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Abstract :

Electrochemical detection of nitric oxide using different electrode materials and strategies 

exploded after the discovery of nitric oxide as important biological messenger. S-nitrosothiols 

(RSNOs), which result from interaction of NO with peptides and proteins, were shown to be 

important pools of NO that interfere in different physiological and pathological conditions. 

This lead to development of several decomposition methods to detect RSNOs 

electrochemically. This mini-review summarizes the beginning and the current investigations 

in electrochemical methods to detect NO and RSNOs. Indeed, it describes the latest trends to 

detect NO and RSNO using microfluidic technologies coupled to electrochemistry and discuss 

the future of NO and RSNOs detection.

Electrochemical detection of NO

Nitric oxide, NO was first characterized in 1987 as endothelial-derived relaxing factor and it 

was reported that it is produced by endothelial cells in blood vessels and diffuses to the adjacent 

smooth muscles to cause vasodilatation** [1]. Since this initial report that resulted in R. F. 

Furchgott , L. J. Ignarro and F. Murad receiving the Nobel Prize in Physiology and Medicine 

in 1998, there has been an explosion of research activity showing that NO release occurs not 

only from endothelial cells but also from neuronal [2], tumoral [3] and immune system cells [4] 

etc. The huge and intense research activities in these fields have resulted in more than 268 000 

papers being published in the literature during the last 20 years. NO is a free radical that reacts 

very fast with oxygen, peroxides, O2-radicals (superoxide O2
•-), metallic ions and 

metalloproteins [5]. This explains its fleeting existence and extremely low concentrations in 

biological systems. Its total free concentration in physiological conditions has been established 

recently in a range to be 0.1 µM down to 5 nM, which is orders of magnitude lower than once 

though a decade ago [6]. 

Several strategies have been proposed for NO detection. The only ones that allow direct, real 

time, label free and in vivo detection of NO are those based on the electrochemical detection of 

NO using ultramicroelectrodes (UMEs) , electrodes having one dimension less than 25 µm 

**[7-44]. Electrochemical NO-sensors based on UMEs offer: (i) good selectivity factors > 100; 



(ii) good sensitivity (down to the nanomolar range); (iii) fast response (within the millisecond 

scale time); (iv) long-term stability (over 1-2 hours); (v) non-destructive technique in close 

proximity to the site of release (single cells, organelles). Several groups have worked on the 

detection of NO itself which can be oxidized or reduced depending on the potential utilized. It 

can undergo mild cathodic reduction by gaining one electron at potentials from -0.5 to -1.4 V 

vs Ag / AgCl. However, the detection of NO through its reduction suffers from severe 

limitations due to the presence of O2 which is a major interfering because it is more easily 

reduced than NO. Direct electro-oxidation of NO is the most used approach for its detection. 

NO oxidizes at potentials higher than 0.8 V vs Ag / AgCl. This leads to selectivity problems 

because a lot of biologically relevant molecules such as nitrite, dopamine, and urea are oxidized 

at such high potentials. 

The electrode materials usually employed are platinum** [7], platinum alloy (90% Pt, 10% Ir) 

[9], gold** [10], glassy carbon [18] and carbon fibers [12]. The electrode material and surface 

characteristics affect the potential at which NO is oxidized, the selectivity, the sensitivity, the 

signal stability and the quality of the ensuing analytical measurements [16,**19,30,38]. For 

example, the platinization of the platinum electrode or carbon nanoelectrode surface gives faster 

electron transfer and lowers NO reduction [31,32] or oxidation [33] potentials, respectively. 

Recently, modification of glassy-carbon electrodes with graphene-gold nanocomposite [34] or 

elaborating a 3D nanoporous gold microelectrode [35] improved the performances of the 

sensors. Govindhan et al. [36] summarized the recent advances in platinum-based 

nanomaterials for amelioration of sensitivity and selectivity of NO detection by changing the 

electronic exchange surface properties. To overcome the problems of selectivity two main 

approaches have been developed through the use of membranes selective to NO and / or the use 

of electrocatalytic moieties that decrease the potential of NO oxidation.

The first “NO sensor” in brain tissue was Shibuki’s electrode** [7] (Figure 1a). The author 

succeeded in detecting NO by modifying of the Clark’s electrode that was developed for O2. 

The gas permeable membrane used was wax printed and sealed twicely with chloroperene 

rubber. This approach improved the selectivity against nitrite but lacked reproducibility. 

Although this sensor allows the very first studies of in vivo NO, its response time (ca. 1 s) and 

the fluctuations of the background signals make it useless for most biomedical applications. 



The second approach of elaborating NO-sensor iss based on the immobilization of NO-

permeable membranes directly on the metal without the use of internal solution (Figure 1b). 

Such an electrode is amenable to miniaturization and uses a multilayer membranes that permits 

selectivity against several possible biological interferences [*16,**19,30,38]. Indeed, several 

kinds of membranes have been deposited on electrodes. Anionic and cationic membranes act 

by electrostatic repulsion improving selectivity against interferences. Bedioui et al.** [10] used 

for the first time microelectrodes of gold coated by Nafion for detection of NO. The linearity 

of the calibration curve was between 10-100 µM. Other membranes were evaluated, including 

polycarbazole, polydimethylsiloxane, polystyrene (PS), fluorinated xerogel, 

polytetrafluoroethylene (PTFE) and o-phenylenediamine (o-PD) [*16,**19,30,31,38]. 

Multilayered polymers have also be used to ensure the impermeability to the largest amount 

possible of analytes except NO. A compromise should be found between selectivity and 

sensitivity since thicker membranes lead to lower sensitivity. Among the various methods of 

depositing membranes on the surface of the electrodes, electropolymerisation represents an 

elegant method since it permits controlling the thickness of film and covering small irregular 

spaces* [16]. The monomers usually used are eugenol, phenol, aniline, o-PD. 

The third approach involves the use of an electrocatalyst (metallo-porphyrins or metallo-

phtalocyanines) to improve the electron transfer inducing a negative shift of the oxidation 

potential by 0.15 V and an increase in sensitivity by ca 1.5-3 times [**19,**39-41] (Figure 1c). 

The electrocatalyst layer is deposited directly on the metal and other layers (size or charge 

excrusion) can be added to provide the sensor with more selectivity. A fourth rarely used 

approach consists in the use of a composite material made from catalyst and permselective 

membrane [38]. 

In all cases the performances of the prepared sensors depend on several parameters such as (i) 

the electrode material and the conditions of polymerization that affect the properties of a 

electrochemically prepared polymer modified electrode* [17], (ii) the potential necessary for 

NO detection which depends on the nature of the substrate, the electrocatalytic properties of the 

membrane and on the surface roughness [30] and (iii) the electrochemical techniques which are 

usually simple amperometry, pulsed chronamperometry, differential normal pulse 

amperometry and differential normal pulse voltamperometry* [16].



Figure 1: General types of electrochemical NO sensors (a) Clark’s type electrode, (b) whole solid type 

electrode and (c) composite electrode. Adapted from [30]

Electrochemical detection of S-nitrosothiols

In order to be transported and stored in biological fluids, NO binds to the sulfhydryl groups of 

peptides and proteins forming S-nitrosothiols that play important roles in several physiological 

functions **[45-52] and physiopathological events [53-58]. They exist in biological media at 

concentrations that vary between tenth of nanomolar to less than ten micromolar **[59-61] and 

there is no gold standard method to determine their biological concentrations. They can be 

directly detected if the RS-NO bond remains intact or otherwise indirectly determined [62,63]. 

Indirect detection methods are based on a two-step protocol: decomposition of the RS-NO bond 

followed by the detection of the decomposition products (NO, nitrite or thionyl moiety) using 

electrochemical, spectrophotometric, or fluorescent methods, biotin switch methods or 

chemiluminiscence assays [31,**59,64-67] (figure 2). Electrochemical methods represent 

direct, real time, and label-free detection approach that can be used for in vivo applications 

[31,*60]. RSNOs can be decomposed through different pathways [68] such as metal cation 

catalysis *[69], ascorbic acid [70], heat [69,71], infrared, ultraviolet [72-74] or visible light 

[46,72,75,76]. However, they mainly lead to partial and non-reproducible decomposition that 

can be detrimental for accurate detection. Furthermore the decomposition processes can be 

multiple: homolytic cleavage giving rise to the formation of unstable NO• and RS• that can lead 

to nitrite and other end-products, or heterolytic cleavage leading to RS- and NO+ which rapidly 

forms nitrite (figure 2).
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Figure 2: General scheme for S-nitrosothiols (RSNOs) indirect quantitation. Decomposition is done using 

mercuric (II) ion (Hg2+), cuprous ions (Cu+), heat ( ) or light (hv). This decomposition is followed, depending ∆

on the nascent product, by adequate detection method (fluorescence, colorimetry, chemiluminescence, or 

electrochemistry)..

Electrochemistry can be implemented for RSNOs detection through the determination of NO 

released upon their decomposition. Only one study reported on the direct RSNOs detection 

thanks to their reduction at gold and glassy carbon electrodes in acidic medium at pH 4 [77]. 

Very little application of RSNOs electrochemical reduction (between -0.6 and -0.9 V vs Ag / 

AgCl) is found in literature, probably due to the possible interferences of O2 and other 

molecules and to the low sensitivity of the method. Thus, the most used strategy consists in 

chemical decomposition of RSNOs into NO or nitrite and then the detection of the resulting 

molecules by electrochemistry. The decomposition is accomplished mostly by Cu+ catalyst. 

Several methods have been used (Table 1) (i) Cu+ can be added directly using CuCl , (ii) Cu2+ 

can be added with a reducing agent such as thiol or ascorbic acid to give Cu+ *[78] or (iii) Cu 

metal can be oxidized to produce Cu+. For example, Meyerhoff et al. [79-**82] have used a 

strategy where the catalyst is immobilized in a polymeric membrane near to the NO sensor. The 

catalysts used were copper, organoselenium and organotelluride nanoparticles. Recently, a new 



method was developed by Baldim et al. to analyze RSNO electrochemically after 

decomposition by gold nanoparticles *[83]. Light decomposition and electrochemical detection 

of NO have also been used to analyze RSNOs [76,**84]. 

Table 1: Different methods of decomposition by copper  and other organometals to detect RSNOs. 

Adapted from [*60,76,*78,*83]

RSNOs 
decomposition

RSNOs sensor 
configuration

E
(V/ref) LOD RSNO 

tested
Sensor 
lifetime

Interfering compounds 
tested

Biological 
samples

Catalyst: Cu(NO3)2 
+ thiol (L-cysteine 

or glutathione)
ISO-NO WPI 0.8 V  50 ≈

nM

GSNO, 
SNAP, S-
nitrosated 

bovine 
serum 

albumin

n.d.

Nitrosomorpholine (no response 
up to 1 nM), N-nitroso-N-

methylurea (no response up to 1 
mM), Isoamylnitrite (no 
response up to 0.7 mM), 

Nitroglycerol (no response up to 
4 mM), NO2

- ( no response up to 
50 )𝜇𝑀

_

Catalyst: CuCl

ISO-NO Mark II 
WPI: carbon fiber 

(=100 nm diameter) 
/ Nafion / WPI 

membrane

0.865 V 10 ≈
nM

GSNO, 
SNAP, 

AlbSNO
n.d.

NO2
- (no response at 50 , 𝜇𝑀)

AA (no response at 50 ), L-𝜇𝑀
Arg (no response up to 100 ), 𝜇𝑀

DA (no response at 10 ), 𝜇𝑀
NH3(g) (no response at 1 𝜇𝑀), 
CO2(g) (no response at 1 ), 𝜇𝑀
CO(g) (no response at M)1 𝜇

_

Catalyst: CuCl

Pt disk (200  𝜇𝑀
diameter) / poly-

Cu(II)TAPc / 
Nafion

DPV 4 nM≈ GSNO n.d.

NO2
- (no response at 10 , 𝜇𝑀)

UA (no response at 100 ), 𝜇𝑀
AA (no response at 100 , 5-𝜇𝑀)
hydroxyindole-3-acetic acid (no 

response at 10 ), 3,4-𝜇𝑀
dihydroxyphenylacetic acid (no 
response at 10 ), DA (peak at 𝜇𝑀
0.3 V above 1 ), Epinephrine 𝜇𝑀
(above 1 , peak observed at 𝜇𝑀

0.3 V), 5-hydroxytyptamine 
(above 1 , peak observed at 𝜇𝑀

0.3 V)

Whole blood

Catalyst: Cu(II)-
ligand complex or 
Cu(II)phosphate or 
Cu(0) particles as 

the copper source + 
ascorbate

Platinized Pt disk 
(250 diameter) / 𝜇𝑀

PTFE / Copper-
based catalytic 

membrane

0.75 V n.d.

SNAP, 
SNAC, 
CysNO, 
GSNO, 

AlbSNO

10 days NO2
- ( no response from 0.1 to 

100 )𝜇𝑀 Whole blood

Catalyst: CuSO4 + 
GSH

UME Platinum (25 
µm) 0.8 V 100 nM GSNO 1 day nitrite _

Catalyst: 
organoselenium

Platinized Pt disk 
(250 diameter) / 𝜇𝑀

PTFE / 
organoselenium 

catalytic hydrogel

0.75 V <0.1 
𝜇𝑀

SNAC, 
SNAP, 
SPA, 

CysNO, 
GSNO, 

AlbSNO

10 days n.d. Whole blood

Catalyst: 
organotelluride

Platinized Pt disk 
(250 diameter) / 𝜇𝑀

PTFE / 
organotelluride 
based hydrogel

0.75 V <0.1 
𝜇𝑀

SNAP, 
GSNO, 
CySNO, 
AlbSNO

>1 month n.d. Whole blood

Catalyst: 
organoselenium

Platinized Pt disk 
(250 diameter) / 𝜇𝑀

PTFE / 
organoselenium

0.75 V <20 𝜇𝑀
GSNO, 
CySNO, 
AlbSNO

10 days

NO2
-: sensitivity ratio S(NO2

-

)/S(NO) = 10-6, AA: sensitivity 
ratio S(NO)/S(AA)= 10-6, N-
nitroso-1-proline sensitivity 

ratio: S(N-

Whole blood



nitrosoproline)/S(NO)= 10-4, 
NH3/NH4

+

Catalyst: 
electrochemically 
oxidized Cu(0) in 

the presence of 
ascorbate

Micrometric ring-
disc: central disc 

(50  diameter) = 𝜇𝑀
Cu(0), ring = NO 

sensor (gold / poly-
eugenol / 

polyphenol)

0.70 V n.d. GSNO n.d.
NO2

- (sensitivity ratio: 9x10-4), 
H2O2 (sensitivity ratio: 3.9x10-2), 
AA (sensitivity ratio: 1.8x10-2)

GSNO in 
serum

Catalyst: gold 
nanoparticles

UME Platinum (25 
µm) 0.8 V 100 nM

GSNO and 
total 

RSNOs in 
plasma

1 day nitrite
Total RSNOs 

in human 
plasma

Catalyst: visible 
light

Xerogel-modified 
platinum disk (2 
mm) electrode

0.8 V

CySNO 
(40 nM)
GSNO 

(30 nM)
AlbSNo 

(0.42 
µM)

CySNO, 
GSNO, 

AlbSNO
nitrite

Low 
molecular 

weight 
RSNOs in 

Porcine 
plasma

Microfluidic devices with electrochemical detection for analysis of NO and 

RSNOs : current prospects and their future development

Microfluidic devices permit the use of significantly reduced sample volumes, improving amenability to 

clinical analysis [*85,86]. Bedioui et al. **[87] was the first to elaborate an amperometric fluidic 

microchip array for the detection of NO. Later on several researchers have detected NO in microfluidic 

devices using amperometry [88-90]. Most of these NO detections were done for NO produced from cells 

cultured inside the microfluidic device. Only Hunter et al [88] have detected NO in a spiked wound fluid 

and in whole blood. Gunasekara et al. *[91] used microchip electrophoresis with amperometric detection 

for the study of the generation of NO by NO-donor molecules such as NONOate salts. They separated 

NO from nitrite and NONOate in less than 1 min. To the best of our knowledge, only one study analyzed 

total RSNOs in microfluidic devices with electrochemical detection **[84]. No separation step was 

performed and the decomposition duration was quite long (100 s). The use of a microfluidic device 

permitted more complete sample irradiation and thus higher conversion of RSNOs to NO after a specific 

time. Detection methods, other than electrochemistry, were applied to detect RSNOs after their 

separation [92-94]. Introducing electrochemical detection instead of fluorescence detection after RSNOs 

separation sill offer more simple, specific, and portable devices.

Concluding remarks

Evolution of NO detection in biological media using UME is still under investigation mainly in 

the variation of electrodes surface composition (nanoparticles and nanocomposites) and in 



membrane’s permselective and catalytic properties. In case of NO bound to peptides and 

proteins in form of RSNO analysis, advance has been made mainly in decomposition pathways 

such as copper catalysis and gold nanoparticles techniques. Microfluidics is the new trend in 

biomedical applications. Few studies were done about the detection of RSNO and NO in 

microfluidic devices despite its importance in lowering sample volume and improving 

sensitivity due to confined diffusion volumes. Elaborating a point of care devices as diagnostic 

tool to separate then detect electrochemically a mixture of RSNO’s and NO is still a challenge 

to be resolved in the coming years
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