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Abstract
This paper presents, to the best of our knowledge, the first parallel algorithm for the computation of the aug-
mented Reeb graph of piecewise linear scalar data. Such augmented Reeb graphs have a wide range of applica-
tions, including contour seeding and feature based segmentation. Our approach targets shared-memory multi-core
workstations. For this, it completely revisits the optimal, but sequential, Reeb graph algorithm, which is capable
of handing data in arbitrary dimension and with optimal time complexity. We take advantage of Fibonacci heaps
to exploit the ST-Tree data structure through independent local propagations, while maintaining the optimal,
linearithmic time complexity of the sequential reference algorithm. These independent propagations can be ex-
pressed using OpenMP tasks, hence benefiting in parallel from the dynamic load balancing of the task runtime
while enabling us to increase the parallelism degree thanks to a dual sweep. We present performance results on
triangulated surfaces and tetrahedral meshes. We provide comparisons to related work and show that our new
algorithm results in superior time performance in practice, both in sequential and in parallel. An open-source
C++ implementation is provided for reproducibility.

1. Introduction
The current growth in size and complexity of modern sci-
entific data motivates the design of advanced data analysis
techniques, in order to support interactive data exploration.
For this purpose, topological methods [EH09, PTHT10,
HLH∗16] have now established themselves as key tools for
the concise representation of the features of interest present
in the data. In that context, notorious topological constructs
include merge trees [BWT∗11,SM17], contour trees [BR63,
CSA00], Reeb graphs [Ree46, SKK91, PSBM07, BGSF08,
TGSP09], or Morse-Smale complexes [DFFIM15]. These
fundamental topology-based data structures enable a wide
range of data analysis and visualization capabilities (go-
ing from feature representation [vKvOB∗97, WBP07, TP12,
SPCT18a, SPCT18b] to remeshing [VDL∗17, TDN∗12] or
rendering [WDC∗07]), which have been used and docu-
mented in a variety of scientific applications [BWT∗11,
COH∗13, FGT16, GABCG∗14, RWS∗17].

Recently, the computational efficiency of topological data
analysis techniques started to be challenged by the ever-
increasing size and resolution of scientific data, although
the individual computational power of CPU cores stagnated
since the mid-2000s. This imbalance motivates the design of
parallel versions of the existing algorithms of the topological
data analysis arsenal. However, such a parallelization is chal-

lenging as most existing techniques are sequential in essence
as they rely on global manipulations of the input data.

For the merge and contour trees, which are fundamental
topology-based data structures in scalar field visualization,
efficient algorithms have been proposed for their parallel
computation [GFJT16, CWSA16, SM17, GFJT17, GFJT19].
Among those, some algorithms [GFJT16, GFJT17, GFJT19]
even support the computation of augmented data-structures
(i.e. where the arcs of the output trees are augmented with
regular vertices). Such an augmentation is required to en-
able the full extent of applications of these tools, such as
data segmentation or level set seeding for instance.

Regarding the Reeb graph [Ree46], which is a gener-
alization of the contour tree to non-simply connected do-
mains, which can potentially contain loops and which is,
because of this, notoriously more challenging to compute,
only one algorithm has been proposed for its parallel com-
putation [HR18] and only for triangulated surfaces. To the
best of our knowledge, no parallel algorithm exists for the
computation of augmented Reeb graphs.

In this paper, we address this problem and introduce a
novel algorithm for the fast computation of augmented Reeb
graphs of piecewise linear scalar data. Such augmented Reeb
graphs are generic and have a wide range of applications.
This work shifts to the problem of Reeb graph computation
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an overall strategy based on local propagations that we re-
cently introduced for the problems of merge [GFJT17] and
contour [GFJT19] tree computation. In particular, given that
strategy, we detail how to revisit the optimal, but sequen-
tial, Reeb graph algorithm [Par13], which is capable of han-
dling data in arbitrary dimension and with optimal time com-
plexity. We detail in the present paper the modifications of
the local propagation strategy that were required to shift to
the Reeb graph problem, as well as original contributions
specific to the Reeb graph computation. Specifically, our
method re-formulates Reeb graph computation as a set of
local tasks that are as independent as possible and that rely
on Fibonacci heaps. This results in a parallel algorithm with
the same optimal time complexity than the sequential refer-
ence one. Our implementation provides superior time per-
formance in practice, in sequential as well as in parallel on
shared-memory multi-core CPUs thanks to the OpenMP task
runtime. We also provide an open-source C++ reference im-
plementation of our approach for reproduction purposes.

1.1. Related work
The Reeb graph, a graph that contracts connected compo-
nents of level sets on manifolds to points (Sec. 2.1), can be
computed using several sequential algorithms. The first ap-
proach [SKK91] which has been proposed is based on a sys-
tematic cut of the mesh on all vertices. Since then, new cut-
based approaches [PSF08,TGSP09,DN13,DN12] have been
introduced, cutting the mesh only at specific vertices. A con-
tour tree algorithm [CSA00] or a local propagation is typi-
cally used on the temporarily cut mesh. A final step stitches
the mesh back on each cut in order to obtain the final Reeb
graph. Because of the cuts, whose number and sizes are both
proportional to the number of simplices in the input mesh,
these approaches have a quadratic worst case complexity.

Furthermore, in 2007 was introduced an on-line algo-
rithm [PSBM07] for Reeb graphs computations. This ap-
proach is able to operate in a streaming way, by processing
the simplices of the 2-skeleton of the input mesh (its vertices,
edges and triangles) in arbitrary order. A separate graph is
used to reflect the neighborhood of the input simplices so
when a new simplex is encountered the Reeb graph is up-
dated locally to take this new simplex into account. When all
simplices have been visited, the Reeb graph is complete. The
final complexity of this algorithm is O(|σ0| × |σ1|), where
|σ0| and |σ1| are respectively the numbers of vertices and
edges of the input mesh.

The first algorithm [CMEH∗03] to compute the Reeb
graph using an ordered sweep of the data (similarly to merge
tree algorithms) has been introduced in 2003. Using a sweep
on the data set while explicitly maintaining the level set com-
ponents, this approach only supports 2D data sets (data de-
fined on triangulated surfaces). In 2009 was introduced an-
other method [DN09], using a similar sweep for the mesh
traversal as well as a dynamic graph data structure to main-
tain the level set components. This approach also works with
3D data sets (data defined on tetrahedral meshes). Parsa im-

proved this work in 2013 [Par13] and presented the first al-
gorithm able to compute the Reeb graph in any dimension
with an optimal time complexity of O(m logm) steps where
m is the size of the 2-skeleton (see Sec. 2.2). This approach
is the basis of the new algorithm introduced in this paper.

Finally, a parallel algorithm [HR18] has been presented to
compute Reeb graphs on triangulated surfaces, based on the
Cylinder Map approach [DN12], with a scalar partitioning
system similar to the one introduced in [GFJT16]. This type
of partitioning introduces additional work for each supple-
mentary thread. Moreover, results are only documented for
the non-augmented graph, i.e. without the mapping from the
mesh vertices to the arcs of the output data structure.

This work adapts to the Reeb graph problem an overall
strategy based on local propagations with Fibonacci heaps
[FT87] that we recently introduced for merge and contour
trees [GFJT17, GFJT19]. This adaptation requires to com-
pletely revisit the data structures employed at the core of
the approach to track connectivity. In particular, the Union-
Find data structure (typically used for merge and contour
trees [CSA00]) is no longer adapted to the Reeb graph prob-
lem (see Sec. 2.2), where more advanced connectivity track-
ing structures are required (supporting both online addition
and removal, such as the ST-Tree [ST83]). An additional no-
table difference is that, in the merge and contour tree set-
ting, the last propagation (monotone sequence of arcs called
the trunk [GFJT17, GFJT19]) could be processed very effi-
ciently in an embarrassingly parallel way. However, such a
specific processing is no longer possible for the Reeb graph
problem, where branching (and loops) can still be discovered
in the last propagation. This motivated us to introduce a new
strategy in the present work, which we call dual sweep, that
partially compensates the absence of the trunk acceleration.
Moreover, as detailed below, we also present further original
contributions, such as an improved laziness mechanism for
the update of the internal Reeb graph data structures.

1.2. Contributions
This paper makes the following contributions.
1. A local algorithm based on Fibonacci heaps: we adapt

a recent strategy [GFJT17,GFJT19] based on local prop-
agations with Fibonacci heaps from the contour tree set-
ting to the Reeb graph problem. This results in the re-
formulation of the optimal sequential algorithm [Par13]
into a set of independent, local treatments.

2. An improved laziness mechanism for ST-Tree up-
dates: we improve the laziness mechanism presented by
Parsa [Par13] by handling one ST-Tree data-structure per
local propagation. This implies local hence smaller data-
structures, which are independently and efficiently up-
dated by the local propagations when they meet a saddle
vertex. This results in a significant performance improve-
ment on most data sets.

3. Parallel augmented Reeb graphs: we show how the task
runtime environment of OpenMP can be used to imple-
ment a shared-memory parallel version of the above al-
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Figure 1: Topology driven data segmentation. (a) Input
scalar field f (color gradient), level-set (red) on the dot-
ted line and critical points (blue: minimum, white: saddle,
green: maximum). (b) Reeb graph of f and its correspond-
ing segmentation (arcs and their pre-images by φ are shown
with the same color).

gorithm. Our approach benefits from the dynamic load
balancing induced by the task runtime, without introduc-
ing extra work when new threads are added.

4. Parallel dual sweep: we present an improved version of
the above parallel algorithm using two series of propaga-
tions to increase the parallelism degree. The first series
traverses the mesh in increasing order of scalar values
while the second one traverses it in decreasing order, until
all vertices have been visited by at least one propagation.

5. Implementation: we provide an open-source C++ im-
plementation of our approach for reproduction purposes,
available as a module of the Topology ToolKit [TFL∗17].

2. Preliminaries
The theoretical background of our work as well as an
overview of our approach are presented in this section. It in-
cludes definitions that were adapted from [TFL∗17,GFJT19]
for self-completeness. We defer the reader to [EH09] for a
thorough introduction to computational topology.

2.1. Background
Our algorithm takes as an input a scalar field f defined on a
triangulation. Formally, f is a piecewise linear (PL) scalar
field f : M→ R defined on a PL manifold M of arbi-
trary dimension (Sec. 6 presents results on triangulated sur-
faces and tetrahedral meshes). In practice, f is given at the
vertices of M, such that no two vertices share the same f
value (which can be obtained easily by symbolic perturba-
tion [EH09]). Linear interpolation is used to extend the data
values to any point ofM. Two key notions (star and link) are
necessary to define traversals onM. The set of all the sim-
plices of M which contain a common simplex σ is called
the star of σ, noted St(σ). The set of all the faces of the sim-
plices of St(σ) which have an empty intersection with σ is

called the link of σ, noted Lk(σ). The vertices of the link
of a vertex v can be classified without ambiguity as being
above or below v with regard to f (as f is enforced to be
injective on the vertices of M as mentioned above). This
yields the notions of lower and upper links, respectively de-
fined as Lk−(v) = {σ ∈ Lk(v) | ∀u ∈ σ : f (u) < f (v)} and
Lk+(v) = {σ ∈ Lk(v) | ∀u ∈ σ : f (u) > f (v)}. The vertices
of M for which both Lk−(v) and Lk+(v) are simply con-
nected are regular. The others are critical: v is a minimum
if Lk−(v) = ∅ (blue dots, Fig. 1), a maximum if Lk+(v) = ∅
(green dots, Fig. 1) and a saddle otherwise (white, Fig. 1).

For visualization and data segmentation, three key geo-
metrical objects are of particular importance, namely the
level set and the sub- and sur-level set. The level set f−1(i)
is the set of points ofM which all share the same f value
i: f−1(i) = {p ∈M | f (p) = i} (Fig. 1). The sub- and sur-
level sets are defined similarly, by trading the equality for an
inequality, respectively: f−1

−∞(i) = {p ∈M | f (p)< i} and
f−1
+∞(i) = {p ∈M | f (p)> i}.

The Reeb graph is a fundamental topological data struc-
ture which tracks the evolution of the connectivity of the
level sets of f . It is a simplicial complex of dimension 1
(Fig. 1), noted R( f ), which is defined as the quotient space
R( f ) =M/ ∼ by the equivalence relation p1 ∼ p2 which
holds iff p2 ∈ f−1( f (p1))p1

, where f−1( f (p1))p1
is the

connected component of f−1( f (p1)) which contains p1. Let
φ :M→R( f ) be the segmentation map of R( f ). It maps
each point of M to its equivalence class in R( f ). As de-
scribed by Reeb [Ree46], the pre-image of any vertex of
R( f ) by φ contains a single critical point of f (since f is
injective on the vertices of M, it is injective as well by
construction on the subset of critical vertices of M). Then
valence-1 vertices of R( f ) correspond either to a minimum
or a maximum of f , while the remaining vertices, yielding
branching in R( f ), correspond to saddles of f , where level
set components join or split. In practice, the pre-image φ

−1

is particularly useful for data segmentation purposes (Fig. 1)
as the pre-image of each arc of R( f ) is connected by con-
struction. In our data-structures, the pre-image of the seg-
mentation map φ is explicitly stored along each arc ofR( f ),
by storing the list of regular vertices which map to it, hence
effectively augmenting the arcs of the Reeb graph with the
corresponding segmentation (Fig. 1).

2.2. Reference computation with dynamic ST-Trees
The sequential reference algorithm for augmented Reeb
graphs [Par13] computes its output incrementally by sweep-
ing the data using a dynamic graph data structure, which rep-
resents a level set sweeping continuously the domain. In the
following, we consider that an edge ofM starts at its vertex
of lower scalar value and ends at the one with higher value.

Parsa’s algorithm is based on a global view of the data
and starts by a sort of the vertices of the mesh by scalar
value. Then, vertices are visited in increasing order of scalar
value. At each vertex v visited by the growth procedure, the
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Figure 2: Overview of our augmented Reeb graph algorithm based on Fibonacci heaps and dynamic ST-Trees on a toy elevation
example. (a) The local minima of f (corresponding to leaves of R( f )) are extracted (red and blue points). (b) The arc σm of
each minimum is grown independently along with its segmentation. These independents growths are achieved by progressively
growing the connected components of sub-level sets created at m, for increasing f values, and by maintaining at each step
a priority queue θm, implemented with a Fibonacci heap, which stores vertex candidates for the next iteration (disks colored
according to their starting minimum). These growths stop at join saddles as shown with the red one in (b). (c) The blue growth on
the right has visited a split saddle and is now processing two arcs (orange and green) thanks to the dynamic graph implemented
with a ST-Tree data structure. (d) The blue growth is the last one to reach the left saddle and is thus kept active. Here, the red
propagation merges with the blue one. The corresponding priority queues are merged in constant time thanks to the Fibonacci
heap. (d) The last growth processes two arcs around the topological handle. (e) The augmented Reeb graph is complete.

Figure 3: Evolution of the dynamic graph (red nodes and
green arcs) while a sweep is performed on a single trian-
gle with an elevation scalar field. The vertex being currently
processed is shown in blue.

preimage f−1(v) is updated to make the level set grow from
the scalar value just below f (v) to the one just above f (v).
This preimage can be abstracted into a graph Gr, named the
preimage graph and used to identify the connected compo-
nent of level set to which each vertex belongs. This preimage
graph is implemented as an ST-Tree data structure [ST83]:
nodes of Gr are edges ofM intersecting the preimage, and
arcs of Gr are triangles ofM contributing to the preimage
(connecting edges, hence nodes together).

The update of the preimage graph is done using triangles
incident to v. When v is the lowest vertex of the triangle tv
(Fig. 3 (b)), the two edges of tv starting at v are linked by
an arc in Gr to reflect the level set entering tv. When v is
the middle vertex in the triangle tv (Fig. 3 (c)), the arc in
Gr between the two lowest edges is removed and a new arc
is added between the two highest edges. Finally, when v is

the highest vertex of the triangle tv (Fig. 3 (d)), the level set
is growing out of tv and the arc of Gr remaining between
the two edges of the triangle ending at v is removed. Unlike
the Union-Find data-structure, which can dynamically track
connected components in a graph upon arc insertions (and
which is used at the basis of most merge tree algorithms, to
model sub-level set components), the ST-Trees can dynam-
ically track connected components upon both arc insertions
and removals. Thus, ST-Trees can efficiently track the con-
nected components of Gr (which models the current level
set component) at each iteration of the propagation. In par-
ticular, the operations on the ST-tree (connected component
query, arc insertion, arc removal) are performed in at most
logarithmic time with regard to its size, resulting to an over-
all time complexity of O(m log m) steps, where m is the size
of the 2-skeleton ofM (vertices, edges and triangles).

The output Reeb graphR( f ) is updated at each vertex us-
ing the preimage components on its neighborhood. Before
the dynamic graph is updated at f (v), the connected com-
ponents are retrieved using edges ending at v. If more than
one component is retrieved, v is a join saddle and the corre-
sponding arcs of R( f ) are closed. After the dynamic graph
update, the connected components are retrieved once again,
using edges starting at v. If more than one component is re-
trieved, v is a split saddle and each component leads to the
creation of a new arc inR( f ). If no edge starts at v, the ver-
tex is a local maximum and the corresponding arc is closed.
Finally, if the vertex v is regular inR( f ) (both lower and up-
per components have one connected component), v is simply
added to its corresponding arc inR( f ).
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2.3. Overview
Fig. 2 presents an overview of our approach for the compu-
tation of augmented Reeb graphs. Our algorithm revisits the
sequential sweep approach of Parsa [Par13], described in the
previous section, but performs independent local growths for
the mesh traversal. The vertices ofM are first visited to ex-
tract the list of minima of f (Fig. 2 (a), Sec. 3.1). Then, a sec-
ond procedure is launched: for each local minimum at vertex
v, a local growth in charge of constructing the augmented
arc attached to v is executed, based on a sorted breadth-first
search traversal implemented with a Fibonacci heap [FT87]
(Fig. 2 (b), Sec. 3.2). A dynamic graph data structure cor-
responding to the growing level set components and imple-
mented as an ST-Tree data structure [ST83] is maintained
during the growth. As described in Sec. 2.2, this dynamic
graph allows to track both join and split saddles and to up-
date the Reeb graph data structure accordingly on the fly
(Fig. 2 (b) to (e)). To ensure that the lower link of any pro-
cessed vertex has always been visited, only the last growth
reaching a join saddle can continue the processing, after hav-
ing processed the saddle as described in Sec. 3.3.

Each iteration of the local propagations performs only
log-time operations on the ST-trees [ST83], as well as on
the Fibonacci heaps [FT87]. Since these heaps can merge in
constant time, this results in an overall time complexity of
O(m log m) steps, where m is the size of the 2-skeleton of
M (vertices, edges and triangles), which is identical to the
optimal but sequential reference algorithm [Par13].

3. Local propagations for Reeb graph computations
We present here our new algorithm for the computation of
augmented Reeb graphs using local growths. The procedures
corresponding to the different steps of the algorithm are de-
scribed, along with specific treatments and optimizations. In
particular, we describe how an overall strategy based on lo-
cal propagations needs to be adapted from the contour tree
setting [GFJT17, GFJT19] to the Reeb graph problem.

3.1. Leaf search
First, we construct the lower link Lk−(v) of each vertex
v∈ M. This detects the minima (empty lower link Lk−(v)),
upon which the growth procedure described in the next sub-
section is started. This very first step is identical to the leaf
search procedure in the contour tree setting [GFJT19].

3.2. Local growth
Given a local minimum m, a local growth procedure, named
local growth starting at m is called in order to progressively
sweep all contiguous equivalence classes (Sec. 2.1) between
m and the next join saddle s. In other words, this growth
procedure will sweep the connected components of sub-level
set initiated in m while maintaining a growing level set to
construct the corresponding arcs ofR( f ) on the fly.

The sweep on the connected components of sub-level set
is achieved thanks to an ordered breadth-first search traver-
sal of the vertices ofM started in m. During this sweep, for

each new vertex v, the neighbors of v (not already visited)
are added to a priority queue Qm (unless already present in
it). Then, the next vertex v′ to process is chosen as the min-
imizer of f in Qm. We iterate the process until reaching a
join saddle s (Sec. 3.3). Breadth-first search traversals grow
connected components: this ensures that, for each vertex v,
all the edges ofM connecting visited vertices to visited can-
didates (stored in Qm) are indeed crossed by the component
of f−1( f (v)) which contains v. Hence, this sorted traversal
indeed maintains connected components of level sets at each
iteration of the local sweep. In practice the priority queues
are implemented as Fibonacci heaps.

During the sweep, the preimage graph Gr is maintained on
each vertex using the same procedure as the reference algo-
rithm described in Sec. 2.2. In practice this preimage graph
is implemented as a ST-Tree data structure [ST83]. This is a
notable difference with the contour tree setting which only
requires to maintain a simpler Union-Find data structure, as
further detailed in the next two sub-sections.

3.3. Saddle vertex handling
Join saddles. If the number of connected components of
dynamic graph in edges ending at v is greater than 1 before v
has been processed, v is a join saddle and the current growth
stops (without updating the preimage graph). Only the last
local growth reaching the join saddle can process it and con-
tinue. The last growth detection can be done by looking at
edges in the lower star of a join saddle s: if all these edges
have already been visited, the current growth is the last one
visiting s and is in charge of carrying on the computation.
This situation is illustrated in Fig. 4. The arcs of the Reeb
graph in the lower star of s are retrieved using the dynamic
graph Gr and closed at s like in the reference algorithm (red
and orange arcs in Fig. 4 (a)). Then, the dynamic graph is
updated on s. Priority queues of local growths stopped at s
are merged with the current one before a new growth, initi-
ated with the resulting priority queue, is run. This merge is
done in constant time thanks to the Fibonacci heap. In Fig. 4,
we can see the red priority queue merging with the blue one
at the join saddle.

Split saddles. If the number of connected components of
dynamic graph in edges starting at v is greater than 1 after
v has been processed, v is a split saddle. Like in the ref-
erence algorithm, the arc ending here is closed (if v is not
also a join saddle) and a new arc is created for each com-
ponent of dynamic graph in the upper star of v. The cur-
rent local growth continues the processing, handling both
arcs. Fig. 4 (a) shows an example of a local growth that en-
countered a split saddle (right white circle): the orange and
green arcs have been created at the split saddle and the same
growth (blue) handles both arcs.

3.4. Laziness mechanism for preimage graph
In the reference algorithm [Par13], a “lazy insertion” opti-
mization is described. In order to make the implementation
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Figure 4: On a 2D toy elevation example, priority queues (colored dots) and dynamic graphs (plain disks) in the proximity of
critical points are highlighted. First, on the left and on the top, the right growth (in blue) has passed a split saddle. The blue
priority queue contains candidates vertices from both sides of the split (blue dots) and handles two connected components of
the preimage graph (orange and green disks). Second, on the right and on the bottom, the left join saddle has been processed.
The red and blue priority queues have merged in constant time and a single growth is remaining, handling two arcs (purple and
green). The red and orange components of preimage graphs have also merged at the join saddle.

faster, additions and deletions of arcs in the dynamic graph
Gr are stored in a history list, which serves as a record of
operations. When a critical vertex v is encountered, each arc
which has been both marked as added and deleted from the
history list is discarded and only the remaining operations
are applied to Gr. This allows to grow at once the level
set modeled by Gr up to the value f (v), without having to
perform the in-between operations which do not change the
connectivity of Gr. This optimization requires to extract all
critical vertices in a pre-processing step, which can be done
efficiently by counting the number of connected components
of lower and upper links of each vertex (cf. Sec. 2.1).

This optimization is further improved in our work by
breaking this global history list of operations into local ones.
A naive way would be to have one history list per local
growth. This way, when a saddle vertex s is encountered,
instead of updating the preimage graph on the whole level
set f (s) only the sub-level set component containing s is
updated. However, we found out that we can improve this
mechanism by subdividing the list of operations further, hav-
ing one history list per arc of the output graph R( f ). This
way, when a local growth encounters a saddle vertex s, only
the connected component of level set containing s is updated,
which corresponds to the minimal amount of operations to
maintain a valid preimage graph.

4. Task-based parallel Reeb graphs
In order to implement our new algorithm for the construction
of augmented Reeb graphs, we rely on the task parallel pro-
gramming paradigm, available e.g. in OpenMP [Ope15], In-
tel Threading Building Blocks [Phe08], Intel Cilk Plus [Int],
etc. The programmer only handles tasks, not threads. These
tasks are then executed concurrently and asynchronously by
the runtime on the available threads, whose number is fixed
at execution time by the user. Our new algorithm being based

on local growths, and the growths starting from minima be-
ing independent, the task-based parallelization is straightfor-
ward. However, local synchronisations are required on join
saddles as the task corresponding to a join saddle growth can
only start its execution after all of the lower link of its sad-
dle has been visited: this will require task synchronizations.
Also,we emphasize that our new algorithm based on local
growths does not introduce any supplementary computation
in parallel, and that the dynamic load balancing of the task
runtime will help improving parallel speedups in practice.
We rely here on OpenMP tasks [Ope15], but other task en-
vironments could also be used with only minor adjustments.

In the following, we describe how we have parallelized
the different steps of our algorithms. It can be first noticed
that our implementation starts with a parallel global sort of
all the vertices according to their scalar value (using the
Standard Template Library). Once this pre-sort is finished,
all vertex comparisons can be done by only comparing their
position index in the sorted order: this is faster than having
to access the scalar values, and this also makes this compar-
ison independent of the data types used to represent scalar
values in the input.

4.1. Leaf search and saddle extraction
The extraction of the lower link Lk−(v) of each vertex
v ∈ M being a local operation, this step is embarrassingly
parallel and the correponding loop can be straightforwardly
parallelized with OpenMP. This step is identical to the con-
tour tree setting [GFJT19].

When the optimization described Sec. 3.4 is enabled, both
the lower and upper links of v are extracted in order to also
detect saddle vertices. We recall that some vertices may be
locally saddles, but do not imply changes in the number of
connected components of level set and so end up being reg-
ular nodes in the output Reeb graph.
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4.2. Local growth
All local growths initiated at a leaf (minimum) are imple-
mented as tasks, starting at their previously extracted leaf.
Each growth (task) spreads locally and independently, until
it finds a join saddle, by managing its own Fibonacci heap, as
well as its own connected components of dynamic graph so
that the update on each vertex does not involve any data race.
Similarly, the list of edge deletions and insertions used for
the laziness optimization (Sec. 3.4) only impacts the preim-
age graph on components local to the current growth and so
no data race among concurrent growths may occur.

4.3. Saddle vertex handling
The saddle vertex processing presented in Sec. 3.3 can be
implemented in parallel with tasks. As discussed in Sec. 4.1,
saddles of f are first extracted in a parallel pre-processing
step. However, not all of these saddles will yield some
branching in the output graph. Therefore, join and split sad-
dles (which respectively yield downward and upward forks
in the output graph, Sec. 2.2) must be distinguished among
this initial set of saddles.

Split saddles can be identified on-the-fly during the
growth, exactly as in the original reference algorithm
(Sec. 2.2). Join saddles, however, require more attention.
When a local growth reaches a saddle s (red growth in
Fig. 4(a)), to determine if s is a join saddle or not, we use
the saddle stopping condition described by Gueunet et al.
[GFJT17,GFJT19]. In particular, this condition states that if
a local growth g reaches a saddle s for which some of the
vertices of Lk−(s) have not been visited before by the same
growth g, then s is a join saddle. Indeed, since each growth
reconstructs a connected component of sub-level set, such
a configuration corresponds to points where several compo-
nents of sub-level set merge with each other (hence the ap-
pearance of a join saddle).

As described in Sec. 3.3, we have to detect the last task
reaching a join saddle. For this, we rely only on lightweight
synchronizations (OpenMP atomic operations) as detailed
in [GFJT17, GFJT19]. The processing done by the last task
reaching the join saddle (Sec. 3.3) only involves already
computed information. Arcs are closed, the preimage graph
updated and the Fibonacci heaps merged sequentially by the
last task: no task synchronization is required here.

5. Parallel dual sweep
In the parallel algorithm described Sec. 4, the number of in-
dependent growths (i.e. the number of tasks) corresponds
initially to the number of minima and strictly decreases as
join saddles are encountered, eventually reaching one. As a
consequence, a substantial part of the data set (at least all the
region above the highest join saddle) may be processed se-
quentially, using a single task and undermining parallel per-
formance. In order to reduce this effect, we propose a par-
allel dual sweep algorithm traversing the data set simultane-
ously from minima (in increasing order of scalar value) and
from maxima (in decreasing order of scalar value). These

Figure 5: Evolution of the number of active arcs for the lo-
cal propagation initiated at the blue minimum. The green
arc is computed by a decreasing growth and is only here to
show an example of arcs merging. (a): initially, there is one
active arc (blue). (b): after the join, there are two arcs man-
aged by this growth (purple and orange). (c): at the join, one
arc is closed (orange) and one opened (yellow); the number
of active arcs remains two (purple and yellow arcs). (d): an
arc (purple) is closed at a maximum and only one arc (yel-
low) remains active. (e): the last arc (yellow) of the growth
merges in an incoming arc (green), the growth has no more
active arc and stops.

two sweeps use local growths as described previously and
stop when they meet each other. Sweeping the data set using
both minima and maxima leads to the creation of a higher
number of independent growths and allows to process with a
higher parallelism degree areas of the mesh that would have
been processed by a few number of task otherwise. We de-
scribe in the following how to adapt the algorithm presented
in Sec. 4 to this dual sweep strategy. Note that this dual
sweep is a completely original procedure which is another
notable difference with the contour tree setting [GFJT19].

5.1. Leaf search
In order to launch growths from minima and maxima, both
are extracted in a single pass using the lower and upper links
of each vertex. Local growths initiated at maxima are sym-
metric to those starting at minima and traverse the data set
in decreasing order of scalar value. In practice, this step is
also in charge of extracting all saddles, as required by the
laziness mechanism described in Sec. 3.4.

5.2. Dual growth meeting points
The growths initiated at minima and those initiated at max-
ima will eventually encounter each other. In the following,
we describe how to detect when two growths are crossing
and how to merge the corresponding arcs.

Growths mark vertices they visit in two arrays: one for
growths sweeping in increasing order of scalar value and one
for growths sweeping in decreasing order. This information
is used by a local growth g to check if its current vertex has
not already been visited by an opposite one g′. If so, the cur-
rent arc is marked as merged with the incoming arc from the
opposite growth g′ (see Fig. 5 (e)), and the current growth g
stops processing this arc. A post-processing step described
in Sec. 5.4 is in charge of computing the final arc, resulting
from this merge. The candidate vertices in Qm correspond-
ing to a merged arc can be discarded from the remainder of
the propagation g (which may itself continue to propagate
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Figure 6: Two halves of an arc computed by opposite
growths are merged into a single arc. Regular vertices are
updated accordingly. The blue colors are used for arcs com-
puted by downward growths initiated at maxima, red colors
for upward growths initiated at minima.

other arcs in other parts ofM). Atomic operations are used
to visit (and check) vertices in order to avoid data races.

During the traversal, each growth keeps a local counter of
the number of arcs it handles (see Fig. 5). This counter is in-
creased when new arcs are created (Fig. 5 (b)) and decreased
when arcs are closed or merged (Fig. 5 (d) and (e)). For the
last growth continuing at a join saddle s, its counter is incre-
mented by the sum of remaining active arcs associated with
all the growths which merged at s. If this counter reaches 0
during the computation, the current growth has no more arc
to process and can stop (Fig. 5 (e)).

5.3. Saddle vertex handling
At critical vertices, nodes of the Reeb graph are created
using a global lock (implemented as a critical section in
OpenMP) so that a given node cannot be created simultane-
ously by an upward growth and a downward one. As detailed
in Sec. 6, this global lock does not have a significant impact
on execution times in practice. If a growth g tries to create an
already existing node n, this means g is crossing an opposite
growth g′ (which created the node first). Thus, the current
growth g does not propagate further its arc(s) ending in n.

5.4. Post-processing for merged arcs
When the dual sweep is performed in parallel, it is possible
for two arcs to merge in the middle of their construction (like
in Fig. 5). A post processing step is in charge of computing
the final arc from these two parts and to update the map φ

of regular vertices accordingly (see Fig. 6). In practice, this
step takes a negligible time in our computations (less than
5% of the total time).

6. Results
For the following performance results, we rely on a work-
station equipped with two Intel Xeon E5-2630 v3 CPUs (2.4
GHz, 8 CPU cores and 16 hardware threads per CPU), 64
GB of RAM, g++ version 7.3.0 and OpenMP 4.5. Unless
stated otherwise, we will use 32 threads on 16 cores. The im-
plementation of our new algorithm (called Fibonacci Task-
based Reeb graph, or FTR) is built as a C++ TTK [TFL∗17]
module (provided as additional material). We have used the

Boost implementation of the Fibonacci heap [FT87], and our
own ST-Tree [ST83] implementation for the dynamic graph.

Our tests have been performed using ten data sets, five tri-
angulated surfaces (Fig. 7) and five tetrahedral meshes. For
all of them, the considered scalar field f is a height function,
except for Mechanical, where the considered scalar data is
the norm of a flow velocity field. The first surface, Spring,
is the boundary surface of the first volume, Spring3D. It
is made of four connected components and its output Reeb
graph has 24 leaves, each leading to a large arc. The Eiffel
data set is a synthetic, open surface produced by a graphi-
cal designer and counting many disconnected components.
Most of these data sets have been subdivided in order to ob-
tain significant execution times on our setup.

6.1. Performance analysis
Tab. 1 details the execution times and speedups of FTR
on our data sets. First, the sequential execution times ap-
proximately follow a linearithmic evolution. The observed
variations from the theoretical complexity are common to
most Reeb graph algorithms, which tend to be output sen-
sitive. This behavior is greatly accentuated by our ST-tree
lazy update mechanism, which only triggers updates at criti-
cal points. Regarding parallel executions, the embarrassingly
parallel critical point search offers very good speedups (aver-
aging at 18.4x). The key step for parallel performance is the
Sweep step performing the independents local growths. On
all our data sets this step is indeed the most time-consuming
in parallel and offers an average speedup of 5.3x. The al-
most ideal speedups of the spring data set (13.4x and 14.3x
with 32 threads on 16 cores) can be used as an evidence that
neither the critical section on node creation nor the atomic
updates on visited vertices prevent good speedups.

Fig. 8 presents the parallel scaling curves of our FTR im-
plementation. First, these curves are monotonically increas-
ing. This means that increasing the number of threads does
not imply an increase in execution time, and hence illustrates
that our algorithm does not yield extra work when run in par-
allel. This also justifies our default choice of using 2 threads
per core (instead of 1) since this results in greater speedups
for all data sets but one (gray band, Fig. 8). We empha-
size that the maximum number of tasks created for the local
growths is equal to the number of leaves in the output graph,
which implies that the speedups of the sweep step is bounded
by this number of leaves. In practice, tasks merge together at
saddles and the number of available tasks quickly decreases.
This translates in reduced parallel efficiencies: our speedups
quickly reach 2 but seems to reach a plateau around 4 for
most data sets (further details in Sec. 6.3).

In parallel, the dynamic load balancing of the task run-
time can lead to different schedulings between multiple ex-
ecutions over a given data set. However, as already demon-
strated in the case of the merge tree in [GFJT17], this kind of
task-based approaches offers consistent computation times
between executions. In our experiments, the average stan-
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Figure 7: Gallery of Reeb graphs computed with our algorithm. From left to right: Eiffel, Neptune, Pegasus, Spring, Starknot.

Table 1: Memory footprint and running times (in seconds) of the different steps of FTR on our data sets. |σ2| is the number of
triangles inM and |R( f )| the number of arcs in the output Reeb graph. These executions use the dual sweep strategy. File sizes
are used to estimate the input and output footprints. Peak reports an estimation of the maximum runtime memory footprint.

Memory footprint (MB) Sequential Parallel (32 threads on 16 cores)
Dimension |σ2| Data set |R( f )| Input Output Peak Overall Sort Crit. search Sweep Post. proc Overall Speedup

2 1,728k Spring 44 189 18 1,795 7.40 0.05 0.12 0.37 0.01 0.55 13.45
2 6,936k Eiffel 372,944 752 79 7,316 24.00 0.29 0.59 2.88 0.32 4.08 5.88
2 8,009k Pegasus 571 876 83 8,333 35.67 0.36 0.70 12.79 0.02 13.87 2.57
2 9,552k Neptune 486 1,045 100 9,951 42.66 0.31 0.77 14.68 0.03 15.79 2.70
2 9,600k StarKnot 2,835 1,050 100 10,014 44.96 0.36 0.62 6.65 0.02 7.65 5.88
3 23,098k Spring3D 44 608 26 9,465 58.87 0.42 0.75 2.94 0.01 4.12 14.29
3 32,002k Elephant 48 897 30 12,618 73.24 0.39 0.78 19.14 0.02 20.33 3.60
3 48,413k Hand 185 1,362 45 18,935 113.51 0.57 1.37 28.10 0.02 30.06 3.78
3 60,532k Skull 30 1.700 56 23,763 169.87 0.79 1.69 52.58 0.84 55.90 3.04
3 71,486k Mechanical 180 2.091 69 28,605 211.14 0.84 1.76 38.16 0.02 40.78 5.18

Figure 8: FTR scalability on our various data sets. The gray
area denotes using 2 threads per core.

dard deviation obtained using 10 runs on our data sets is 0.6
second for a global average time of 19.3 seconds.

In order to evaluate the performance gains obtained by our
improved laziness mechanism for the preimage graph update
(Sec. 3.4), we present in Tab. 2 execution times with and
without this optimization, using single-sweep sequential ex-
ecutions. This optimization is especially efficient on 2D data
sets, improving execution times by a factor up to 160.92x.
On our 3D data sets however, this optimization seems to
have less impact with an average gain of 1.13x. Tab. 2 also
provides the number of internal rotations performed by the
ST-Tree data structures upon their updates, for both the ref-
erence algorithm [Par13] and our approach. These internal
rotations are performed in practice to decrease the depth of

Table 2: Left: execution times (in seconds) of the sweep pro-
cedure using no laziness, compared to our approach (one list
per arc). Right: number of rotations made by the ST-Trees
using the reference algorithm [Par13], compared to our ap-
proach. These runs use single-sweep sequential executions.

Time (s) Gain Rotations Gain
Data set no laziness Ours [Par13] Ours
Spring 40.14 4.40 9.12 8.52e6 3.34e5 25.52
Eiffel 51.51 15.58 3.31 3.95e7 6.82e7 0.58
Pegasus 2,998.73 25.70 116.68 5.08e7 8.98e6 5.65
Neptune 4,744.04 29.48 160.92 6.19e7 1.51e7 4.10
StarKnot 1,945.30 32.35 60.13 1.70e8 3.10e7 5.49
Spring3D 36.30 36.97 0.98 1.68e8 5.81e6 28.98
Elephant 51.21 51.22 1.00 6.75e8 1.83e7 36.82
Hand 82.67 82.54 1.00 1.50e9 6.67e7 22.43
Skull 233.71 152.85 1.53 2.88e9 5.96e7 48.35
Mechanical 189.18 162.52 1.16 2.95e9 6.24e7 47.30

Table 3: Comparison of execution times (in seconds) be-
tween the single and dual sweep strategies (presented re-
spectively in sections 4 and 5) during parallel executions.

Data set Single sweep Dual sweep Speedup
Spring 0.90 0.37 2.43
Eiffel 2.45 2.88 0.85
Pegasus 26.74 12.79 2.09
Neptune 29.88 14.68 2.04
StarKnot 18.44 6.65 2.77
Spring3D 6.79 2.94 2.31
Elephant 43.89 19.14 2.29
Hand 53.76 28.10 1.91
Skull 103.46 52.58 1.97
Mechanical 90.51 38.16 2.37

the ST-Trees and thus improve their efficiency. Overall, this
number of operations is a relevant indicator of the amount
of work performed by the ST-Trees. Our improved laziness
(using one history list per arc) yields in average 22 times less
rotations than the reference algorithm [Par13].
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Table 4: Reeb graph computation times (in seconds) and
ratios between the reference algorithm [Par13] and our ap-
proach (FTR) using 1 and 32 threads (on 16 cores).

Times FTR Speedups
Data set [Par13] FTR (1) FTR (32) (1) (32)
Spring 20.80 7.40 0.55 2.81 37.82
Eiffel 59.98 24.00 4.08 2.50 14.70
Pegasus 65.18 35.67 13.87 1.83 4.70
Neptune 71.96 42.66 15.79 1.69 4.56
StarKnot 75.41 44.96 7.65 1.68 9.86
Spring3D 84.73 58.87 4.12 1.44 20.56
Elephant 97.23 73.24 20.33 1.33 4.78
Hand 156.48 113.51 30.06 1.38 5.21
Skull 221.96 169.87 55.9 1.31 3.97
Mechanical 217.53 211.14 40.78 1.03 5.33

Our dual sweep strategy (Sec. 5) aims at increasing the
parallelism degree, and so at improving the parallel efficien-
cies. The gains obtained by this dual sweep strategy for a
parallel execution are presented in Tab. 3. Complete execu-
tion times are reported, as the dual sweep method impacts
both the critical point extraction and the sweep steps. Start-
ing from both minima and maxima leads to a significantly
higher number of tasks and allows to process efficiently in
parallel regions of the mesh that would have been processed
by a low number of tasks using the single sweep method. The
dual sweep mechanism hence leads to an average speedup of
2.1x over the single sweep version.

Note that the dual sweep approach implies that upward
and downward growths can cross each others, visiting some
vertices of the mesh twice (along connected components of
level sets). This situation only occurs on a fraction of the
output arcs and in practice the work overhead is negligible:
the average number of vertices visited twice is about 0.4%
of the total number of vertices in average in our test cases.

6.2. Comparisons
Tab. 4 provides a run time comparison between our approach
and the sequential reference algorithm [Par13], with an im-
plementation kindly provided by its author. Note that, the lat-
ter implementation only produces a non-augmented graph on
its output, without the segmentation information. Moreover,
the memory footprint of this implementation is larger than
ours. Internally, it pre-sorts the simplices of the 2-skeleton
in arrays (vertices of each edge, edges of each triangle, ad-
jacent triangles and edges of each vertex). These arrays are
used during the sweep to efficiently retrieve pre-sorted ver-
tices upon adjacency queries (hence speeding up the compu-
tation). We decided not to implement such a speedup mech-
anism as we wanted our implementation to maintain a rea-
sonable memory footprint (Tab. 1), to improve its practical
usability. Despite this, FTR is in average 1.56 time faster
in sequential, thanks to our improved laziness mechanism.
Using 32 threads on 16 cores, our implementation leads to
substantial improvements, speeding up the computation by a
factor of 11.14x in average.

6.3. Limitations
During the sweep procedure, the number of available tasks
monotonically decreases, as local propagations merge at
join saddles. When the number of remaining tasks even-

Figure 9: Number of tasks through time (cropped at 16 to
emphasize the suboptimal section on our 16-core setup).

tually becomes lower than the number of available cores
(Fig. 9), we say that the computation enters a suboptimal
section, where the computational power of our multi-core
CPU is not fully exploited, hence undermining the parallel
efficiency of the approach. This drawback was mitigated in
the merge/contour tree setting [GFJT17, GFJT19] thanks to
the trunk procedure (see Sec. 1.1), which however is inappli-
cable to the Reeb graph problem. This motivated us to design
our dual sweep strategy, which partially addresses this issue,
by maintaining the number of active tasks above 2 for the
vast majority of the computation. This is the reason why our
approach achieves almost ideal speedups when using only
two threads (Fig. 8). For larger numbers of threads, depend-
ing on the topological complexity of the data, the subopti-
mal sections start at various points in the computation times,
resulting in a high variability in parallel efficiency overall
(from 16% to 90%, average: 38%).

7. Conclusion
We have presented the first parallel algorithm to compute
the augmented Reeb graph on shared-memory multi-core ar-
chitectures. For this, we have rewritten the optimal, but se-
quential, algorithm [Par13] to design a new algorithm based
on independent local growths with Fibonacci heaps. The lo-
cal nature of our approach enabled us to improve the lazy
update mechanism of the ST-Trees (used to track level set
components), which results in less work than the reference
algorithm and improved sequential performances in prac-
tice. The design of our algorithm is conducive to parallelism
and we have presented an efficient task-based parallel ver-
sion. We have also presented a “dual sweep” strategy, which
guarantees good speedups for low numbers of threads. Fi-
nally, we also provide an open-source OpenMP/C++ refer-
ence implementation of our approach (available in the Topol-
ogy ToolKit [TFL∗17]), which is, to our knowledge, the only
documented parallel implementation to compute the aug-
mented Reeb graph. In the future, we plan to consider exten-
sions of our approach to address distributed computations.
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