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This paper is concerned with the effective transport properties of heterogeneous media in which there is a high contrast
between the phase diffusivities. In this case the transient response of the slow phase induces a memory effect at the
macroscopic scale, which needs to be included in a macroscopic continuum description. This paper focuses on the slow
phase, which we take as a dispersion of inclusions of arbitrary shape. We revisit the linear diffusion problem in such
inclusions in order to identify the structure of the effective (average) inclusion response to a chemical load applied on
the inclusion boundary. We identify a chemical creep function (similar to the creep function of viscoelasticity), from
which we construct estimates with a reduced number of relaxation modes. The proposed estimates admit an equivalent
representation based on a finite number of internal variables. These estimates allow us to predict the average inclusion
response under arbitrary time-varying boundary conditions at very low computational cost. A heuristic generalisation to
concentration-dependent diffusion coefficient is also presented. The proposed estimates for the effective transient response
of an inclusion can serve as a building block for the formulation of multi-inclusion homogenisation schemes.
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1 Introduction

The general context of this work is the identification of macroscopic continuum theories to describe diffusive transport
in heterogeneous media. This is a classical homogenisation problem, and a number of analysis methods have been pro-
posed, including semi-analytical bounds and estimates [1,2], asymptotic homogenization theory [3,4] or volume-averaging
methods [5-7]. These approaches usually require the solution of a boundary value problem defined on a Representative
Volume Element (RVE) of the microstructure in order to identify effective parameters to be used at the macroscale. Under
the separation of scales hypothesis, one often assumes that the microfields instantaneously reach a steady-state in the RVE,
while transient diffusion is handled at the level of the macroscopic boundary value problem.

The assumption of microscale steady-state becomes however questionable when the length scale of the macroscopic
excitation becomes comparable to the size of the RVE, or when there is a high contrast between the diffusivities of the
phases. In the latter case, transport through the slow phase induces a memory effect at the macroscopic scale. Microscopic
transient effects are particularly relevant for mass diffusion problems, as compared to heat conduction problems, as the
diffusion coefficients between the phases can vary by orders of magnitude [6].

Memory effects due to contrasted transport properties were formally analysed by Auriault [3] using asymptotic ho-
mogenisation applied to heat transfer problems. He showed that the memory effect due to transport in the slow phase
translates into a macroscopic heat conduction equation involving the convolution integral of a memory function, to be
identified from a transient analysis on the slow phase. The author further provided some analytical expressions for the
memory functions on simple geometries, including laminate composites, and cylindrical and spherical inclusions. The
analysis was later adapted to mass transfer [8]. Recently, Dureisseix et al. [9] developed a finite element (FE) approach to
evaluate the incremental evolution of the memory function for periodic microstructures by solving the transient diffusion
problem in the slow phase, and also proposed heuristic semi-analytical estimates. An asymptotic homogenisation approach
was also developed by Matine et al. [10] to include edge and short time effects in transient heat conduction in laminate
microstructures.

* Corresponding author, e-mail: laurence.brassart@monash.edu
** e-mail: laurent.stainier@ec-nantes.fr
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2 L. Brassart and L. Stainier:

In the present work we address the memory effect in two-phase composites consisting of ”slow” inclusions dispersed in a
“fast” percolating matrix. Our goal is to develop semi-analytical estimates of the transient inclusion response, which can be
integrated into a scale transition method aiming at developing macroscopic continuum equations. As such, our results can
be combined with different approaches, including asymptotic homogenisation or mean-field schemes. The formulation of
a complete homogenization framework for the composite based on the estimates developed in this paper will be addressed
in a separate publication. While our proposed approach is formulated in the context of diffusive mass transfer, our results
can readily be transposed to heat conduction problems.

The proposed estimates for the transient inclusion response in linear diffusion problems rely on a formal analogy be-
tween the effective diffusive response of an inclusion and the mechanical response of a viscoelastic solid. A chemical creep
function is introduced, which relates the average concentration of the inclusion to the applied step load on the inclusion
boundary (Section 3). The creep function is written as infinite Prony series, and exact expressions of the coefficients in the
Prony series are given for simple geometries. We show that knowledge of the chemical creep function enables the deter-
mination of the effective inclusion response under a time-varying loading history, similar to the Boltzmann superposition
principle of viscoelasticity.

Next we propose systematic approaches to obtain semi-analytical estimates of the chemical creep function for inclusions
of arbitrary shape, where an exact expression of the creep function cannot be obtained analytically (Section 4). We propose
an efficient numerical time integration algorithm based on a finite number of internal variables, enabling the simulation of
arbitrary loading histories at very low computational cost. We show that good estimates can be obtained with a limited
number of internal variables (Section 5). Finally, we propose a simple mean-field approach to extend our results to the case
where the diffusion coefficient varies with concentration (Section 6).

2 Position of the problem

Consider the transient diffusion problem in a closed domain €2 (an “inclusion”). The medium is assumed homogeneous and
isotropic. Let ¢(x, t) be the local concentration of mobile species (number of molecules per unit volume). Conservation of
the number of molecules requires that:

Oc

—_— = —V .9 1

ot 5 (1)
where j is the diffusion flux. We describe diffusion using Fick’s first law:

Jj=-D(c)Ve, )

where the diffusion coefficient D in general depends on concentration. A combination of equations (2) and (1) gives the
classical Fick second law governing the evolution of the concentration field in space and time:

Oc
— =V - (D(¢)Ve). 3)
ot
The inclusion is subjected to homogeneous Dirichlet boundary conditions c¢(x,t) = ¢&(t) on its boundary 0€2. The con-
centration field at ¢ = 0 is assumed homogeneous, ¢(x,0) = ¢o, and we set ¢ = 0 without loss of generality. The
concentration c(x, t) can then be viewed as a deviation relative to the initial concentration. In the case where the diffusivity
is constant, Equation (3) reduces to

5= DV2c. )

In the search for macroscopic continuum equations through homogenisation, we are mainly interested in the effective
inclusion response in terms of its volume average:

() = /Q (. 1) dV, 5)

V(Q)
where V(2) is the volume of the inclusion. Specifically, we are looking for a mean-field, semi-analytical expression:
d{e)(t)
dt

where b collectively represents a finite set of internal variables, yet to be identified, describing the effect of past loading
history on the instantaneous inclusion response.

= F(z,{c), b), (©)
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Remark 2.1 In a thermodynamically-consistent formulation of the diffusion problem, the driving force conjugated to
the diffusion flux is the negative of the chemical potential gradient, —V . The kinetic model of diffusion is usually written
as

Jj=-cMVyu, N

where M is the mobility, defined as the ratio of the drift velocity of mobile atoms, j /¢, to the driving force. The chemical
potential is generally written as

= et + kT IOg(a)a ®)

with s a reference chemical potential and a the activity of the mobile species, which depends on composition. A com-
monly adopted simplified expression of the chemical potential is:

c

M = Href + kT IOg <> ) (9)
Cref

where c.f is a reference concentration. Expression (9) is a reasonable approximation for a dilute solution of interstitial

atoms in a host [11]. If we further assume that the mobility is independent of composition, Expression (9) is equivalent to

assuming a constant diffusion coefficient in (2). This is easily verified by inserting (9) into (7):

j = —-MKTVe. (10)

Comparing (10) with (2), one recovers the Einstein relation: D = MET.

Remark 2.2 In principle, one should consider chemical potential boundary conditions, rather than concentration bound-
ary conditions on the external surface of the inclusions. Indeed, the chemical potential is continuous across the interface,
while the concentration is generally discontinuous, and the concentration on the inclusion side is a priori unknown. For a
given history of applied chemical potential fi(¢) on 012, it is however possible to invert relation (8) and obtain the corre-
sponding history ¢(t). We can rewrite (6) as:

d(e) (t)
dt

= F(u, (), b). (11

3 Exact results for constant diffusion coefficient

3.1 Time response to a step load

Consider an inclusion subjected to a step load, ¢(t) = cH (t), with H(t) the Heaviside step function. The solution of the
linear diffusion problem with constant diffusion coefficient (4) can be written under the general form [12]:

c(x,t)

ol

=1- Z an¥V, (x) exp(—apt), (12)
n=1

where the eigenfunctions ¥,, () and eigenvalues «,, satisfy
DV?U +a¥ =0, with ¥ =0 on 9. (13)

From (12) it is clear that the eigenvalues are inverse relaxation times: «,, = 1/7,,. The eigenfunctions constitute a complete
set of orthogonal functions and are normalised such that:

(U ¥Up) = dmn- (14)
The symbol (-) was previously introduced in Equation (5) and represents a volume average over the inclusion domain.
Fulfilment of the initial condition ¢(, 0) = 0 requires that:

> an¥, =1. (15)

n=1
Using the orthonormality condition (14) of the eigenfunctions together with the condition (15), the coefficients a,, are
identified:

an = (0,). (16)
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4 L. Brassart and L. Stainier:

The following property of the coefficients a,, also follows:

Sa2o1 a7
n=1

The average concentration in the inclusion volume is directly calculated from the local solution (12):

{c(t)) 3
=1- A, —t/7n), 18
D13 Aesptt/n) 1s)
with:
Ap = (ap,V,) = ai. (19)
The last equality follows directly from the property (16). From (17), it also follows that
S 4, =1 (20)
n=1
Introduce the chemical creep function J(t):
t
Jo = 9O 21
c
o0
= 1= Anexp(—t/m). (22)
n=1

The chemical creep function gives the proportionality ratio between the current average concentration in the inclusion and
the constant boundary concentration in a step load. It has the following properties:

JO) = 0 (initial condition), 23)
lim; oo J(t) = 1 (chemical equilibrium).

For simple geometries, solutions to the linear diffusion problem (4) can be obtained in closed form using the method of
separation of variables [13, 14]. One-dimensional examples of practical significance are the symmetric diffusion problem
through a plane sheet of thickness 2a, and the radial diffusion problem in a cylinder or a sphere of radius a. The coefficients,
eigenfunctions and relaxation times for these geometries are given in Table 1. In the table, Jy(z) and Ji(z) are Bessel
functions of the first kind, and z, is the n™ root of Jy. The corresponding chemical creep functions are illustrated in
Figure 1.

Table 1 Solution coefficients for the diffusion problem in a plane sheet of thickness 2a, a cylinder and a sphere of radius
a. r is the spatial coordinate. The coefficients a,, are chosen positive and such that the orthonormality condition (14) is

satisfied.
Plane sheet Cylinder Sphere
a 2v2 2 V6
n 2n—1)m Zn nmw
i \/i -1 n—1 L[ @2n=1)7r JO(ZZT) 2a -1 n+1 43 nwr
n (’I") ( ) cos 2a Ji(zn) 3 T( ) sin ( a )
4a? a? a?
Tn D(2n—1)%272 Dz2 Dn?w?
A 8 4 _6
n (2n—1)272 z2 n2m2

Remark 3.1 The function J(t) is called “creep function” in analogy with its mechanical counterpart in linear vis-
coelasticity that relates the time-varying strain to the applied stress in a creep experiment. We can extend the analogy by
expressing the applied concentration on the boundary in terms of the chemical potential. Introduce K (f) the chemical
compliance of the inclusion phase, such that ¢ = K (). Expression (21) may be rewritten as:

9O _ ). 4

There is therefore a correspondence between mechanical and chemical quantities, with stress and chemical potential on the
one hand (forces), and strain and (average) concentration on the other hand (fluxes). Note however that the right-hand side
of relation (24) is in general function of i, so that the relaxation process is no longer linear when expressed in terms of the
fi-(c) relation.
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Fig. 1 Chemical creep function for the linear diffusion problem in a plane sheet, a cylinder and a sphere. The chemical
creep functions were generated taking N = 1000 in the exponential series (22).

3.2 Time response to general loading conditions

The generalisation of the results from the previous section to a general time-dependent boundary condition ¢(t) relies on
Duhamel’s theorem, see e.g. [13]. According to this principle, the local field in the inclusion subjected to a loading history
¢(t) is given by

t
o, 1) = /0 %F(m,é(t’),t — ar, (25)

where F'(x, ¢, t) represents the concentration at & at time ¢ in the inclusion with zero initial concentration and subjected to
a step load ¢ applied in ¢ = 0. Taking the volume average of (25), permuting the time and volume integrals, and introducing
the definition of the creep function (21), we obtain:

/—Jt—t ye(t')dt'. (26)

Using the expression of the creep function (22) and integrating by parts, on finally obtains:

()(t) = / J(t—t) %dt 27)

The first term on the right-hand side of Equation (27) represents the average concentration response to a step load applied
in t = 0, and the second term represents the response due to the subsequent time evolution of the boundary condition. The
representation (27) is similar to the Boltzmann superposition principle in linear viscoelasticity: the average concentration in
the body in response to a time-dependent concentration boundary condition is given by the superposition of the responses
to individual incremental step loads A¢. When ¢(0) = 0, the integral representation (27) reduces to:

t
de
(O)(t) = / It -ty Lap. (28)

The effective, steady-state response of an inclusion subjected to harmonic loading is discussed in the appendix, where
we also introduce the concept of chemical storage and loss moduli in analogy with the corresponding quantities in vis-
coelasticity.

4 Estimates of the chemical creep function for arbitrary geometries

In the last section we showed that the effective response of an inclusion subjected to a uniform, time-varying Dirichlet
boundary condition was fully characterised by the chemical creep function (22) expressed as infinite series of decaying
exponentials with coefficients A,, and relaxation times 7,,. Except for the case of simple geometries, it is in general not
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6 L. Brassart and L. Stainier:

possible to obtain the coefficients and relaxation times in closed form, and a numerical resolution of the boundary value
problem is required.

In this section we propose several methods to generate estimates of the creep function written as Prony series having a
finite number N of relaxation times. Based on the exact representation (22), we are looking for estimates of the form:

J(t)

N
1-— Z A, exp(—t/7,) (29)
n=1

N
= Z (1 — exp(—t/7n)) + Any1- (30)

Here, 7,, are the relaxation times and An the coefficients of the approximate creep function. In (30), the coefficient A N1
is defined such that ZNH = 1, thatis, Ayy; =1 — 25:1 A,,. The representation (30) is akin to a Prony series
representation of creep and relaxation functions in viscoelasticity. The estimate (29)-(30) has the following properties:

JO) = Anp (initial condition),

- 31
lim; oo J(t) = 1 (chemical equilibrium). (D

In general the estimate (29)-(30) predicts a non- zero instantaneous average concentration in response to a step load, unless
the coefficients A,, are chosen such that Z n—1 An = 1. On the other hand, it correctly predicts the long-time equilibrium
response by construction.

The estimate (29)-(30) of the creep function can be used in the integral expression (27) in order to predict the inclusion
response under an arbitrary loading history &(t). In the next section, we propose an internal variable representation that is
much more amenable to numerical time integration than the integral representation (27). Particular methods to identify the
coefficients zzln and 7,, are presented in Sections 4.2, 4.3 and 4.4.

4.1 Equivalent representation of the effective inclusion response based on internal variables

Since the approximate creep function (29)-(30) has a finite number of relaxation times, it is possible to describe the effective
inclusion response using a finite number of internal variables [15, 16]. Introduce the approximate creep function (30) into
(27). By inspection, we can decompose the average concentration into /N + 1 internal variables:

N
&)= by +byir. (32)

n=1

The variables b,, (n = 1, N) evolve according to:

_ L de
bolt) = (0 Ay exp(=t/7) + [ 4,1~ exp(~(t = #)/7) Godt, n=1N (33)
0
The expression (33) is solution to an ODE for b,,:
Fnbn 4 by = Aje. (34)

with the initial condition b,,(0) = 0. On the other hand, the variable by 1(t) evolves according to:

bN+1 = AN_HE. (35)

The ODEs (34) and (35), together with (32) completely characterise the effective inclusion response. The sought-after
expression (6) is thus formally identified as:

N ~
A, ¢ ~ de
z:: “ o+ Anpi— T (36)

In practice, the effective inclusion response under an arbitrary loading history ¢(t) is readily calculated by integrating the
linear ODE’s (34) and (35) in time using a fully implicit Euler scheme.

The effective constitutive model (34)-(35) admits a simple representation based on springs and dashpots, as commonly
used in phenomenological models of viscoelasticity. Here, the model consists of an assembly of NV Kelvin-Voigt units in
series with one spring, where each concentration-like internal variable b,, (n = 1, V) is the elongation of the n™ unit with
spring stiffness A 1 and dashpot viscosity TnA !, as represented in Figure 2. The additional spring with stiffness A% N +1
describes the instantaneous response under a step load

Copyright line will be provided by the publisher
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Fig. 2 Models for the average concentration response of an inclusion subjected to a uniform, time-varying concentration
boundary condition can be represented by a series of Kelvin-Voigt units and an additional spring. The average con-
centration (c) is represented by the total elongation of the assembly, obtained by summing the elongations b, in each
spring/dashpot unit.

Remark 4.1 We can express the effective inclusion response in a form similar to (11) for a given history of chemical
potential fi(¢) applied on its boundary. Introducing the chemical compliance function, the model (36) becomes
N & N N
d(c) AnK()p—bn < d(K ()
— = E — 4 A —_ 37
dt n ANy 37)

n=1

Inclusion problems expressed in terms of applied chemical potential on the inclusion surface require the inversion of the
(generally non-linear) chemical potential-concentration relation at each time step in order to calculate the right-hand side
of (34)-(35). However, this does not affect the time integration algorithm to update the internal variables.

4.2 Collocation method

A first, simple method to estimate the amplitudes and relaxation times in (29) is the collocation method initially proposed by
Schapery [17] in the context of linear viscoelasticity for fitting Prony series to experimental creep or relaxation curves. The
collocation method is also used in the context of homogenisation of linear viscoelastic composites to perform numerical
inversion of the Laplace-Carson (LC) transform [18, 19]. Here we use the collocation method directly in the time domain.
The method requires a preliminary determination of the “exact” creep function for the inclusion subjected to a step load ¢
applied at ¢ = 0, typically using the FE method or an analytical approach, if available.

Following Schapery [17], we choose the N relaxation times 7,, to be equispaced on a logarithmic scale between some
arbitrarily chosen minimum and maximum times 7, and Tyq.. Let a?/D be the time scale for diffusion, with a the
characteristic size of the inclusion. We may assume that diffusion is negligible when the observation time is much smaller
than the characteristic diffusion time, and completely relaxed when the observation time is larger than the characteristic
diffusion time. These considerations allow us to narrow the range of relevant relaxation times in the collocation method.
The amplitudes associated with each relaxation time are then calculated in such a way that the approximate creep function
coincides with the reference one at the pre-defined collocation times: J(7) = J (7). For estimates of the form (29), this
conditions rewrites as:

N
J(7) =1=>_ Apexp(—7/Fn), k=1,N. (38)
n=1

The method provides a system of N linear equations for the N unknown amplitudes A,,, while Ay 1 is calculated from
its definition: A Nyl = 1 — 25:1 A,. The advantage of the method is its simplicity and ease of implementation. A
major drawback, however, is that the calculated amplitudes can be negative, which leads to spurious modes in the series
expansion of the creep function. In addition, the method does not satisfy the condition ZnN:1 A, = 1, and therefore predicts
an instantaneous average concentration in response to a step load. Finally, the relaxation times need to be determined a

priori and are therefore not optimised.

4.3 Constrained optimisation method

The shortcomings of the collocation method can be addressed by relying on an optimisation approach under constraints
to fit the coefficients in the Prony series (29). Here we took inspiration from the optimised collocation method proposed
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8 L. Brassart and L. Stainier:

by Rekik and Brenner in the context of viscoelasticity [20]. First define the error between the reference (“exact”) and
approximate creep functions as:

Np

(A, Fui Ny) = > (Tt - J(t,;))Q, (39)

i=1

where the summation is taken over IV, pre-selected data points. The error is a function of the coefficients in the series
expansion, as well as the number of chosen data point as a parameter. The optimisation problem consists in identifying the

set of coefficients {fln, %n} that minimises the error function (39) under the following constraints:

e All the coefficients fln should be non-negative: fln >0,n=1,N.
e The creep function should predict a zero instantaneous concentration: Zgzl A, =1;
e The relaxation times 7,, are positive and should lie within some interval [T.,in, Trmaz)-

The least-square minimisation under constraint was performed using the Sequential Least Square Programming of the
Python optimisation module pyOpt [21], which relies the Han-Powell quasi-Newton method. As illustrated in the next
section, the method can provide a very accurate estimate of the creep function for a very small number of relaxation times.
The drawback, however, is that the method is very sensitive to the choice of initial values of the unknown coefficients fln
and 7,,.

4.4 Estimates based on a FE modal analysis

A third method relies on a modal analysis of the FE solution of the inclusion subjected to a uniform and constant Dirichlet
boundary condition ¢ applied at ¢ = 0, see [22] for details. The concentration field is discretized as:

c(ai7 t)

Ny,
=3 Ni(@ur), (40)
I=1

with NV,, the number of nodes in the FE discretisation, Ny (z) the shape function associated with node 7, and u(t) the nodal
value at node I. For conciseness, we write the nodal values in a vector u. After discretising the weak form of equation (4)
using the standard Galerkin approach, the vector of nodal values w is found to obey the following system:

C-u+D u=0, 41)

with C' the chemical capacity matrix and D the conductivity matrix:

C[] = N[((B)Nj(w) dV, (42)
Q
Q
The vector u(t) solution of (41) is of the form:
Ny
u(t)=1- Z anYn exp(—ant), 44)
n=1

where 1 is a vector of size N,, with all elements equal to one, such that D-1 = 0, and where y,, and «,, are the eigenvectors
and eigenvalues, solution of:

[C™'D]-y = ay. (45)
The eigenvectors are such that:

yg; -C- Yn = V(Q)‘Smn (46)
yr Dy, 47)

Copyright line will be provided by the publisher
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The coefficients a,, are identified from the initial condition Zgil anyn = 1. Pre-multiplying each side of the latter
equation by yZ - C and using the orthogonality condition (46):

— 1 T
a”_V(Q)y” C-1. (48)

The factor V(2) in equations (46), (47) and (48) was introduced to be consistent with (14).

In practice, the method requires the solution of the eigenvalue problem (45) for the modes y,, and eigenvalues a,.
The coefficients a,, are then calculated from (48). The coefficients in the estimate (29) are finally given by A, = a,
7n = 1/ay,. The number of modes N in the estimate can be chosen such that 1 < N < N,,. In the following examples, we
sorted the modes by descending order based on the amplitude A,.

The application of the FE modal analysis approach is straightforward and does not require any optimisation or initial
guess. It does require, however, to have access to the capacity and diffusivity matrices of the FE system, which may not be
straightforward if a commercial FE software is used.

5 Results

5.1 Verification of the estimates in a one-dimensional case

We verify the accuracy of the different estimates proposed in Section 4 in the example of radial diffusion in a cylinder of
radius a, for which an exact analytical expression of the chemical creep function exists. The reference analytical solution
was previously shown in Figure 1 and is obtained by taking the first 1000 modes in the Prony series (22) with coefficients
reported in Table 1.

Estimates based on the simple collocation method (Method 1) were obtained setting 7,,,i,, = 10=%a2 /D and Ty, =
a?/D. For the constrained optimisation method (Method 2), we have chosen N, = 10 data points that are equispaced
on a linear time scale between 0 and a?/D. The minimum relaxation time 7,,;, was set to 10~%a?/D and the maximum
relaxation time Ty,qz to 10a? /D. We chose the exact, analytical modes and relaxation times for each mode as first guess
in the optimisation procedure. Finally, the capacity and conductivity matrices for the FE modal analysis (Method 3) were
calculated using linear shape functions and 101 equispaced nodes along the radius. Spatial integration in Equations (42)-
(43) was carried out exactly, taking into account axisymmetry.

The chemical creep function as estimated with the different methods and increasing number of modes N is illustrated
in Figure 3. By construction, all the estimates predict the correct long-time behaviour. In contrast, only the constrained
optimisation approach also satisfies the short-time requirement (23). The accuracy of all these methods increases as the
number of modes N increases, as expected.

The collocation method is the simplest and cheapest method among the three. However, it may yield negative coefficients
fln, leading to non-monotonic curves for some value of N, as for example for N = 2, Figure 3b. The constrained
optimisation method gives a very good estimate, including for very small number of modes. However, the quality of the
optimisation is highly dependent on the initial guess for the coefficients and relaxation times. In this particular example we
could rely on the exact analytical solutions A,, and 7,, as initial guesses for An and 7,,, and the optimisation method thus
improves the estimate based on a simple truncation of the exact series expansion (see also below). In contrast, arbitrary
initial guesses may lead to very poor estimates (not shown). This is a major drawback in the general case where the Prony
series expansion of the reference curve is not known analytically.

Finally, the FE modal analysis approach provides a good compromise between the former two approaches. The co-
efficients and relaxation times obtained from FE modal analysis are reported in Table 2 and compared to their analytical
counterparts, up to N = 5. The coefficients and relaxation times are very close, and the modal analysis approach gives
practically the same estimate as the simple truncation of the exact series expansion (22) (not represented in Figure 3) in this
example.

5.2 Application to arbitrary 2D geometries and general loading conditions

We now address the diffusion problem in general 2D geometries, for which an analytical expression of the coefficients in
the series expansion (22) is generally not available. The considered geometries are represented in Figure 4a, which also
shows the characteristic length a. In these examples, the reference creep function was obtained by solving the diffusion
problem under a step load using the FE method. Meshing was done with the software Gmsh [23], and we used an in-house
FE code. Second-order triangular elements were used, and the number of elements was about 500. The reference creep
function was directly calculated from the ratio {(c)(t)/c.
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Fig. 3 Chemical creep function for the radial diffusion problem in a cylinder as estimated by three different methods: a
collocation method, a constrained optimisation method, and a FE-based modal analysis approach, and for various numbers
of modes N. The reference curve is obtained using 1000 terms in the series expansion (22), with the analytical coefficients

reported in Table 1.

Table 2  First five coefficients A,, and relaxation times 7, for the radial diffusion problem in a cylinder, as obtained from
the exact solution (Table 1) and the FE-based modal analysis with 100 elements and linear shape functions.

N A, Tn

Modal Analytical Modal Analytical
1 691409 x 107" | 6.91660 x 10~ T | 1.73916 x 10~ T | 1.72915 x 10!
2 | 1.31316 x 107! | 1.31271 x 10~! | 3.30460 x 1072 | 3.28178 x 102
3 | 5.34518 x 1072 | 5.34138 x 1072 | 1.34509 x 1072 | 1.33535 x 102
4 | 2.87965 x 1072 | 2.87686 x 1072 | 7.24427 x 10~2 | 7.19216 x 103
5 | 1.79634 x 1072 | 1.79427 x 1072 | 4.51664 x 10~3 | 4.48567 x 103

FE modal analysis was used to estimate the creep function with a limited number of modes. The same FE mesh
and shape functions were used for both the reference and modal analysis solutions, and the integrals (42) and (43) were
evaluated numerically. Figures 4b-e compare the reference creep functions to their estimates based on FE modal analysis,
for the considered geometries. As expected, the error is mainly on the short-time response, and decreases as the number of
modes increases.

Next we use the coefficients A,, and relaxation times 7, obtained from FE modal analysis on these geometries to
predict the average concentration response under general time evolution of the boundary condition. To this end, we use
the internal variable representation described in Section 4.1, and update the internal variables b,, using (34) and (35). The
predictions of this semi-analytical approach are compared to reference predictions obtained from full-field FE simulations
of the inclusion response subject to time-varying loading conditions. In these examples, the calculations based on the
semi-analytical estimates of the creep function are orders of magnitude cheaper than the full-field FE calculations.

Figure 5 shows the effective response of the star-shaped inclusion subjected to sinusoidal boundary condition: &(t) =
sin(wt), with w = 27 /T the angular frequency and T the excitation period. Model predictions are shown for N = 5
and N = 10. As the frequency increases, the amplitude of the average concentration response decreases and a phase lag
develops. The quality of the model predictions for increasing frequencies is directly correlated to the accuracy of the creep
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Fig. 4 (a) The considered 2D geometries with square, star and clover shapes, and (b)-(e) the corresponding creep func-
tions. Reference creep functions .J(t) were calculated from the full-field FE solution, while the estimates J(t) were
obtained using FE modal analysis.

function at short time scales. For a large excitation period, the response is dominated by the long-time inclusion response,
and a small number of modes is required for an accurate prediction (Figures 5a-c). A higher number of modes is required
to also capture the short-time response when the excitation period decreases (Figure 5d).

As another example, Figure 6 shows the response of the clover-shaped inclusion subjected to a cyclic loading consisting
of alternating sequences of ramps and plateaus, for different frequencies. Similar to the previous example, the accuracy
of the semi-analytical predictions increases with the number of modes N, and decreases with the loading frequency for a
given N. However, the predictions are still very good for N = 10 and T' = 0.01a?/D.

6 Mean-field estimates for nonlinear diffusion problems

The estimates based on a finite number of internal variables presented in Sections 4 and 5 all rely on the assumption
of constant diffusion coefficient, condition under which the exact series representation (22) of the chemical creep function
holds. In this section we briefly address the more general case of concentration-dependent diffusion coefficient: D = D(c).
In this case, the general expression (3) of Fick’s second law needs to be used and the diffusion problem becomes nonlinear.
The exact results presented in Section 3 - in particular expression (22) for the chemical creep function - do not longer hold.

We propose a simple mean-field approach to generalise the estimates of Section 4 to the case of concentration-dependent
diffusion coefficient. The approach is based on the observation that, in the linear diffusion problem, the relaxation times
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Fig. 5 Evolution of the average concentration in a star-shaped domain subject to harmonic boundary condition &(¢) of
various periods T, with a) T = 10a?/D, b) T = a®>/D, ¢) T = 0.1a*/D and d) T = 0.01a®/D. Reference results
are provided by full-field FE simulations. Model predictions are based on the estimated creep function obtained from FE

modal analysis.
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Fig. 6 Evolution of the average concentration in a clover-shaped domain subject to cyclic boundary condition &(¢) of
various periods T, with a) T = 10a®/D, b) T = a*/D, ¢) T = 0.1a*/D and d) T = 0.01a®/D. Reference results
are provided by full-field FE simulations. Model predictions are based on the estimated creep function obtained from FE

modal analysis.
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are each inversely proportional to the diffusivity. This property also holds for the estimated relaxation times obtained with
FE modal analysis. Let A" and 71" be these estimated coefficients and relaxation times in the linear case with constant

diffusivity Dy. In the nonlinear case D = D(c), we assume that {c) = 25:11 bn, where the internal variables b,, still obey
the differential system (34)-(35):

Pyt by = Age )
bvy1 = AntaC (50)

with coefficients now given by:

Ao = A (51

D

~ ~lin 0
Tn = T . (52)

D((c))
In the mean-field model, the relaxation times are thus assumed to depend on the average concentration through the
concentration-dependency of the diffusion coefficient. This assumption introduces a coupling between the ODEs (49).
In practice, the system (49)-(50) can still be solved in a full-implicit way, but now requires the solution of a linear algebraic
system at each time step. The effective inclusion response (6) is now of the form:

dt (c) dt

We illustrate the proposed approach by considering diffusion coefficients of the following form:

N ~

d Ae—b, ~ de

<C>:Z TC( )+AN+1—C. (53)
n=1 n

D(c) = Dof(c), (54)

where Dy is the constant reference value used to identify the coefficients A" and relaxation times 7" of the comparison

linear problem, and f(c) a dimensionless function of concentration. The following functions are used [14]:

file) =1 (55)
fale) = exp(2.303¢) (56)
fale) = 1+9¢c (57
fae) = 1+10(1 — exp(—2.303¢)) (58)

These functions are illustrated in Figure 7.

We illustrate the mean-field approach in the case of a cylindrical inclusion or radius a subjected to a harmonic loading:
¢(t) = 0.5 + 0.5sin(wt — 7/2). This loading ensures that the concentration within the inclusion is always in the interval
[0,1]. Here, w = 27 /T is the angular frequency, and T the period. Reference solutions are obtained by solving the
nonlinear diffusion problem in the cylinder by the FE method. Accounting for axisymmetry, it reduces to a 1D problem
along the radius, and we used 100 equispaced nodes and linear shape functions. The coefficients flff" and relaxation times
7lin of the linear comparison problem are obtained from their analytical expressions for the linear diffusion in a cylinder
(Table 1), and we used the first 10 modes. This number of modes is sufficiently high so that the discrepancy between the
reference and mean-field estimate come solely from the nonlinearity, and not from the error on the estimate in the linear
diffusion problem.

The comparison between the full-field reference predictions and the mean-field estimate is shown in Figure 8. The
quality of the predictions is highly sensitive to the frequency of the applied load, as well as to the particular concentration
dependency of the diffusion coefficient. At low frequency (' = a?/D, Figure 8a), the mean-field predictions are in
very good agreement with the reference FE solution. However, at higher frequency (T = 0.1a?/D, Figure 8b), some
significant discrepancies are found for f(c¢) = fa(c) and f(¢) = f3(c), while the model predictions for f(c) = fi(c)
are still acceptable. For both frequencies, one verifies that application of the model to the case of constant coefficient
(f(c) = 1) with N = 10 gives results which are indistinguishable from the reference solution, which confirms that the
error in nonlinear cases stem from the non-linearity only.

7 Conclusion

In this work we have developed semi-analytical estimates for the effective transient response of inclusions subjected to
uniform, time-varying Dirichlet boundary conditions. The proposed estimates are of the general form (6) or (11) and involve
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a finite number of internal variables accounting for the loading history dependency of the behaviour. The proposed estimates
admit simple representations in terms of equivalent spring-dashpot rheological models, and can readily be integrated in time
using a fully implicit scheme. The estimates were constructed based on the chemical creep function of the inclusion, to be
identified once and for all by solving the inclusion problem under a step loading. While linear diffusion problems have been
studied for a long time, we believe that our presentation based on the notion of chemical creep function and the analogy
with viscoelasticity is original.

10 :
—  file)
—  falo)
T
° —  fule)
2
<Y
< 4
=
2,
000z 01 06 03 10

Fig.7 The normalised concentration-dependent diffusion coefficient D/ Do = f(c). The four different functions f1(c),
f2(c), f3(c) and f4(c) are reported in Equations (55)-(58).

1.0

a)

0860 0.05 0.10 0.15 0.20 0.25
f/D(] / (L2
b)
Fig. 8 Mean-field solution to the radial diffusion problem in a cylinder subjected to harmonic excitation with period a)
T = a®>/D and b) T = 0.1¢®/D. The diffusion coefficient varies with concentration, D(c) = Dy f(c). The continu-
ous lines are the reference FE predictions, and the dashed lines are the mean-field estimates. For the latter, the first 10
coefficients A, and relaxation times 7,, of the analytical solution for the cylinder (Table 1) were used.
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Here we have proposed three methods to construct semi-analytical estimates, namely a collocation method, a constrained
optimisation method, and a FE-based modal analysis approach. The first two methods directly inspire from existing meth-
ods in viscoelasticity. The third method constitutes an original application of FE-based modal analysis for estimating the
effective transient diffusion behaviour. We have shown that these estimates correctly capture the effective transient re-
sponse of inclusions under time-varying loading conditions with a very small number of relaxation modes, or equivalently
internal variables, at only a fraction of the cost of full-field simulations. We also proposed a simple extension to the case
of nonlinear diffusion problems. We hypothesise that other - possibly enhanced - estimates could be developed in both the
linear and nonlinear cases based on the idea of chemical creep function.

The proposed estimates for the effective transient response of inclusions can be used as the building blocks of more
sophisticated multi-inclusion models, for example to investigate the role of inclusion shape and size distribution on the
memory effect. In this case, it is necessary to consider a distribution of inclusions in a matrix, and to apply macroscopic
loading conditions on the boundary of a RVE of the microstructure. The chemical loading history on the boundary of a
particular inclusion in the RVE then becomes dependent on the matrix chemical properties and RVE geometry. In a mean-
field approach, one needs to propose a suitable localisation rule in order to determine the chemical load experienced by each
inclusion in the RVE at a given time. For example, under the assumption of an infinitely fast diffusing matrix, the chemical
loading can be expressed in terms of an effective chemical potential assumed uniform over each inclusion boundary, but
varying with the inclusion position. One can then use expression (11) for each inclusion, and the total, effective inclusion
response is obtained by averaging over all the inclusions. These developments are out of scope of the present paper. A
comprehensive homogenisation framework for transient diffusion problems in composites, as well as mean-field estimates
based on the present work, will be presented in a forthcoming contribution [24].

Acknowledgements The authors thank Thomas Heuzé for insightful discussions on modal methods in transient heat transfer.

Appendix A Regime response of inclusions subjected to harmonic loading
We address the regime response of an inclusion subjected to harmonic excitation of the form e*?on its boundary, where
w is the angular frequency and ¢ a constant real number. In regime, local solutions are of the form ¢(x)e™?, with ¢(x) a
complex function of the spatial coordinates which satisfies:

iwp = DV24. (59)
The average concentration is then: {(c) = (¢)e'.
In analogy with linear viscoelasticity, we introduce the complex chemical creep modulus J*, its ”storage” and "loss”
components J' and J”, and a loss tangent:

12
J*:%:J'—i—i(]”7 tan§:%. (60)

The storage and loss moduli respectively represent the in-phase and out-of-phase components of the inclusion response,
relative to the applied concentration. In practice, we are interested in the real part of the average concentration response:

; cJ’
R wit] _ t 9). 61
e [(6ye!] = £L- cos(et + 0) 1)
This expression identified the amplitude of the average concentration as &.J’ / cos d.
We relate the storage and loss moduli to the chemical creep function (21) by following a procedure previously proposed
for linear viscoelasticity, see [25], Section 1.6. First introduce the harmonic boundary condition ée’! in the integral
representation (28) of the inclusion response:

t
(p)e™t =¢ / J(t —t)iwe™" dt’, (62)
where we have used ¢ = —oo as the lower integration bound to describe an infinitely cycling behaviour. Next we introduce

the change of variable n = ¢ — t’ to rewrite the above equation as:

(¢) = iwe /_ T u (n)J (n)e™""dn. (63)
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Fig. 9 Frequency response. (a) Real and Imaginary parts of the complex relaxation modulus and b) the loss tangent.

Recognising the definition of the Fourier transform of the creep function in the right-hand side of the last equation, we
write:

o0

1
= E Ap——o, 64
/ 1+ dwr, (64)

n=1

where we also used the identity (20). From the series representation (64), the real and imaginary parts can be explicitly
obtained:

= 1
o Ay—
P PRt e ©
no_ _ AHL. 6
g nz;: 1+ (wrp)? (66)

While the creep function (22) is given by an infinite series of exponentials, the complex modulus is given by an infinite
series of complex fractions. Both series involves the same coefficients A,, and 7,.

Alternatively, the complex modulus can be obtained in closed form in the case of the 1D linear diffusion problems in a
plane sheet, a cylinder or a sphere. The PDE (59) then reduces to one single ODE that can be solved analytically for the
function ¢(r), with r the spatial coordinate [13]. We list the final results for both the local solution and the average response
in Table 3. In the table, a is a characteristic size (cf. Figure 1), k is the wavenumber, k = (w/ D)l/ 2 and I, and I, are
modified Bessel functions. We have verified numerically that the real and imaginary parts of the closed form expressions
for (¢) /¢ reported in Table 3 and the series expressions for J' and J” coincide.

The evolution of the storage and loss moduli with the frequency of the applied chemical load is represented in Figure
9a for the planar, cylindrical and spherical geometries. Similar curves were previously derived by Auriault [3]. The
storage modulus tends to J’' = 1 at low frequencies (chemical equilibrium), and to J’ = 0 at large frequencies. Different
from viscoelasticity, there is a vanishing instantaneous concentration response when the applied load is very fast. The
loss modulus tends to zero for both low and high frequencies, and displays a peak at intermediate frequencies, similar to
viscoelasticity. However, the loss modulus remains below the storage modulus at all frequencies (in absolute value) in the
case of a cylindrical and spherical geometry, and slightly exceeds the storage modulus in a small range of frequencies in
the case of the planar geometry. This is also different from classical viscoelasticity where the loss modulus may exceed the
storage modulus by a significant amount and for a significant range of frequencies. Noticeably, the storage and loss moduli
converge to each other at high frequencies.

The loss tangent is represented in Figure 9b. At low frequencies, the average response is in phase with the applied
loading (chemical equilibrium), § = 0. At high frequencies, the loss tangent tends to —1, which corresponds to a phase
angle § = 7. In other words, the concentration lags behind the applied surface concentration with a maximum of 7/4
phase lag at high frequencies. The loss tangent monotonically decreases from O to -1 for the circular geometries. In
contrast, values below -1 are reached for intermediate frequencies in the case of the planar geometry, and this occurs in the

frequency range where the loss modulus exceeds (in absolute value) the storage modulus.
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Table 3  Solution of harmonic diffusion problem in a plane sheet of thickness 2a, a cylinder and a sphere of radius a. r
is the spatial coordinate, and k is the wavenumber, k = (w/D)/2.

Plane sheet Cylinder Sphere
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