left) to extract bones in medical imaging. In particular, in this example,
the user segmented the regions corresponding to each arc of the split tree containing
a local maximum. Here the level of persistence has been tuned to maintain only the
five most persistent features (corresponding to the bones of the foot). Maintaining
more features (in this example, for a persistence threshold of 150) would precisely
segment the bones along each join, which further illustrates the potential for multi-
scale data exploration. The last example (bottom right) illustrates the scalar field
design capabilities of TTK (with harmonic fields) for skeleton extraction (with the
Reeb graph).
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Fig. 3 Gallery of bivariate scalar data analysis. Left: Continuous scatterplot (top) of the electron
density and reduced gradient of the ethane-diol molecule, some isosurfaces (bottom left) and fiber
surfaces [6, 21] (bottom right) corresponding to the curves of matching color in the scatterplot.
Right: Interactive continuous scatterplot peeling on fluid mechanics example (flow and curl magni-
tudes): a sheet of the simplified Reeb space [31] is selected by the user (orange), and its projection
is independently isolated in the scatterplot for further individual inspection.

3 Bivariate scalar data

TTK supports the computation of several topological abstractions for bivariate data
(where the data is characterized by two values defined at each vertex of the geo-
metrical domain). TTK provides a fast implementation of continuous scatterplots
[4], which can be interpreted as continuous histograms of bivariate data defined on
volumes. They are particularly useful to understand where and how volumetric data
projects to the data range. Fiber surfaces [6, 21] extend the notion of isosurfaces to
bivariate data and enable users to explore the regions in the volume corresponding
to features of interest segmented manually in the continuous scatterplot. The Ja-
cobi sets [8] are also implemented in TTK. They are the bivariate analog of critical
points (points where both gradients are colinear), and they enable the extraction of
filament structures in bivariate data. They correspond to folds of the volume when
projecting it to the plane according to the bivariate data. TTK also supports the fast
computation of Reeb spaces of bivariate data [31], which allows the peeling of the
continuous scatterplot in regions that do not self-overlap during the projection of the
volume induced by the bivariate data. These capabilities are illustrated in Figure 3.
In the left image, the user provides a few strokes on the main visual features of the
continuous scatterplot (colored curves, top), and the corresponding structures in 3D
are extracted as fiber surfaces (surfaces of matching colors, bottom). This feature
definition allows to capture subtle structures that are difficult to extract with the
isosurfaces of either of the two fields of the bivariate data (bottom left). In the right
image, the Reeb space segments the volume into regions that do not self-overlap
when projected onto the plane given the bivariate data. Such regions can be iso-
lated from the continutous scatterplot for further inspection. Furthermore, TTK also
provides heuristics for persistence-like simplification mechanisms on bivariate Reeb
spaces to enable multi-scale interactive exploration.
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Fig. 4 Mandatory critical points [14] (colored regions) on the starting vortex example. Two mem-
bers of the ensemble are shown, along with their persistence diagrams and their critical points in
the domain. These critical points correspond to the vortices forming behind the wing. The most
salient critical points land in the colored regions predicted by the algorithm. In this example,
mandatory critical points (colored regions) help estimate visually the geometrical variability that
can be expected in the locations of these vortices, given the uncertainty of the data.

4 Uncertain scalar data

TTK supports the analysis of uncertain data, where the data is given as two scalar
fields, representing the bounds of the interval of possible data values for each vertex of
the domain. From this representation, mandatory critical points [14] can be extracted
(Figure 4). These objects correspond to regions where the appearance of at least one
critical point is guaranteed for any realization of the uncertain data (i.e., for any
scalar field randomly generated from the input intervals). This topological analysis
enables, in practice, the estimation of the structures that always occur despite the
uncertainty as well as their geometrical variability. This construction can be used for
instance to analyze ensemble data sets, in conjunction with clustering techniques, as
illustrated by Favelier et al. [11].

5 Time-varying scalar data

TTK also provides several features for the analysis and visualization of time-varying
data. The trajectory of critical points through time can be trackedwith theWasserstein
matcher method introduced by Soler et al. [28]. This technique enables for instance
to represent the path taken by vortices in computational fluid dynamics (Figure 5,
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Fig. 5 Gallery of feature tracking in time-varying data. Left: critical point trajectory tracking with
the Wasserstein matcher [28] (the height denote the temporal component). Right: Nested tracking
graph [23] (viscous fingering data).

left). In addition, TTK supports the visualization and analysis of the topological
evolution through time of features of interest, with the notion of nested tracking
graphs [23] (Figure 5, right), which enables, in particular, the representation of the
temporal evolution of nested structures (e.g., sub-level sets for distinct isovalues).

Fig. 6 Examples of topological analysis of high-dimensional point cloud data. Left: Persistence-
driven clustering [7] of the “mfeat” data set (64 dimensions). The data is first projected to 2D with
the t-SNE method (available from TTK’s integration of scikit-learn [27]). Point colors indicate the
ground-truth classification, whereas the clustering computed by TTK is reported by the background
color (cells of the Morse complex). Right: Persistence-driven clustering [7] and beyond, on a toy
point cloud example. In addition to the extraction of the correct clusters, TTK can also extract
generators of the first homology group (1-dimensional cycles) with looping separatrices connecting
saddles to maxima of density estimation (Gaussian kernel).

6 High-dimensional point cloud data

TTK recently integrated the popular package scikit-learn [27], leveraging in par-
ticular its dimension reduction capabilities: Principal Component Analysis, Spec-
tral Embedding, Locally Linear Embedding, Isomap, Multi-Dimensional Scaling,
t-distributed Stochastic Neighbor Embedding. Then, high-dimensional point cloud
data (typically in the form of a CSV file) can be processed by TTK. Typically, the
data is first projected to 2D or 3D with one of the above dimension reduction meth-
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ods (Figure 6). Next, a density estimation (e.g., Gaussian kernel) is performed on a
regular grid to describe the projection of the input point cloud (Figure 6, top right).
From this point, any tool of the TTK arsenal can be employed to further analyze,
visualize, and explore the data. For instance, persistence-driven clustering [7] can
easily be deployed with TTK. The k most persistent features can be selected from the
persistence diagram (Figure 6) to drive a pre-simplification of the data, in order to
control the number of clusters (where k is the number of desired clusters). Note that,
in practice, a relevant value of k can often be visually inferred from the flat plateaus
of the persistence curve (see Figure 2, top left), similarly to the notion of eigen gap
[24] in spectral clustering. Next, the Morse complex can be extracted to isolate each
basin of attraction of each of the k remaining maxima (Figure 6, bottom right, where
two clusters are extracted, corresponding to the two rings present in the data). The
final clustering can be projected from the cells of the Morse complex to the input
point cloud with TTK’s generic interpolator. Note that TTK enables topological
explorations that go beyond simple clustering, such as the extraction of generators of
homology groups, as illustrated in Figure 6 (bottom, right), where looping separatri-
ces linking saddles to maxima are used to extract such generators, hence conveying
to the user additional information about the internal structure of each cluster. The
left example of Figure 6 further illustrates the clustering capabilities of TTK on the
mfeat data set (64 dimensions, 2000 points). The ground-truth classification is given
by the colors on the points, whereas the non-supervised classification obtained from
the topological clustering is given by the background color (one color per cell of
the Morse complex). This example nicely illustrates how TTK can effectively help
visualize the intrinsic structure of high-dimensional data.

7 In situ topological analysis

Fig. 7 Examples of in situ data reduction with TTK. Left: View-based surface approximation [22]
(top: ground-truth, bottom: approximation). Right: Topology-controlled lossy compression [29].

TTKcan be efficiently run in situ (i.e., directly from a simulation source codewith-
out storing data to disk) using the Catalyst API [3]. TTK’s website reports a complete
tutorial [36] with the open-source fluid mechanic simulation code Code_Saturne
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[10], where TDA capabilities are run on the file, without data storage, after each
computation of a simulation time step.

In addition, TTK offers lossy compression and data reduction tools, to allow
the in situ storage of reduced information. In particular, regular grid data can be
saved in the TTK file format (*.ttk), which implements the topologically controlled
compression framework by Soler et al. [29]. This framework enables to compress data
in a lossy way while guaranteeing the exact preservation of the persistence diagrams
of the most salient features. This methodology guarantees, in practice, that any
topological analysis run on the compressed data is faithful to the original data. TTK
also implements the award-winning image-based geometry approximation method
by Lukasczyk et al. [22]. Additionally, TTK implements the latest specification of
Cinema databases [2], which enables users to interactively explore large ensembles
of data sets stored as Cinema databases and to apply specific analysis pipelines to
selections ofmembers, expressedwith SQLqueries on themeta-data of themembers.

8 Convenience

Fig. 8 Example of convenience TTK module: check for manifold-ness on several simplicial com-
plexes. Non-manifold vertices, edges and triangles are reported in green, white, and blue respec-
tively.

Finally, TTK provides a number of features that make its deployment more con-
venient for users, including generic data interpolators (interpolating data from any
type of object onto any type of object), convertors, mesh processing, and analysis
(subdivision, point merging, manifold checks, Figure 8, etc.).
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Fig. 9 Integration of TTK in a software ecosystem other than VTK/ParaView: Inviwo [20], a
software framework for the rapid prototyping of visualizations, written in C++ and exploiting
modern graphics hardware. This example shows the topological analysis with the Morse-Smale
complex (with persistence-driven data pre-simplification) of charge densities in iron oxide [19].

9 Conclusion and perspectives

This paper presented a brief overview of the main end-user features available in the
Topology ToolKit (TTK) along with example application scenarios. The material
that is necessary to reproduce these examples is available on the TTK website [34].
The data analysis pipelines presented in this paper can be easily reproduced with
ParaView, with Python scripts (ParaView supports the automatic export of analysis
pipelines to Python scripts), with VTK or direct C++ code. The examples illustrated
in this paper ranged from basic image segmentation capabilities to the advanced
topological analysis of high-dimensional point cloud data. We refer the reader to
TTK’s online user forum for further discussions and usage examples [35].

In the future, we are looking forward to further extending TTK’s developer and
user communities. We see TTK as an opportunity to grow as a community by
federating our software engineering efforts, to make our research more accessible,
reproducible and visible to others. In that regard, we warmly welcome contributors
with experience in vector and tensor data analysis. We will also work toward the
improved integration of TTK in third-party data analysis and visualization tools, as
done, for example, in collaborationwith the Inviwo [20] development team (Figure 9).
Future directions of development of TTK include an improved support for statistical
tasks based on topological data representations as well as an improved integration
of TTK on supercomputers. Such improvements will be conducted, in particular, in
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the context of the VESTEC project [37], which focuses on novel supercomputing
methodologies for urgent decision making, and for which TTK is one of the core
software technologies.
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