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Abstract
This paper focuses on discriminative trainings (DT) applied to i-
vectors after Gaussian probabilistic linear discriminant analysis
(PLDA). If DT has been successfully used with non-normalized
vectors, this technique struggles to improve speaker detection
when i-vectors have been first normalized, whereas the latter
option has proven to achieve best performance in speaker ver-
ification. We propose an additional normalization procedure
which limits the amount of coefficient to discriminatively train,
with a minimal loss of accuracy. Adaptations of logistic re-
gression based-DT to this new configuration are proposed, then
we introduce a discriminative classifier for speaker verification
which is a novelty in the field.

1. Introduction
Once the i-vector paradigm of low rank total variability fac-
tor has been introduced in the field of speaker recognition [1],
Gaussian modelings of i-vector have been worked out [2, 3],
intended to estimate the latent speaker variable. In the case of
single-cut enrollment trial, the formulation of the speaker ver-
ification log-likelihood ratio reduces to a quadratic function of
the i-vector pair of a trial, that is, a second degree polynomial
of i-vector components. This functional form led to attempts
to optimize parameters of the model by using a discriminative
approach. Discriminative trainings for speaker verification rely
on minimization of non-linear objective functions [4, 5, 6].

First Gaussian modeling provided disappointing results.
Application of normalization pre-procedures (within-class co-
variance and length [1, 7, 8]) to i-vectors allows Gaussian mod-
eling to be competitive versus more complicated systems, as
heavy-tailed PLDA [2], in terms of performance.

In [9], the same performance than a non-normalized and
optimal PLDA system is achieved by using a SVM based-
discriminative system, without the need to tune the rank of the
PLDA speaker variability subspace. But DT struggles to im-
prove accuracy of detection with normalized vectors. Normal-
ization techniques are known to improve Gaussianity of i-vector
distribution [7], and seem to limit the impact of an additional
DT step. [10] remarks that DT may suffer from training data in-
sufficiency. Thus, constrained DT systems have been proposed
(of order the i-vector dimension, instead of its square), in order
to limit the amount of parameters to optimize with respect to
the total amount of training data [10, 11]. But it appeared that
effectiveness of DT approach may also suffer from over-fitting
to development data. Very low order discriminative trainings
have been proposed, which only optimize parts of score [10],
or matrix scalings of PLDA matrices [11]. Also, constraints
on coefficients trained from DT do have to be taken into ac-
count, in order to respect properties of PLDA covariance ma-
trices (definiteness, positivity/negativity). Finally, [10] points

out that statistical independence between training trials used for
DT is questionable, as the need of a large amount of data for
DT training obliges to use same speaker and utterances in more
than one training trial.

We propose to train a small order DT by taking advantage of
normalized i-vector properties. A simple additional normaliza-
tion procedure is presented, which does not modify distances
between i-vectors and allows to train low order DT classifiers
with a minimal loss of accuracy. We adapt two state-of-the-art
DT based on logistic regression (LR) to this new configuration,
the first is optimizing score coefficients, the second one PLDA
parameters.

However, the ability of LR based-discriminative classifiers
to improve Gaussian PLDA system by using cross entropy
minimization, based itself on Gaussian assumptions, may be
questioned, as normalization techniques are known to improve
Gaussianity. In order to overcome this issue, a new specific dis-
criminative classifier is proposed, based on covariance of tar-
get and non-target trials when they are represented by expanded
vectors of score.

This paper is organized as follows. Sec. 2 summarizes
the Gaussian generative model for i-vector. State-of-the-art dis-
criminative trainings of PLDA hyperparameters are recalled in
Sec. 3. In Sec. 4, the additional normalization procedure in-
tended to simplify discriminative training is presented, and Sec.
5 proposes discriminative classifiers specific to normalized i-
vectors. Experimental results are reported in Sec. 6, and con-
clusions are provided in Sec. 7.

2. Gaussian generative model for i-vector
The total variability factor approach for speaker recognition [1]
provides a representation of speech segments by low dimen-
sional feature vectors (commonly less than 600), independent of
the length of the utterance, referred to as i-vector. This approach
defers the problem of intersession variability to a second stage.
To facilitate accurate comparison in a verification trial, i-vector
modelings have been proposed, assuming additive decomposi-
tion of speaker and noise components. We focus here on the
most commonly used Gaussian model in speaker verification
[2]. Introduced in [12, 13], Gaussian PLDA (G-PLDA) is a
generative model where latent vector ys representing speaker s
is assumed to be distributed according to standard normal prior
and a d-dimensional vector w can be decomposed as follows:

w = µ+ Φys + ε (1)

where Φys and ε are assumed to be statistically independent
and ε follows a centered Gaussian distribution with full covari-
ance matrix Λ. Speaker factor ys can be a full-rank d-vector
(this model is referred to as two-covariance model [3]) or con-



strained to lie in the r-linear range of the d × r matrix Φ, re-
ferred to as eigenvoice subspace [2].

Using a Bayesian approach, the goal of evaluating hypothe-
ses H1 that two i-vectors wi, wj are produced by the same
source and H0 that they are produced by different sources re-
duces to estimating the log-likelihood ratio score (LLR):

si,j = log
P (wi,wj |H1)

P (wi,wj |H0)

= log

∫
y

∏
l=i,j

P (wl|µ+ Φy,Λ)P (y|0, I) dy∏
l=i,j

∫
y
P (wl|µ+ Φy,Λ)P (y|0, I) dy

(2)

For the Gaussian case, the closed-form solution of (2) is the
following second degree polynomial function of wi and wj :

si,j = wt
iPwj +

1

2

(
wt
iQwi + wt

jQwj

)
− µt (P +Q) (wi + wj)

+ µt (P +Q)µ+
1

2
log |At| − log |An| (3)

where

P = Λ−1Φ
(
2ΦtΛ−1Φ + Ir

)−1
ΦtΛ−1

Q = P −Λ−1Φ
(
ΦtΛ−1Φ + Ir

)−1
ΦtΛ−1

At =
(
2ΦtΛ−1Φ + Ir

)−1

An =
(
ΦtΛ−1Φ + Ir

)−1
(4)

and Ir denotes the r×r identity matrix. It can be shown that this
formulation is equivalent to those of [5, 6, 7] initially proposed
in [13].

As remarked in [2], G-PLDA failed to produce accurate
model for i-vectors. A normalization step, applied before any i-
vector modeling, has been incorporated, including within-class
covariance matrix W (centering and scaling) and length nor-
malization [1, 7, 8]. These transformations involve some prop-
erties related to intersession compensation [14, 7, 8]. Perfor-
mance of G-PLDA becomes competitive versus the heavy-tailed
PLDA [2], when the latter shows a significant higher complex-
ity.

3. Discriminative PLDA training
Generative Gaussian PLDA model provides the functional sec-
ond degree polynomial of speaker verification score (3). Dis-
criminative classifiers aim at enhancing the accuracy of speaker
detection by optimizing parameters of this polynomial, accord-
ing to an objective function to minimize. The total cross entropy
(TCE) of a trial dataset is the log-probability of correctly classi-
fying all trials of this dataset. When the trials are made up of all
the pairs of a n-size training segment set, TCE can be written
as [5]:

TCE = −
n∑
i=1

n∑
j=1

αi,j log σ (ti,jsi,j) (5)

where label ti,j is equal to 1 if wi,wj are from the same
speaker and −1 if they are from different speakers, σ denotes
the sigmoid activation function and αi,j is used to assign the
weight P (H1) /n1 (resp. P (H0) /n0) to same-speaker (resp.

different-speaker) trials, where P (H1),P (H0), n1,n0 are their
prior and cardinality, respectively.

Stating TCE as a function E (ω) of a set of parameters ω,
then minimizing this loss function, has led in [4, 5] to the case
of logistic regression (LR) based DT for speaker verification.
Using a hinge loss function has led to the SVM case [6, 5]. Min-
imization of the non-linear function E (ω) is done by gradient-
descent. Parameters ω to optimize can be the coefficients of the
LLR score polynomial, as proposed in [5], or the PLDA param-
eters (µ,Φ,Λ) of (1), as proposed in [11]. In the first case,
the score can be written as a dot product of an expanded vector
ϕi,j stacking all the monomials of the second degree polyno-
mial, and a vector stacking all its coefficients. The gradient of
E is equal to:

∇E (ω) =

n∑
i=1

n∑
j=1

αi,j (−ti,j)σ (−ti,jsi,j)
∂si,j
∂ω

(6)

where, in the first case, ∂si,j
∂ω

just gives the expanded vector
ϕi,j . DT uses the conjugate gradient trust region method [15]
as implemented in [16]. Parameter ω is currently updated in the
field by the following formula:

ω(l+1) = ω(l) −
ut.∇E

(
ω(l)

)
utHu

∇E
(
ω(l)

)
(7)

where H is the Hessian and u is estimated by using the Hestenes
-Stiefel variant of line search along a direction.

Thus, DT for speaker verification reduces to minimizing
an O(d2) parameter function. It is remarked in [10] that these
methods can suffer from data insufficiency. Moreover, the large
amount of parameters to estimate may cause over-fitting to de-
velopment data, recalling limits of the approach. Therefore,
constrained DT have been proposed. That is, DT training only a
small amount of parameters, of orderO(d) or evenO(1). These
approaches have provided interesting performance. In [10], a
single coefficient is optimized for each dimension of the i-vector
(O(d) DT) or even the four feature kinds that make up score of
(3) (O(4) DT). In [11], mean vector µ and only eigenvalues of
PLDA matrices ΦΦt and Λ are trained by DT and, even, their
scaling factors only.

On the other hand, parameters to estimate derive from co-
variance matrices of a probabilistic model. Matrices ΦΦt

and Λ are positive-(semi)definite, and it has been noticed [7]
that matrices P and Q of (4) are positive-(semi)definite and
negative-(semi)definite. These properties impose constraints
during the DT-minimization phase, keeping in mind that ob-
jective functions as TCE rely on Gaussian modeling. Having
to handle ΦΦt and Λ eigenvalues, [11] includes a flooring of
parameters. In [10], working with singular value decomposition
of these matrices attempts to respect these conditions.

4. Additional normalization procedure
Once i-vectors have been normalized, their length is equal to
1, but it is also worth noting that their within-class covariance
matrix W is almost exactly isotropic [14], i.e. W ≈ σI where
σ is a positive real and I is the d×d identity matrix. This entails
properties which could be taken advantage of for discriminative
classification.

We propose to add a supplementary step to the normaliza-
tion procedure. I-vectors of training and test are rotated by the
eigenvector basis of between-class covariance matrix B of the



training dataset. By this way, the new between-class covari-
ance matrix is diagonal, with its diagonal equal to its eigenvalue
spectrum. Moreover, the new within-class covariance matrix re-
mains almost isotropic (and therefore diagonal), as the eigen-
vector basis is orthogonal. It stems from these remarks that the
new total covariance matrix is almost diagonal. We consider
that metaparameters ΦΦt, Λ of PLDA also become almost di-
agonal, and even isotropic for Λ. As a consequence, P and
Q of score (3) are almost diagonal. PLDA score of (3) can be
rewritten as:

si,j =

d∑
k=1

{
pkwi,kwj,k + 1

2
qk
(
w2
i,k + w2

j,k

)
− (pk + qk)µk (wi,k + wj,k)

}
+ resi,j (8)

where p ∈ Rd (resp. q) denotes the diagonal of P (resp. Q)
and the residual term resi,j sums all the off-diagonal terms and
constant offsets. Thus, we assume that the major proportion of
variability in this score is contained into these d diagonal terms.

Moreover, if the eigenvector basis of B used for rotation is
sorted in decreasing order of eigenvalues, the first r terms are
approximately those of the r-dimensional eigenvoice subspace
of PLDA. This assumption stems from the fact that these first r
dimensions are approximately those of the r-rank subspace of
deterministic LDA, since the LDA solution is the r-range of the
first eigenvectors of W−1B, which is here approximately equal
to B. The score can be rewritten as:

si,j =

r∑
k=1

{
pkwi,kwj,k + 1

2
qk
(
w2
i,k + w2

j,k

)
− (pk + qk)µk (wi,k + wj,k)

}
+ res

′
i,j (9)

where res
′
i,j sums all the diagonal terms beyond the rth dimen-

sion, all the off-diagonal terms and offsets.
Consequently, we assume that the major proportion of score

variability is contained into the first r diagonal terms of (8). By
this way, the O(d2) initial discriminative classifier can be re-
placed by a constrained O(r + 1) discriminative classifier with
a minimal loss of accuracy. This classifier relies on the complete
PLDA score (including all its terms) but focuses on its princi-
pal components. Section 6 includes an empirical analysis of
PLDA parameters diagonality and isotropy, after the additional
normalization procedure.

5. Discriminative classifiers specific to
normalized i-vectors

5.1. With logistic regression

Both DT approaches for speaker verification recalled in Sec. 3
can be adapted to the previous score decomposition. First, let
define the R3r+1 expanded vector ϕi,j equal to:

ϕi,j =


w

(r)
i ◦w

(r)
j

w
(r)
i ◦w

(r)
i + w

(r)
j ◦w

(r)
j

w
(r)
i + w

(r)
j

res
′
i,j

 (10)

where the superscript (r) indicates the first r components of a
vector and the symbol ◦ denotes the element wise product. The
score of (9) becomes:

si,j = ϕti,j .


p(r)

1
2
q(r)

−
(
p(r) + q(r)

)
◦ µ(r)

1

 (11)

Logistic regression based-DT can be performed by optimizing

ω =
[
p(r) 1

2
q(r) −

(
p(r) + q(r)

)
◦ µ(r) 1

]t
.

Second, a (µ,Φ,Λ) PLDA parameter based-DT can be per-
formed. After B-rotation, ΦΦt and Λ are close to be diagonal.
We propose to approximate ΦΦt and Λ by their diagonal ver-
sion. Let denote by δ, λ the diagonal of the r × r-upper-left
block of ΦΦt, Λ, respectively. In the score of (3) simplified in
(9), p,q and offset become, respectively:

pk =
δk

2δkλk + λ2
k

qk = pk −
δk

δkλk + λ2
k

log
|ΦtΛ−1Φ+Ir|
|2ΦtΛ−1Φ+Ir|

1
2

= log

(
δk
λk

+ 1

)
− 1

2
log

(
2δk
λk

+ 1

)
(12)

DT is performed by training ω = [δ, λ, µ]t. In order to preserve
isotropy of the channel component, Λ is further constrained by
only updating matrix scaling (i.e. λ → ωλλ, ωλ real), so that
ω =

[
δ ωλ µ

]t ∈ R2d+1. As si,j is no longer a lin-
ear function of ω, computation of the Hessian H is more com-
plicated. The second order derivative ∂2E(ω)

∂ωk∂ωk′
of E (ω), for

1 < k, k′ < 2d+ 1, is equal to:

Hk,k′ =

n∑
i=1

n∑
j=1

(
ai,j

∂si,j
∂ωk

× ∂si,j
∂ωk′

+ bi,j
∂

∂ωk

(
∂si,j
∂ωk′

))
(13)

where ai,j = αi,jσ (−ti,jsi,j) (1− σ (−ti,jsi,j)) and bi,j =
αi,j (−ti,j)σ (−ti,jsi,j).

As ΦΦt and Λ are close to be diagonal, it can be noticed
that δ and λ are close to their eigenvalues spectra. Thus, this
DT method is those proposed in [11] applied to a simplified
modeling.

5.2. Orthonormal discriminative classifier

Defining the expanded Rr+1 vector ϕi,j of a trial (wi,wj) by:

ϕi,j =




p(r) ◦w
(r)
i ◦w

(r)
j

+ 1
2
q(r) ◦

(
w

(r)
i ◦w

(r)
i + w

(r)
j ◦w

(r)
j

)
−µ(r) ◦

(
p(r) + q(r)

)
◦
(
w

(r)
i + w

(r)
j

)


res
′
i,j


(14)

score of (9) can be written as si,j = ϕti,j .1r+1, where 1r+1

is the Rr+1 vector of ones. As formulated, PLDA score is ge-
ometrically the projection of an expanded vector ϕi,j onto the
axis 1r+1, i.e. onto the normal vectorial line of a separation hy-
perplane. Considering this formulation, speaker detection mea-
surement of PLDA score can be reinterpreted. PLDA claims that
vector 1r+1 is, statistically, the best speaker discriminant axis
(the more discriminant and the more generalizable) in this ex-
panded vector space. That is, that all other axes of this space



are not speaker-discriminant, or too correlated to the latter to
improve accuracy of detection. We assume that useful informa-
tion could be extracted from the complementary of the normal
vector 1r+1.

Let denote by (αt, gt,Wt) and (αn, gn,Wn) the order 0, 1
and 2 statistics (prior, mean and covariance) of a target and non-
target trial expanded vector dataset, respectively. Mean value of
this set is equal to αtgt +αngn, within-class covariance matrix
is equal to W = αtWt + αnWn and a straightforward com-
putation shows that its between-class covariance matrix is equal
to B = αtαn (gt − gn) (gt − gn)t. In the case of a two-class
classifier, Fisher’s linear discriminant [17] extracts a discrimi-
nant axis u by maximizing the following Fisher criterion:

utBu
utWu

(15)

This maximization problem has a closed-form solution, given
as the eigenvector ofW−1B corresponding to the largest eigen-
value. It can be shown that the eigenvector u and eigenvalue λ
provided by this method are equal to:

u =W−1 (gt − gn)

λ =
utBu
utWu

= αtαn (gt − gn)tW−1 (gt − gn) (16)

As noticed in [17], the projected data onto the vectorial line of
u can be used to construct a discriminant score.

As the rank of W−1B is equal to 1, only one axis can be
found out by this method. The resulting score ϕti,j .u would
yield a poor performance. In [18], a method is proposed to ex-
tract more axes than classes, whilst using the Fisher criterion.
We refer to this method as “Orthonormal Discriminative (OD)
classifier”. Once the unique eigenvector ofW−1B (i.e. the only
one corresponding to a non-null eigenvalue) has been extracted,
data are projected onto its orthogonal subspace and the Fisher
criterion based-extractor is reiterated. Given a training corpus
T of target and non-target trial expanded vectors, the following
algorithm describes this method:

for k = 1 to K
Compute means g(k)t , g

(k)
n and covariance

matricesW(k)
t ,W(k)

n of T .
Extract vector u(k) so that:

u(k) =
(
αtW(k)

t + αnW(k)
n

)−1 (
g
(k)
t − g

(k)
n

)
Project T onto the orthogonal subspace of u(k).

This method has been successfully used in fields such as face
recognition [19, 20]. It has been noticed that Fisher’s linear dis-
criminant is equivalent to the maximum-likelihood parameter
estimates of a Gaussian model, under some assumptions. But
expanded vectors do not follow Gaussian distribution. It can
be shown that the first r components of ϕi,j given an i-vector
wi and i-vector normal prior follow independent non-central χ2

distributions with 1 degree of freedom and distinct non-central
parameters for target and non-target trials. However, consider-
ing the original Fisher geometrical approach, this method may
succeed in improving speaker detection accuracy without as-
sumptions of Gaussianity for the expanded vector distribution.

OD extracts a set of K discriminant axes u(1), ..., u(K) .
The main issue that needs to be addressed is to combine this
set in a unique vector u for application in speaker verification.

Weights {ωk}Kk=1 have to be estimated, so that the score be-
comes:

si,j = ϕti,j .

K∑
k=1

ωku
(k)

=

K∑
k=1

ωk
(
ϕti,j .u

(k)
)

(17)

Instead of a development step intended to estimate these
weights, whose robustness could be questioned, we propose
the following reasoning: given the random vector ϕ of target
and non-target trials expanded vectors, let denote by u/ ‖u‖ its
length-1 resulting vector as defined in (16), and by E its total
covariance matrix B+W . The variance of scores ϕt.u/ ‖u‖ is
equal to:

var

(
ϕt.

u

‖u‖

)
=
utEu
‖u‖2

=
utBu+ utWu

‖u‖2

=
(λ+ 1)

‖u‖2
utWu

=
(λ+ 1)

‖u‖2
(gt − gn)tW−1 (gt − gn)

=
λ (λ+ 1)

αtαn ‖u‖2
(18)

This shows that dispersion of OD-scores is a function of
the Fisher criterion λ. As this criterion measures the two
classes separation and has been shown to decrease along iter-
ations [19], we propose to adjust score variance to the value
λ (λ+ 1) / (αtαn), thus to assign the valueW−1 (gt − gn) to
u. The weighted sum of extracted vectors provides the follow-
ing normal vector:

u =

K∑
k=1

(
αtW(k)

t + αnW(k)
n

)−1 (
g
(k)
t − g

(k)
n

)
(19)

where the decreasing series of score variance is equal to
λ(k)(λ(k) + 1)/ (αtαn). The optimal number of kept axes K
is determined on a development set.

For fast training, OD-extractor can be parallelized. Given
a training dataset T and a partitioning {Tq}q of T , the mean
vector and covariance matrix (µ,Σ) of T can be expressed as
a combination of means and covariance matrices (µq,Σq) of
Tq subsets. Moreover, extracting these discriminant axes does
not require to project data onto the orthogonal subspace of the
latest axis and to compute their statistics, at each iteration. To
our knowledge, this observation has never been made, thus we
detail below the fast algorithm used for OD axis extraction:

M = Ir
for k = 1 to K
v = (αtWt + αnWn)−1 (gt − gn)

u(k) = Mv
Compute matrix V of last (r − k) eigenvectors

of v
‖v‖

(
v
‖v‖

)t
.

gt = V
t

gt ; gn = V
t

gn

Wt = V
t

WtV ;Wn = V
t

WnV
M = MV



Table 1: Analysis of PLDA parameters before and after the B-
rotation additional normalization procedure.

before after
male female male female

Diagonality of:
ΦΦt 0.23 0.15 0.95 0.97
P 0.48 0.25 0.98 0.96
Q 0.41 0.23 0.96 0.97

Isotropy of Λ 0.98 0.96 0.99 0.97
Residual variance 0.29 0.42 0.004 0.004

We assume that this method could improve accuracy of prob-
abilistic model for speaker verification, but only if each com-
ponent of the expanded vector has some discriminant power.
That is, if its value for target trials is likely higher or lower
than for non-target trials. Thus, we do not split the two terms
(pk...,qk...) of the kth dimension, so that the expanded vector
of (14) is left intact, except the (r + 1)th residual term which
is considered as non-discriminant and is dropped. The score
becomes a dot product between Rr expanded vectors and the
vector u estimated by using OD-training.

After OD-extraction, the resulting score can be summarized
by the sum of two terms s[1]i,j + s

[2]
i,j where:

s
[1]
i,j =

r∑
k=1

ukpk (wi,k − µk) (wj,k − µk)

s
[2]
i,j =

1

2

r∑
k=1

ukqk
(
(wi,k − µk)2 + (wj,k − µk)2

)
(20)

As written above, we consider that OD would fail to op-
timize weights of these two terms, as the R2 expanded vector
components do not have discriminant power. Thus, in order to
optimize these weights, we perform a fusion by logistic regres-
sion [16], estimating (ω1, ω2) so that the final score becomes:

si,j = ω1s
[1]
i,j + ω2s

[2]
i,j (21)

6. Experiments
Our experiments operate on 19 LFCC parameters augmented
with 19 first (∆) and 11 second (∆∆) derivatives. A normal-
ization process is applied, so that the distribution of each cep-
stral coefficient is 0-mean and 1-variance for a given utterance.
The low-energy frames (corresponding mainly to silence) are
removed. Gender-dependent 512 diagonal component UBM
and total variability matrix of low rank 400 are trained on NIST
SRE 2004, 2005, 2006 and Switchboard data. PLDA systems
and discriminative classifiers are trained using i-vectors ex-
tracted from 24100 utterances from 2012 female speakers and
15660 utterances from 1147 male speakers, from the same cor-
pus. Results are presented for the extended condition 5 (tel-tel)
from NIST SRE 2010 evaluation. The reported numbers are
equal error rate (EER), the two minimum decision cost function
(DCF) scores corresponding to the two operating points as de-
fined by NIST for the SRE 2008 (minDCF08) and SRE 2010
(minDCF10) evaluations [21], and Cmin

llr [22]. The minimum
DCF score for 2010 evaluation is normalized by 103, whereas
the minimum DCF score for 2008 is normalized by 10. Separate
results are provided for male and female speakers.

Table 1 shows results of an analysis of PLDA matrix pa-
rameters, before and after the additional normalization proce-
dure of B based-rotation presented in Sec. 4, computed with

Table 2: Speaker recognition results obtained by the different
generative and discriminative systems.

Male set
Method EER minDCF10 minDCF08 Cmin

llr

PLDA 2.15 0.473 0.125 0.087
simpl. 2.15 0.476 0.127 0.087
LR O(3r + 1) 2.40 0.458 0.140 0.093
LR param 2.17 0.498 0.127 0.086
OD 2.10 0.467 0.121 0.085
OD+LR O(2) 2.12 0.480 0.122 0.083

Female set
Method EER minDCF10 minDCF08 Cmin

llr

PLDA 3.01 0.585 0.167 0.112
simpl. 3.07 0.597 0.166 0.113
LR O(3r + 1) 3.18 0.611 0.180 0.120
LR param 3.05 0.592 0.165 0.113
OD 2.88 0.588 0.162 0.108
OD+LR O(2) 2.88 0.589 0.162 0.108

our development data. Here and in all the following, the value
of r is fixed to the optimal PLDA eigenvoice rank. Diagonal-
ity of ΦΦt, P and Q of equations(1) and (3) is estimated, also
isotropy of Λ. Diagonality of a symmetric matrix A can be
measured by the ratio:

Tr
(
diag (A)2

)
Tr (A2)

(22)

where Tr () is the trace operator and diag (.) denotes the diago-
nal “version” of A (all its off-diagonal values equal zero). This
measure is the square-length ratio between A and its orthogonal
projection onto the d× d diagonal matrix subspace (which can
be identified as Rd). The maximal value of 1 indicates that A
is exactly diagonal. Table 1 confirms the assumptions of Sec.
4. All these matrices are very close to be diagonal after the ad-
ditional normalization procedure, for both genders. To measure
isotropy of Λ, the ratio:

m2
Λ

d× Tr (Λ2)
(23)

is computed, where mΛ denotes the mean value of Λ-diagonal.
Similarly, this measure is the square-length ratio between Λ
and its orthogonal projection onto the 1 × 1 matrix subspace
(which can be identified as R). Also, Table 1 confirms that Λ
(which is almost isotropic before rotation, as data have been
W-normalized) remains close to isotropy after rotation. Last
row of Table 1 shows the ratio of variance between the residual
term res

′
i,j and the whole score of (9). Ratios are close to 0

for both gender sets after rotation, confirming that PLDA score
can be limited to this O(r) sum of terms with a minimal loss of
accuracy.

Table 2 provides speaker recognition results for the differ-
ent systems presented above. 1st row of the Table reports the
best performance yielded by PLDA system (the optimal eigen-
voice rank is equal to 100 for female set, 200 for male set). 2nd

row shows performance of a simplified score drawn from (9),
in which the residual term has been dropped. Results are equiv-
alent to those of PLDA system, confirming the assumptions of
Sec. 4 in terms of performance.

3rd and 4th row show results of the two logistic regression
based-DT proposed in Sec. 5, based on coefficients or PLDA



parameters training. Both DT fail to optimizing PLDA parame-
ters. Performance of the second system, which follows [11], are
equivalent to those of PLDA, which raises questions. The first
system, based on LLR score coefficients, even degrades per-
formance. It seems that this method over-fits to training data,
even if the number of parameters to be estimated has been con-
strained.

The fact that LR-DT are based on Gaussian assumptions
may limit effectiveness of these methods, since Gaussianity of
vectors has been significantly improved by pre-normalization,
thus brought closer to an optimal Gaussian modeling. 5th row
of Table 2 presents results of the OD-classifier, and 6th row of
the same system than the 5th followed by theO(2) LR-classifier
of equation (21). The number of kept axes, estimated on a de-
velopment set, is equal to 7. In order to take into account even-
tual distortions of the non-target expanded vector distribution in
regions of false alarms, OD model is trained using only the non-
target expanded vector subset providing the 10% highest PLDA
scores. 5th row shows that this method succeeds in improving
PLDA parameters, in terms of speaker detection. The gain is
slight for male set, more significant for female set. The addi-
tional step of O(2) LR-DT (6th row) turns out to be useless. It
can be noticed that results of more sophisticated variants of OD
(ULDA [23], Foley-Sammon LDA [24]) are not reported here,
as they did not yield satisfying performance.

The gap of OD-classifier performance between gender sets
raises an issue, about dependency of the method to the config-
uration. In order to better assess the ability of OD-classifier
to improve PLDA models for speaker verification, we carried
out the same experiments with i-vectors 2011 provided by Brno
University of Technology (BUT). Detailed description of their
configuration can be found in [25]. The i-vector size is equal
to 600 and the optimal PLDA eigenvoice rank to 80 for both
gender sets. PLDA training uses 21475 sessions of 1575 speak-
ers for male, 27155 sessions of 2012 speakers for female. Ta-
ble 3 presents results for this configuration. The same observa-
tions than for Table 2 apply to the first four systems. For OD-
classifier systems, the number of kept axes is equal to 3. This
method provides significant improvements of performance, in
terms of all the detection measures, in particular of EER. The
slight gain observed for the previous male evaluation of Table 2
may be explained by a lack of training vectors (about 15000 in-
stead of more than 20000 for other sets). 6th row shows that,
again, the additional O(2) LR-DT does not improve perfor-
mance once OD-classifier has been carried out.

Furthermore, the training of OD system matrices Wt and
Wn presented in Sec. 5 was parallelized, as proposed in this
section. Splitting the task in 20 processes, less than 30 minutes
was needed to train gender system matrices on an usual config-
uration. Following extraction of OD-axes required less than 5
minutes with the fast algorithm of Sec. 5.

7. Conclusions
Discriminative training (DT) techniques have proven to be ef-
ficient for optimizing parameters of the initial speaker verifi-
cation Gaussian modelings based on i-vector (two-covariance
model, PLDA). But their benefits become less significant when
i-vectors are initially normalized (the most currently used pro-
cedures being comprised of within-class covariance and length
normalization), while these procedures allow Gaussian systems
to achieve best performance. Several work have pointed out
that discriminative approaches can suffer from various limita-
tions, as data insufficiency, over-fitting on development data or

Table 3: Speaker recognition results with BUT i-vectors 2011.
Male set

Method EER minDCF10 minDCF08 Cmin
llr

PLDA 1.03 0.309 0.061 0.040
simpl. 1.05 0.291 0.064 0.040
LR O(3r + 1) 1.24 0.342 0.076 0.047
LR param 1.06 0.294 0.062 0.040
OD 0.95 0.282 0.060 0.038
OD+LR O(2) 0.96 0.281 0.059 0.038

Female set
Method EER minDCF10 minDCF08 Cmin

llr

PLDA 1.79 0.331 0.102 0.063
simpl. 1.77 0.326 0.099 0.061
LR O(3r + 1) 1.78 0.331 0.101 0.064
LR param 1.72 0.336 0.101 0.061
OD 1.56 0.326 0.095 0.058
OD+LR O(2) 1.56 0.323 0.095 0.059

metaparameters conditions, leading to constrained versions.
The additional normalization procedure that we propose (a

simple rotation by between-class covariance matrix, which does
not modify distances between i-vectors) leads to a functional
form for verification scores derived from PLDA, which allows
us to control the number of trainable parameters. The original
discriminative classifier, of order the square of the i-vector size,
can be replaced by constrained discriminative classifiers of low
order with a minimal loss of accuracy.

Experiments carried out on current NIST evaluations sets
show that logistic regression (LR) based-discriminative train-
ings, which we adapt to the new normalized distribution of
i-vectors, continue to suffer from data insufficiency or over-
fitting on development data. Giving up the LR approach, a new
method in the field is proposed to extract discriminative axes
by using the Fisher criterion (OD). Unlike the usual discrimina-
tive classifiers, which attempt to find out a unique normal vector
of a separation hyperplane, the proposed method extracts a dis-
criminant subspace (by decreasing variance, in a way similar
to singular value decomposition), then combine its basis to find
out the unique normal vector needed by speaker detection. This
combination is done without the need to tune the weights of
the discriminant axes set. Experiments show that this method
is able to significantly improve performance of Gaussian PLDA
systems, even when i-vectors are normalized. As far as training
complexity is concerned, OD training also has the advantage
of not being demanding in terms of time and memory require-
ments.

Future work should test OD method on specific conditions,
as short duration or noisy utterances. Accurate estimation of
the speaker variability is more difficult with these conditions,
and Gaussian PLDA modeling could benefit from this addi-
tional discriminative training. Also, it has been shown in [26]
that the normalization and PLDA framework can be success-
fully applied in speaker diarization to low rank total variability
factors provided by a deep neural network. Testing OD method
on i-vector-like representations would be of interest.
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