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Introduction

Microhydraulic devices often need analyses other than those traditional in industrial fluid mechanics. Many have a complicated topology; e.g. the singlepass ink-jet printing chips discussed by Mallinson et al. [START_REF] Mallinson | Suppressing tiger stripes: taming flow oscillations to improve print quality[END_REF] each have 640 nozzles per colour, and eleven chips are plumbed together across a page. Another characteristic is small size; this keeps the Reynolds number low and the flow laminar or even creeping. The combination of the latter hydraulic linearity and the former topological complexity make circuit-theory appealing [1], and the use of this is widespread, building on earlier work in fluidics [START_REF] Foster | Fluidics[END_REF], acoustics [2], and general systems theories [START_REF] Sanford | Physical Networks[END_REF]. Going back further, this approach can be seen as the reverse of the old 'waterpipe' analogy in which the 'flow' of electrons was likened to 'current' [12, e.g.].

The basic idea is that pressure is to volume as voltage is to charge, since for steady laminar flow along a straight pipe, Poiseuille's law is formally analogous to Ohm's in defining a linear resistance. This is extended to transients by considering the response to a step in the applied pressure-difference. Although the exact solution [8, §4.3] shows that the system has infinitely many degrees of freedom each with its own time-constant, the initial rate of change of flow-rate is proportional to the step in pressure, thereby defining a hydraulic analogue of inductance called inertance [2,[START_REF] Asai | Bubble dynamics in boiling under high heat flux pulse heating[END_REF].

Many circuit-models are limited to 'two-terminal elements' [START_REF] Sanford | Physical Networks[END_REF], following Kirchhoff's laws and graph theory; however, lumped networks have been generalized to n-port components with the resistance and inertance of a twoended branch replaced by matrices of order n [4]. The need for multiport components is characteristic of microhydraulics. Electrical circuits are more easily designed to physically resemble graphs and larger-scale hydraulic networks also often have long pipes, the pressure drops along which dominate the 'minor losses' [7, §18] of turns and junctions but microhydraulic systems intrinsically have many turns and junctions in a restricted space.

A simple example involving multiport inertance is a single ink-jet, necessarily consisting of a nozzle through which the ink is ejected, an opening for refill, and an actuator [3]. In designing such a device, one wants to know how much of the work done by the actuator is wasted backwards up the supply line and so how the backward inertance affects the forward flow. The circuit of Beasley [START_REF] Beasley | Model for fluid ejection and refill in an impulse drive jet[END_REF] has three nodes connected by two branches, supplyactuator-nozzle, with the pressure specified at the actuator as a function of time and the nozzle and supply at fixed pressures; however, in such a circuit, the flow forward from actuator to nozzle depends only on the inertance of the branch between them and not on that back to the supply. Therefore the naïve two-terminal branched network model provides no answer.

Theory of hydraulic inertance

Whereas resistance is defined by the steady state, inertance characterizes the immediate response to a pressure impulse in an incompressible fluid. Here the classical theory of impulsively driven flow [17, §11] [8, §6.10] is recalled and the coefficients defined.

Short-time impulse-response of incompressible fluid

The velocity u and pressure p of a fluid of constant density ρ and viscosity µ are governed by the Navier-Stokes equations

ρ ∂u ∂t + u • ∇u = -∇p + µ∇ 2 u (1) 
∇ • u = 0. ( 2 
)
If forces on the boundary contain an impulsive part proportional to Dirac's δ(t), for short times the pressure throughout must have the form p(x, t) ∼ Π(x)δ(t), where Π is the pressure impulse. From the integral of (1) over a time which tends to zero, it follows that if the velocity is to remain finite, it must have the form u(x, t) ∼ U(x)H(t) + O(t 2 ), where H is Heaviside's step function and U and Π satisfy [17, eq. 11.2] [8, eq. 6.10.2]

ρU ∼ -∇Π (3) ∇ • U = 0. ( 4 
)

The multiport boundary value problem

Consider the initial-boundary value problem for (1) in which the stagnant fluid u = 0 in Ω is contained within a rigid surface Γ = ∂Ω pierced by n 'ports' Γ 0 , Γ 1 , . . . , Γ n-1 at which a spatially uniform temporally varying pressure is specified and the flow is constrained to be normal. In particular, consider the response of the fluid to a set of impulsive pressures p|

Γ k = Π k δ(t) for k = 0, 1, . . . , n -1.
The rest of the boundary, ∂Ω\ ∪ j Γ j , is impermeable. Since the impulsive pressure Π| Γ k = Π k is assumed uniform over each of the n ports, the space of flows is spanned by the n solutions obtained when each of the ports in turn gets a nonzero impulse while the rest are left at constant pressure; i.e. for k = 0, 1, . . . , n -1,

-∇ 2 Π (k) = 0,
in Ω ( 5)

Π (k) = δ jk Π k , on Γ j , j = 0, 1, . . . , n -1 (6) n • ∇Π (k) = 0 on ∂Ω\ ∪ j Γ j . (7) 

Reciprocal inertance matrix

The multiport reciprocal inertance coefficients are defined as the volumetric flow-rate in through one port due to a unit impulse at another; i.e.

s ij ≡ -1 Π j n, U (j) Γ i ≡ -1 Π j Γ i n • U (j) dΓ ( 8 
)
where n is the outward unit normal, U (j) is derived from Π (j) by ( 3), and the (., .) denotes the inner product of two fields over the whole or part of the domain or boundary (here, as indicated by the subscript, just the i-th port).

Given the application of n different impulses at each of the ports, the combined impulsively generated velocity is U = j U (j) and the corresponding volumetric flow-rate through the i-th port is

(n, U) Γ i = n-1 j=0 s ij Π j . (9) 
The need for working with reciprocal inertance will become clear in §2.5.

Two ways to calculate reciprocal inertance

The reciprocal inertance coefficients can be obtained from ( 8) and (3) as

s ij ≡ 1 ρΠ j n, ∇Π (j) Γ i , (10) 
as in Asai [11, eq. 17] for the special case n = 2 in which the inertance is s -1 00 . Integrating by parts over the domain the scalar product of two of the solutions for velocity using (3), simplifying using (4), [START_REF] Streeter | Steady flow in pipes and conduits[END_REF], and ( 6) and introducing the definition (8) yields a second formula for the coefficients,

s ij = ρ U (i) , U (j) Ω Π i Π j ≡ ρ Ω U (i) • U (j) dΩ Π i Π j , (11) 
equivalent to the identification of the total kinetic energy as

1 2 ij Π i s ij Π j .

Properties of the reciprocal inertance matrix

Symmetry follows directly from [START_REF] Asai | Bubble dynamics in boiling under high heat flux pulse heating[END_REF]. It follows from the maximum principle [17, §37] that the diagonal must be positive and the off-diagonals negative.

Other classical theorems on potential flow imply that the columns [17, eq. 36.2] and rows [17, §40γ] of the matrix sum to zero, physically corresponding to incompressibility and the irrelevance of absolute pressure-impulse as opposed to differences, respectively. Thus the matrix is singular, which is why we work with reciprocal inertance rather than inertance.

Discretization

The Galerkin finite element method is convenient for its generality in handling complicated industrial geometry, but it is chosen in particular here since it leads to a novel third way to compute reciprocal inertance.

Assume that the impulsive pressures can be expanded in some basis

Π (k) (x) = N -1 j=0 φ j (x)Π (k) j , (12) 
then the Galerkin equations are

N -1 j=0 a ij Π (k) j = N -1 j=0 n-1 p=0 (φ i n, ∇φ j ) Γp Π (k) j (13) 
where

a ij ≡ (∇φ i , ∇φ j ) Ω . (14) 
For a nodal basis with the subset D of indices corresponding to ports, the Galerkin equations ( 13) can be partitioned; for degrees of freedom i ∈ D, the equations can be ignored since Π (k) i is prescribed by [START_REF] Sanford | Physical Networks[END_REF]; for i ∈ D, the right-hand sides vanish since φ i = 0 on the ports. Thus

N -1 j=0 a ij Π (k) j = 0, i ∈ D (15) j ∈D a ij Π (k) j = - j∈D a ij Π (k) j , i ∈ D, (16) 
which is a standard way of handling essential conditions [13, §8.4.2].

A third way to compute reciprocal inertance

Given the expansion ( 12), the second formula ( 11) can be discretized as

s ij = rs Π (i) r a rs Π (j) s ρΠ i Π j . ( 17 
)
This is particularly convenient if a nodal Galerkin method is used since then the matrix (14) will be already available and [START_REF] Lamb | Hydrodynamics. 6th[END_REF] involves just a matrixvector product and a scalar product. Unlike [START_REF] Asai | Three-dimensional calculation of bubble growth and drop ejection in a bubble jet printer[END_REF] or [START_REF] Asai | Bubble dynamics in boiling under high heat flux pulse heating[END_REF], no numerical differentiation of the potential to obtain the velocity is required.

Noting that both a ij and s ij are matrices turning pressure impulses into flow-rates, [START_REF] Lamb | Hydrodynamics. 6th[END_REF] can be interpreted as a Kron reduction [START_REF] Dörfler | Kron reduction of graphs with applications to electrical networks[END_REF], condensing the finite element nodes into supernodes representing the ports.

Implementation

Pseudocode

The method has been implemented with scikit-fem [START_REF] Gustafsson | [END_REF], a Python library written at a high enough level for the listings to also serve as pseudocode.

Given a mesh of a vessel in which the ports are marked, e.g. from Gmsh [START_REF] Geuzaine | Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities[END_REF], one selects a basis ( 12), e.g. P 1 Lagrange elements, basis = InteriorBasis ( mesh , ElementTriP1 ())

assembles the stiffness matrix ( 14), a = asm ( laplace , basis ) identifies the nodes subject to essential conditions and those not [START_REF] Geuzaine | Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities[END_REF], and solves for all n right-hand sides of (16) at once. The reciprocal inertance matrix is computed by the third method [START_REF] Lamb | Hydrodynamics. 6th[END_REF].

s = p . T @ a @ p

Example: Asai's prototype bubble jet

Asai [START_REF] Asai | Three-dimensional calculation of bubble growth and drop ejection in a bubble jet printer[END_REF] presented transient simulations of the actuation of a three-port bubble jet topologically equivalent to that discussed in § 1. Here a twodimensional version is used for demonstration; see Figure 1 for the dimensions and Figure 2 

The smallness of s 12 = s 21 ≈ -10 -4 indicates that the two-branch model [START_REF] Beasley | Model for fluid ejection and refill in an impulse drive jet[END_REF] is reasonable; nozzle-flows are little-influenced by the inlet. 

Convergence

The error of each of the three estimates for the s 01 actuator-nozzle coefficient is plotted in Figure 3 against h, the length of the longest edge in the mesh. An analysis is outside the present scope but a few features deserve comment. The P 2 solutions converge no faster than the P 1 . The actuator port is flush with the floor whereas ideally ports are at right-angles to walls. Locally this induces a square-root singularity [13, §3.1.3] which lies in the Sobolev space H s only for s < 3/2 [START_REF] Geymonat | Introduction[END_REF], limiting the finite element H 1 -convergence of the Π (k) , and so the L 2 -convergence of its gradient, to o( √ h) [13, eq. 3.21]. This is achieved by any P n with n > s -1, so P 1 suffices.

The naïve estimate of inertance from its definition in terms of influx ( 10) is seen to converge most slowly; its observed rate o( √ h) is just that of the error expected of the gradient of the potentials.

The second [START_REF] Asai | Bubble dynamics in boiling under high heat flux pulse heating[END_REF] and third [START_REF] Lamb | Hydrodynamics. 6th[END_REF] methods are closely related and converge like the squared H 1 -norm of the potentials, thus with o(h) for P n with n ≥ 1, as shown above.

In experience to date, although the second and third methods converge at the same order, the second is usually found to be more accurate in the pre-exponential factor perhaps as it involves 'gradient-averaging' which often leads to a more accurate approximation of the gradient [START_REF] Křížek | Superconvergence phenomenon in the finite element method arising from averaging gradients[END_REF]. [START_REF] Asai | Three-dimensional calculation of bubble growth and drop ejection in a bubble jet printer[END_REF], kinetic energy [START_REF] Asai | Bubble dynamics in boiling under high heat flux pulse heating[END_REF], or the discrete quadratic form [START_REF] Lamb | Hydrodynamics. 6th[END_REF] and P 1 or P 2 elements

Conclusion

Lumped models of microhydraulic vessels based on two-port branch circuits can be improved by the use of multiport components, replacing the scalar branch inertance with a reciprocal inertance matrix which is symmetric, has positive diagonal, negative off-diagonals, and zero row-and column-sums.

Classical P 1 finite elements provide a simple method of computing the potential flow in multiport microhydraulic vessels. They are robust against the singularities not uncommon in received geometries. Of the three ways to postprocess the reciprocal inertance coefficients, the two based on energy generally converge faster than the basic boundary-fluxes.

  ports = basis . get_dofs ( mesh . boundaries ) dofs = basis . complement_dofs ( ports ) prefills the n solution vectors of length N with the Dirichlet data, p = zeros (( basis .N , len ( mesh . boundaries ))) for k , port in enumerate ( ports . values ()): p [ port . all () , k ] = 1.

p

  [ dofs ] = solve (* condense (a , zeros_like ( p ) , p , dofs ))

  for the three pressure impulse fields. The reciprocal inertance matrix as extrapolated from the sequence of refined grids is (with ports ordered actuator, nozzle, inlet)

Figure 1 :Figure 2 :

 12 Figure1: Two-dimensional version of the prototype bubble jet of Asai[START_REF] Asai | Three-dimensional calculation of bubble growth and drop ejection in a bubble jet printer[END_REF] with the three ports named and key dimensions marked in arbitrary units

Figure 3 :

 3 Figure 3: Relative error of s 01 based on influx (10), kinetic energy (11), or the discrete quadratic form (17) and P 1 or P 2 elements
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