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Abstract

This paper presents a homogenisation-based constitutive model to describe the effective tran-
sient diffusion behaviour in heterogeneous media in which there is a large contrast between the
phase diffusivities. In this case mobile species can diffuse over long distances through the fast
phase in the time scale of diffusion in the slow phase. At macroscopic scale, contrasted phase
diffusivities lead to a memory effect that cannot be properly described by classical Fick’s second
law. Here we obtain effective governing equations through a two-scale approach for composite
materials consisting of a fast matrix and slow inclusions. The micro-macro transition is similar
to first-order computational homogenisation, and involves the solution of a transient diffusion
boundary-value problem in a Representative Volume Element of the microstructure. Different
from computational homogenisation, we propose a semi-analytical mean-field estimate of the
composite response based on the exact solution for a single inclusion developed in our previous
work [Brassart, L., Stainier, L., 2018. Effective transient behaviour of inclusions in diffusion
problems. Z. Angew Math. Mech. 98, 981-998]. A key outcome of the model is that the
macroscopic concentration is not one-to-one related to the macroscopic chemical potential, but
obeys a local kinetic equation associated with diffusion in the slow phase. The history-dependent
macroscopic response admits a representation based on internal variables, enabling efficient time
integration. We show that the local chemical kinetics can result in non-Fickian behaviour in
macroscale boundary-value problems.

Keywords: Homogenisation, Mean-field model, Mass transfer, Heat transfer, Memory effect

1. Introduction

A number of engineering problems involve the diffusive transport of mobile species in het-
erogeneous media. Representative examples include atomic transport in polycrystals, fluid and
solute transport in geomaterials, and water permeation in porous polymers and gels. When
studying diffusion in macroscopic volumes containing a large number of small heterogeneities,
direct calculations on a fully-resolved geometry are often impracticable. One then seeks to replace
the actual heterogeneous medium by an equivalent homogeneous one with the same "average"
behaviour (Auriault, 1991). This practice is also convenient in view of comparing models to
experiments, since many experimental techniques only provide average measures of composition
distributions.

A commonly-adopted hypothesis is that the equivalent medium obeys conservation equations
and constitutive relations that have the same structure as the local governing equations. In
particular, in linear diffusion problems one often postulates that the effective medium obeys
Fick’s second law with an effective diffusion coefficient that depends on the phase diffusivities
and the microstructure geometry. Analytical expressions for the effective diffusivity are provided
by classical bounds and estimates, such as Voigt and Reuss bounds, Hashin-Shtrikman bounds or
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the self-consistent scheme (Hashin and Shtrikman, 1962; Budiansky, 1970) - see also textbooks
by (Torquato, 2002) and (Auriault et al., 2009)1.

Yet Fick’s second law is not always appropriate to describe the effective diffusion behaviour.
In polycrystals, the presence of fast diffusion paths (grain boundaries, free surfaces, dislocations)
leads to distinct, possibly non-Fickian limiting regimes, depending on the diffusivity contrast,
macro- and microscopic length scales and the observation time scale (Harrison, 1961; Balluffi
et al., 2005). For example, diffusion over long distances may take place rapidly through the
grain boundaries, while diffusion in the grain interior is much slower. This situation cannot be
described by a single effective diffusion coefficient. Anomalous diffusion has also been reported in
double-porosity media, where the non-Fickian behaviour manifests itself in the long tail observed
in solute concentration distributions (Gist et al., 1990; Sternberg et al., 1996; Levy and Berkowitz,
2003; Ngoc et al., 2014). The long-tail effect has been attributed to local non-equilibrium effects
associated with the mass exchange between the low and high diffusivity regions.

A simple Fickian description may also not be suited to describe mass transport in electrodes of
Li-ion batteries at macroscopic scale. Typical electrodes present a porous architecture consisting
of active particles (e.g. LiCoO2 for the cathode, graphite for the anode), conductive fillers and a
polymer binder (Shearing et al., 2010; Stephenson et al., 2011). The diffusion coefficient of lithium
ions in electrolyte-filled pores can be orders of magnitude larger than the diffusion coefficient of
lithium atoms in the active particles (D „ 10´14 ´ 10´16 m2/s for lithium in LiCoO2 (Xie et
al., 2008) compared to D „ 10´11 m2/s for lithium ions in commonly-used organic carbonates
electrolyte with LiPF6 salt (Danilov and Notten, 2008). As a result, transient lithiation of active
particles can occur concurrently to large scale transport through the electrolyte in sufficiently
thick electrodes, with direct implication for the battery capacity and rate capability.

The general objective of this work is to develop governing equations for the effective diffusion
behaviour of heterogeneous media in which there is a high contrast between the diffusivities of
the constituents. This paper focuses on two-phase particulate composites consisting of "slow"
inclusions dispersed in a “fast" percolating matrix. In this case distinct limiting regimes can
be anticipated for the relaxation by diffusion of a compositional heterogeneity. Let τ be the
characteristic time for diffusion in a typical inclusion with size a: τ “ a2{D1, where D1 is
the diffusion coefficient of the mobile species in the inclusion. The relaxation time τ and the
diffusion coefficient in the matrix, D2, together define a length, Λ “

?
D2τ , which characterises

the diffusion length of the mobile species through the matrix over a time τ . This length only
depends on the diffusion properties and inclusion size, and is thus an intrinsic property of the
material. For a boundary-value problem with typical size L much larger than Λ, the system
relaxation is limited by the long-range transport through the fast matrix, while short-range
diffusion within the inclusions has relaxed. For a boundary-value problem with size L smaller
than Λ, relaxation is limited by the short-range diffusion in the inclusions, while diffusion in the
matrix has reached steady state. Effective governing equations should include these two regimes
as limiting cases.

These two limiting regimes were previously predicted by phenomenological theories for cou-
pled diffusion and viscous flow (Li et al., 2014; Brassart et al., 2018). These theories rest on
the postulate that long-range transport of species and local concentration changes are mediated
by distinct molecular processes with different kinetics. In the mathematical formulation, this
is accounted for by relaxing the assumption of local chemical equilibrium, hence introducing a
kinetic relation relating the concentration rate to the chemical potential. In response to a jump
in chemical potential, the local concentration does not immediately adjust, but rather evolves to-
wards its equilibrium value according to a kinetic model with relaxation time τ . The latter could

1Many references cited in this Introduction deal with thermal or electrical conduction problems, rather than
mass transport. Results obtained in the context of linear conduction can to a large extent be transposed to the
mass transport problem.
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represent for example the kinetics of breaking and reforming chemical bonds or creep relaxation
associated with volume change due to species insertion (Brassart et al., 2016). In the context of
supercooled liquids (Li et al., 2014), the theory assumes fast diffusion through regions of high
mobility and creep-limited species insertion dominated by regions of low mobility. In the present
case, the local kinetics of species insertion will be associated to diffusion in inclusions with low
diffusivity. One of the aims of this paper is to provide a micromechanically-based motivation for
the relaxation of the local chemical equilibrium assumption at macroscopic scale in the context
of double-diffusivity media.

In this paper we develop effective diffusion equations using a micro-macro approach. To
simplify the treatment and focus on the essential ideas, we consider linear diffusion problems
and do not introduce any coupling with mechanics. The proposed upscaling strategy involves
the solution of a transient diffusion problem on a Representative Volume Element (RVE) of the
microstructure subject to boundary conditions in terms of a macroscopic chemical potential and
its gradient. Corresponding macroscopic concentration rate and flux are obtained by averaging
of the microscopic fields in the RVE, in accordance to Hill-Mandel condition. Different from
previously-proposed computational homogenisation methods, e.g. (Özdemir et al., 2008a; Lars-
son et al., 2010; Salvadori et al., 2015), here we propose a semi-analytical mean-field estimate
of the effective transient behaviour, assuming steady-state matrix and transient inclusions, al-
lowing us to derive the effective governing equations in closed-form. The model relies on the
exact solution for a single inclusion subject to time-varying, uniform chemical potential on its
boundary, as presented in our previous work (Brassart and Stainier, 2018). The mean-field esti-
mate gives the macroscopic concentration rate and flux as functions of the macroscopic chemical
potential, its gradient, and the loading history. The model can be written in terms of inter-
nal variables, enabling efficient numerical implementation for solving macroscale boundary-value
problems. Fickian to non-Fickian transition is predicted at macroscopic scale, in qualitative
agreement with the phenomenological model proposed by Brassart et al. (2018).

1.1. Review of existing approaches
Macroscopic models addressing the problem of diffusion in the presence of fast-diffusion paths

have been formulated by postulating separate conservation equations for each family of diffu-
sion path (Aifantis, 1979; Aifantis and Hill, 1980). The conservation equations are coupled
through phenomenological source terms representing the mass exchange between the slow and
fast regions. The total concentration obeys a fourth-order differential equation, showing the
non-Fickian character of the average diffusion behaviour (Aifantis and Hill, 1980). Similar two-
equation models have been obtained by using the Method of Volume Averaging (Whitaker, 1999),
which introduces a spatial smoothing of the governing equations in each phase through volume
averaging. The phase-exchange term is identified by solving a closure problem at the micro-
scopic scale. Both steady-state and unsteady-state closure problems were considered (Quintard
and Whitaker, 1993; Moyne, 1997). In the latter case, the exchange term between the phases
takes the form of a linear relaxation process.

Volume-averaged conservation equations are also considered in the phenomenological Porous
Electrode Theory, pioneered by Newman and coworkers, see e.g. (Thomas et al., 2002). In this
approach, the conservation equation in the electrolyte is averaged over a volume assumed small
relative to the electrode dimensions, but much larger than the typical size of active particles. The
effect of tortuosity on the effective transport behaviour is typically described using analytical
mean-field estimates or percolation theory. Active particles are distributed through the simu-
lation volume and interact with the electrolyte through a reactive source term, which depends
on the potential difference between the phases. Particles are usually treated as spheres and
subjected to prescribed flux directly related to the source term in the electrolyte conservation
equation. An extension of the theory to account for elastic and inelastic deformations of the
particles was proposed by Golmon et al. (2009). In recent years, the theory was reformulated in
a rigorous irreversible thermodynamics framework by Bazant and coworkers, see (Ferguson and
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Bazant, 2012; Smith and Bazant, 2017). Notably, these authors also included a description of
phase transforming electrode materials.

The determination of the effective diffusion behaviour of heterogeneous media can be rig-
orously addressed using asymptotic homogenization theory (Bensoussan et al., 1978; Sanchez-
Palencia, 1980). Conduction problems in periodic composites have been considered by Auriault
(1983), and recently revisited by Matine et al. (2013, 2015) to include a description of short-
time and edge effects. In the presence of a high contrast between the phase conductivities,
Auriault (1983) showed that, to the first-order, the temperature field obeys a heat conservation
equation with pulsation-dependent heat capacity, bringing about a memory effect. Auriault and
Lewandowska (1995) developed the parallel theory for mass transport in double-diffusivity me-
dia, leading to similar conclusions. Dureisseix et al. (2015) recently proposed a computational
approach to estimate the memory function by direct finite element calculation on a unit cell of
the microstructure. Alternatively, Curto Sillamoni and Idiart (2015, 2016) used the multiscale
convergence approach (Allaire, 1992; Allaire and Briane, 1996) to determine the effective dif-
fusion behaviour of ions in microstructured electrolytes driven by concentration gradients and
electric fields. However, the authors did not specifically investigate the effect of high diffusivity
contrast on the overall behaviour. A drawback of asymptotic homogenisation approaches - in
addition to their relative complexity - is that they require a priori judgement as to the magnitude
of the diffusivity ratio in relation to the scaling parameter (Auriault and Lewandowska, 1995;
Moyne, 1997).

Computational homogenisation is another, increasingly popular upscaling technique, accord-
ing to which the effective behaviour is calculated numerically by solving a boundary value
problem on a RVE of the microstructure at each integration point of a macroscale analysis
(Kouznetsova et al., 2001; Geers et al., 2010). A computational homogenisation procedure was
developed by Özdemir et al. (2008a) for heat conduction, assuming steady-state within the RVE.
Microscopically-transient conduction problems were considered by Monteiro et al. (2008) and
Larsson et al. (2010). Numerical frameworks for heat conduction coupled to thermomechani-
cal problems were also proposed, still relying of the assumption of steady-state heat transfer
at microscale (Özdemir et al., 2008b; Temizer and Wriggers, 2011; Berthelsen et al., 2017). A
multiphysics computational homogenisation framework for coupled electrochemo-mechanics was
recently developed by Salvadori et al. (2014, 2015) in the context of Li-ion batteries. The advan-
tage of computational homogenisation is that it can handle nonlinear constitutive models and
general microstructures. Its drawback is the high computational cost associated with solving
large-scale boundary value problems, as the method does not provide expressions of the effective
behaviour in closed-form. The two-scale framework adopted in the present work is similar to that
of Larsson et al. (2010) and Salvadori et al. (2015). The key contribution of the present work
is the formulation of a closed-form mean-field estimate for the RVE behaviour, which enables
two-scale simulations at a much lower computational cost than computational homogenisation
techniques.

The paper is organised as follows. Section 2 presents the local governing equations and defines
the effective behaviour. A general two-scale approach is presented in Section 3. The mean-field
estimate is presented in Section 4, and a numerical strategy for upscaling based on internal
variables is proposed in Section 5. The mean-field model is validated in Section 6 by comparing its
predictions to reference, full-field predictions on unit cells with random microstructures. Finally,
two-scale simulations are presented in Section 2.2 and confirm the accuracy of the proposed
model.

2. Problem description

2.1. Diffusion boundary value problem
We consider the transient diffusion problem of a mobile species in a continuous, heterogeneous

medium Ω. The heterogeneous medium is taken as a two-phase composite consisting of inclusions
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(phase 1) distributed in a continuous matrix (phase 2). The local state at a point x P Ω
is described by the concentration c of mobile species (number of molecules per unit volume).
The free energy density of the medium (energy per unit volume) is written Gpx, cq, where the
dependence in x indicates the spatially-varying chemical properties of the medium. The chemical
potential of the mobile species at a point is derived from the free energy according to:

µ “
BG

Bc
. (1)

We assume that the chemical potential in each phase is a linear function of concentration:

µpcq “ µr `Krpc´ crq, (2)

where Kr is the chemical modulus of phase r (r “ 1, 2), cr a reference concentration for the
phase, and µr the corresponding chemical potential. The free energy density function is thus
quadratic in each phase:

Gpx, cq “
2
ÿ

r“1

χrpxqGrpcq with Grpcq “ µrc`
Kr

2
pc´ crq

2, (3)

where χrpxq is the indicator function of the domain occupied by phase r (χrpxq “ 1 if x is in
phase r, χrpxq “ 0 otherwise). In the following, we will set cr “ 0 and µr “ 0, without loss of
generality. Concentration and chemical potential pc, µq can then be interpreted as perturbations
about the reference state pcr, µrq.

Remark 1. The constitutive model (2)-(3) corresponds to the linearisation of a commonly-
adopted chemical constitutive model about the reference concentration cr:

µpcq “ µr ` kbT ln

ˆ

c

cr

˙

, (4)

where kb is Boltzmann’s constant and T is the absolute temperature. Expression (4) is a rea-
sonable approximation for a dilute solution of interstitial atoms in a host (Balluffi et al., 2005).
This model corresponds to the following free energy density function:

Grpcq “ µrc` kbT

„

c ln

ˆ

c

cr

˙

´ c



` kbTcr. (5)

The chemical modulus Kr in Eq. (2) is thus identified as Kr “ kbT {cr. The model (2) is a valid
approximation of the nonlinear model (4) provided that the concentration does not deviate too
much from the reference concentration.

Diffusion of mobile species is driven by the gradient of chemical potential g ” ∇µ. The
simplest isotropic model of diffusion assumes a quasi-linear relationship between the flux of
mobile species, j, and the gradient of chemical potential:

j “ ´kpxqg, (6)

where k is the molecular conductivity, which we assume to be uniform in each phase:

kpxq “
2
ÿ

r“1

χrpxqkr, (7)

with kr the molecular conductivity of phase r. The evolution of the concentration field cpx, tq in
space and time is governed by the species conservation equation:

9c “ ´∇ ¨ j. (8)
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Figure 1: a) Diffusion boundary-value problem in a heterogeneous medium. (b) Equivalent homogeneous medium
subjected to the same boundary conditions.

Remark 2. Combining Eqs (1), (2), (6) and (8), we recover Fick’s second law within each phase:

9c “ Dpxq∇2c, (9)

where the diffusion coefficient is given by:

Dpxq “
2
ÿ

r“1

χrpxqDr, Dr “ krKr. (10)

Boundary conditions are written either in terms of prescribed chemical potential or prescribed
flux on the boundary BΩ:

´jpx, tq ¨ npxq “ jppx, tq on BΩj , (11)
µpx, tq “ µppx, tq on BΩµ, (12)

where n is the outward unit normal to the external surface, and jp and µp are prescribed
functions respectively defined on portions BΩj and BΩµ of the boundary, with BΩj Y BΩµ “ BΩ
and BΩjXBΩµ “ H. At the interface between an inclusion and the matrix, the chemical potential
and normal fluxes should be continuous. Finally, the initial condition cpx, 0q “ c0pxq must also
be specified. In this work we assume c0pxq “ 0. The diffusion boundary-value problem in the
heterogeneous medium is represented in Fig. 1a.

The boundary value problem (11)-(12) can be rewritten in an equivalent, weak form as follows.
First introduce the set

Kpµpq “ tµ̂|µ̂ "sufficiently smooth" and µ̂ “ µp on BΩµu . (13)

For all admissible fields µ̂ P Kpµpq, the following virtual power principle is satisfied:
ż

Ω
pµ̂ 9c´ j ¨ ĝq dV “ ´

ż

BΩµ

µpj ¨ ndS ´

ż

BΩj

µ̂jpdS, (14)

where ĝ “ ∇µ̂. Note that the physical field µ belongs to the set of admissible fields, yielding a
power conservation principle: the power of applied chemical potential and flux at the boundary
is equal to the sum of powers of stored and dissipated energy in the bulk.
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2.2. Effective behaviour
We are interested in boundary-value problems with characteristic length L much larger than

the characteristic size a of an inclusion (Fig. 1a). In such cases, it is desirable to replace the actual
heterogeneous medium with a fictitious homogeneous medium whose behaviour under applied
external chemical loads is identical to the actual behaviour (Fig. 1b). In the equivalent medium,
the local state is described by an effective concentration c̄ (representing a volume average of the
concentration in the underlying microstructure, to be formally defined later), which satisfies a
conservation equation of a form similar to (8):

9̄c “ ´∇ ¨ j̄. (15)

This equation can be seen as the definition of the effective diffusion flux j̄. We also introduce
an effective chemical potential µ̄, as well as its gradient, ḡ. By analogy with the weak form of
the local problem (14), the effective chemical potential is formally defined as the solution to the
effective diffusion problem (15) written in a weak form. Thus, the effective chemical potential
field is such that:

ż

Ω

`

µ̄ 9̄c´ j̄ ¨ ḡ
˘

dV “ ´

ż

BΩµ

µpj̄ ¨ ndS ´

ż

BΩj

µ̄jpdS. (16)

The statement (16) identifies the effective chemical potential as power-conjugate to the effective
concentration rate, and its gradient as power-conjugate to the effective flux.

The weak form (16) must be supplemented by effective constitutive relations relating the
generalised forces (µ̄,ḡ) to the generalised fluxes ( 9̄c,j̄). In general, the effective constitutive
relations can be written under the form:

9̄c “ Fpµ̄, ḡ, 9̄µ, 9̄g, loading historyq, (17)
j̄ “ Gpµ̄, ḡ, 9̄µ, 9̄g, loading historyq. (18)

Our aim is to identify these effective constitutive relationships through a micro-macro approach,
as described in the following sections.

3. Two-scale approach

We adopt a two-scale approach according to which a Representative Volume Element (RVE)
of the microstructure is associated to each material point in the effective medium (Fig. 2). For
a random microstructure, the RVE should be chosen sufficiently large so that it is statistically
representative of the actual microstructure. Let l be the characteristic size of the RVE. We
assume separation of scales:

a ! l ! L. (19)

At a given loading step, the effective chemical potential and gradient (µ̄,ḡ) are viewed as
given loading parameters, and we seek to identify the corresponding effective concentration rate
and diffusion flux for the RVE, p 9̄c, j̄q. As is standard in two-scale approaches, two steps are
successively considered:

1. The macroscopic loading parameters are translated into boundary conditions on the RVE
boundary, allowing for the microscopic concentration and diffusion fields to be calculated
in the RVE by solving a transient diffusion problem (localisation step).

2. The effective concentration and diffusion flux are calculated from local field through suitable
averaging conditions (homogenisation step).
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Figure 2: Two-scale procedure: a RVE of the microstructure is associated to every material point in the effective
medium. Effective concentration rate and flux are obtained from an analysis of the transient diffusion problem in
the RVE domain.

3.1. Localisation
Consider a macroscopic material point at which the values of macroscopic chemical potential

and chemical potential gradient are µ̄ and ḡ. In general, µ̄ and ḡ can take arbitrary values. We
associate to this macroscopic point a RVE of domain ω, and write x0 the centre of volume of the
RVE in a microscale coordinate system. The centre of volume of the RVE is defined such that
ş

ωpx´ x0qdV “ 0. At any point x in ω, the field of chemical potential is expressed as:

µpx, tq “ µ̄ptq ` ḡptq ¨ px´ x0q ` µ̃px, tq, (20)

where µ̃ represents the fluctuation relative to a development of the chemical potential field up to
the first order around the macroscopic value. We adopt a first-order homogenisation scheme, and
require that the volume average of the chemical potential gradient over the RVE should equal
the macroscopic value:

1

V

ż

ω
g dV “ ḡ, (21)

where V is the RVE volume. This condition in turn implies that:

1

V

ż

ω
∇µ̃ dV “ 0. (22)

Using the divergence theorem, the latter condition can be rewritten as a surface integral:
ż

Bω
µ̃n dS “ 0, (23)

where n is the outward unit normal to the RVE boundary. Condition (23) is satisfied by setting
µ̃ “ 0 on Bω. Eq. (20) then leads to affine chemical potential boundary conditions:

µ “ µ̄` ḡ ¨ px´ x0q on Bω. (24)

Note that, while affine boundary conditions satisfy condition (21), in general the volume average
of the chemical potential in the RVE does not necessarily coincide with the macroscopic value:

1

V

ż

ω
µdV ‰ µ̄. (25)

For heat conduction problems, similar affine boundary conditions can be written in terms of
prescribed temperature (Larsson et al. (2010)).
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Remark 3. Alternatively, condition (22) is satisfied by requiring the micro-fluctuation field µ̃ to
be periodic:

µ̃px`q “ µ̃px´q, (26)

where x` and x´ are position vectors of corresponding points on the boundary. The boundary
conditions then write:

µpx`q ´ µpx´q “ ḡ ¨ px` ´ x´q on Bω. (27)

Periodic boundary conditions only specify the field of chemical potential up to an undetermined
constant. This is similar to periodic displacement boundary conditions in mechanics problems,
which only determine the displacement field up to a rigid body motion. Similar to mechanics
problems, the indeterminacy can be suppressed by prescribing the chemical potential value at one
point on the RVE boundary. Alternatively, one can require that the average chemical potential
should equal the macroscopic chemical potential:

1

V

ż

ω
µdV “ µ̄. (28)

Introducing expansion (20) into (28), it amounts to requiring that the volume average of the
microscopic fluctuation field vanishes:

1

V

ż

ω
µ̃dV “ 0. (29)

For heat conduction problems, a requirement similar to (28) was proposed by Özdemir et al.
(2008a), where it amounts to enforcing consistency of stored heat at macroscopic and microscopic
levels.

3.2. Averaging
Expressions for the effective quantities ( 9̄c,j̄) in terms of the local fields in the RVE are

obtained by requiring that the macroscopic power should equal the power supplied to the RVE
through its boundaries:

µ̄ 9̄c´ j̄ ¨ ḡ “ ´
1

V

ż

Bω
µj ¨ ndS (30)

“
1

V

ż

ω
µ 9c dV ´

1

V

ż

ω
j ¨∇µ dV, (31)

where the second equality follows from application of the divergence theorem and the local species
conservation equation (8). Eqs. (30)-(31) are equivalent to the Hill-Mandel condition in (quasi-
static) mechanical homogenisation problems. In its original derivation (Hill, 1967)), Hill’s lemma
follows from the a-priori definition of effective fields as volume averages. In contrast, here we
postulate the equality (30), and determine expressions for the effective concentration rate and
diffusion flux which ensures that the equality is satisfied. The generalisation of the Hill-Mandel
condition as a principle of multiscale virtual power for a broad class of RVE-based methods is
discussed in Blanco et al. (2016).

Using the affine boundary condition (24) together with the divergence theorem and the
conservation equation (8), the right-hand side of Eq. (30) becomes:

´
1

V

ż

Bω
µj ¨ ndS “ µ̄

1

V

ż

ω
9c dV ´

1

V
ḡ ¨

ż

Bω
px´ x0qpj ¨ nq dS. (32)

Comparing this expression to Eq. (30), and recalling that µ̄ and ḡ can be varied independently,
the effective concentration rate and flux are identified:

9̄c “
1

V

ż

ω
9c dV, (33)
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and
j̄ “

1

V

ż

Bω
px´ x0qpj ¨ nq dS. (34)

The effective flux can alternatively be rewritten in terms of volume averages:

j̄ “
1

V

ż

ω
j dV ´

1

V

ż

ω
9cpx´ x0q dV. (35)

Remark 4. In the case of periodic boundary conditions instead of affine boundary conditions,
the same expressions (33) and (35) can be obtained if

ş

Bω µ̃j ¨ndS “ 0. This condition can then
be used, instead of (28) or (29), to control the indeterminacy on the field µ.

The result (33) shows that the effective concentration c̄ coincides with the volume average of
the local concentration in the RVE, as one would have expected. On the other hand, Eq. (35)
shows that the effective diffusion flux does not coincide with the volume average of the local
flux. The second term of the right-hand side of (35) accounts for microscale inertia through
the first moment of the rate of concentration in the RVE. This term depends on the RVE
size, and therefore introduces a size effect which vanishes when the RVE size tends to zero. A
similar size-dependent term was previously identified by Larsson et al. (2010) for transient heat
conduction, where it corresponds to the "moment of heat content". In the context of diffusion,
a similar relation was given by Salvadori et al. (2015), Nilenius et al. (2015), and Kaessmair
and Steinmann (2016). It also appears in elastodynamics, where it corresponds to a "moment of
momentum" (Pham et al., 2013).

3.3. Orientation for the rest of the study
In the rest of this study, we will consider composites in which the diffusivity in the matrix

phase is much larger than in the inclusion phase, D2 " D1. We define τ1 the characteristic time
for diffusion in an inclusion, τ1 “

a2

D1
, and τ2 the characteristic time for diffusion in the RVE

through the fast percolating matrix: τ2 “
l2

D2
. We assume that the macroscopic excitation time

scale T is much larger than the characteristic time for diffusion in the matrix, T " τ2, so that
the assumption of quasi steady-state holds everywhere in the matrix:

0 “ ´∇ ¨ j in ω2, (36)

where ω2 is the matrix domain. On the other hand, transient diffusion (Eq. (8)) is considered
in the inclusions collectively occupying domain ω1, i.e. T ď τ1.

The RVE problem under affine chemical potential boundary conditions can be solved very
accurately for arbitrary geometries and material properties using a computational approach, such
as the finite element method. The relationship between the loading parameters (µ̄,ḡ) and the
average concentration rate and flux p 9̄c, j̄q identified in Eqs (33) and (35) can then be obtained
numerically. However, we are mostly interested in identifying the structure of the constitutive
relationships (17)-(18) in transient diffusion problems. Therefore, a semi-analytical mean-field
model will be developed and validated by comparing its predictions to reference results obtained
from full-field simulations.

4. Mean-field model for two-phase composites

In this section we develop a mean-field model for transient diffusion in two-phase composites
with steady-state matrix. The inclusions are assumed spherical (3D problems) or circular (2D
problems) with radius a. For a cubic or square RVE of size l containing N inclusions, the
inclusion volume fraction f is thus given by f “ 4Nπa3

3l3
(3D) or f “ Nπa2

l2
(2D). Our aim is

to establish a relationship between the generalised forces (µ̄,ḡ) and the generalised fluxes p 9̄c, j̄q
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identified as (33)-(35) in a semi-analytical form. We introduce the following usual notations for
volume averages:

x¨y “
1

V

ż

ω
¨ dV, x¨yr “

1

Vr

ż

ωr

¨ dV, (37)

where Vr is the volume of phase r, such that V1 ` V2 “ V . Then,

x¨y “ fx¨y1 ` p1´ fqx¨y2. (38)

For later use, we introduce the following first- and second-order tensors:

sr ”
1

l
xpx´ x0qyr, (39)

Sr ”
1

l2
xpx´ x0q b px´ x0qyr. (40)

Since xpx´ x0qy “ 0 by definition of the centre of volume, the vectors s1 and s2 are related by:

fs1 ` p1´ fqs2 “ 0. (41)

For a cubic or square RVE of size l, one can readily verify that: xpx ´ x0q b px ´ x0qy “
l2

121.
Therefore, S1 and S2 are related by:

fS1 ` p1´ fqS2 “
1

12
1. (42)

Taking advantage of the spherical or circular symmetry of the individual inclusions, s1 and S1

can be expressed in terms of the position vectors of the inclusions centres, xk (k “ 1, N):

s1 “
1

Nl

N
ÿ

k“1

pxk ´ x0q, (43)

S1 “
1

Nl2

N
ÿ

k“1

pxk ´ x0q b pxk ´ x0q. (44)

The first- and second-order tensors s1 and S1 thus represent the first and second moment of the
inclusion distribution about the RVE centre of volume.

4.1. Exact solution for a single inclusion subject to a uniform, time-varying chemical potential
Our model relies on the exact solution for the transient diffusion problem in a single inclusion

subject to a uniform, time-varying chemical potential at its boundaries developed in (Brassart
and Stainier, 2018). Consider an inclusion with chemical modulus K, molecular conductivity k
and diffusivity D “ Kk. The inclusion is subject to a time-varying chemical potential, µ0ptq
prescribed on its boundaries. The average concentration in the inclusion, xcy0, is given by
(Brassart and Stainier, 2018):

xcy0ptq “
1

K

ż t

0
Jpt´ t1q

dµ0

dt1
dt1, (45)

where Jptq is the chemical creep function, which depends on the inclusion size, geometry and
diffusion coefficient2. In writing (45), we have assumed that the concentration in the inclusion
is zero at t “ 0. The chemical creep function has the following properties: Jp0q “ 0 (initial

2We adopted the expression "chemical creep" because of the similarity of expression (45) with the description
of the creep response of a linear viscoelastic material.
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condition) and limtÑ8 Jptq “ 1 (chemical equilibrium). In general, the chemical creep function
can be written as a series expansion:

Jptq “ 1´
8
ÿ

m“1

Am expp´t{τmq, (46)

where the coefficients Am are mode amplitudes and τm the associated relaxation times, with the
following property:

ř8
m“1Am “ 1, which ensures that the initial condition is satisfied. For the

radial diffusion in a circular inclusion with radius a, these coefficients are given by:

Am “
4

z2
m

, τm “
a2

D

1

z2
m

, (47)

where zm is the mth root of the zero-order Bessel function of the first kind, J0pzq. For the radial
diffusion in a spherical inclusion with radius a, these coefficients are given by:

Am “
6

m2π2
, τm “

a2

D

1

m2π2
. (48)

Remark 5. When the inclusion is subject to a non-zero chemical potential applied in t “ 0`,
the solution (45) should be rewritten in the more general form:

xcy0ptq “
µ0p0

`q

K
Jptq `

1

K

ż t

0
Jpt´ t1q

dµ0

dt1
dt1. (49)

In particular, for a step load µ0ptq “ αHptq, with α an arbitrary non-zero value and Hptq the
Heaviside step function, the inclusion response simply reduces to:

xcy0ptq “
α

K
Jptq. (50)

In the following, we write the history-dependent response under the form (45) for simplicity.

4.2. Estimate for the transient composite response
Our mean-field model relies on the assumption that the chemical potential can be considered

as uniform on the boundary of each inclusion in the RVE. This approximation is reasonable
provided that the length scale associated with the gradient of effective chemical potential is
much larger than the inclusion size, µ̄{|ḡ| " a. It follows that the average flux in the inclusions
is negligible, xjy1 « 0. The average flux in the RVE is then obtained by solving the steady-state
diffusion problem in the RVE, assuming non-conducting inclusions:

xjy “ ´k̄ ¨ ḡ, (51)

where k̄ is the effective conductivity tensor for a composite with non-conducting inclusions. The
corresponding average chemical potential gradient in the matrix phase is given by

xgy2 “
1

k2p1´ fq
k̄ ¨ ḡ. (52)

To the first order, the field of chemical potential in the matrix is approximated by an affine
relation:

µpx, tq “ µ̄ptq ` xgy2ptq ¨ px´ x0q. (53)

From the latter expression, a mean-field estimate of the concentration in the steady-state matrix
is proposed:

xcy2ptq “
1

K2
pµ̄ptq ` ls2 ¨ xgy2ptqq , (54)
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where s2 was defined in Eq. (39). On the other hand, the contribution x 9cpx ´ x0qy2 to the
macroscopic flux vanishes, by virtue of the quasi steady-state assumption in the matrix phase.

The uniform chemical potential µk on the boundary of the kth inclusion (k “ 1, .., N) centred
at xk is estimated from an affine relation similar to Eq. (53):

µkptq “ µ̄ptq ` xgy2ptq ¨ pxk ´ x0q. (55)

Let xcy1,k be the average concentration in the kth inclusion. The solution xcy1,kptq is of the form
(45), with µ0ptq “ µkptq. Averaging over all inclusions in the RVE then gives:

xcy1ptq “
1

N

N
ÿ

k“1

xcy1,kptq (56)

“
1

N

N
ÿ

k“1

1

K1

ż t

0
Jpt´ t1q

dµk
dt1

dt1 (57)

“
1

K1

ż t

0
Jpt´ t1q

dµ̂

dt1
dt1 (58)

where:
µ̂ptq “ µ̄ptq ` ls1 ¨ xgy2ptq. (59)

Expression (58) shows that the average concentration response in the inclusion phase can be
obtained from the solution for a single inclusion subject to an effective chemical potential µ̂ptq
on its boundary.

The first moment of the concentration xcpx´ x0qy1 in the inclusions is obtained as follows:

xcpx´ x0qy1 “
1

N

N
ÿ

k“1

xcpx´ x0qy1,k (60)

“
1

N

N
ÿ

k“1

xcy1,kpxk ´ x0q (61)

“
l

K1

ż t

0
Jpt´ t1q

dµ̌

dt1
dt1. (62)

where:
µ̌ptq “ s1µ̄ptq ` lS1 ¨ xgy2ptq. (63)

Eq. (61) follows from the spherical or circular symmetry, and Eq. (62) from the single inclusion
solution (45) together with the prescription (55). Expression (62) shows that each component
xcpxi ´ x0,iqy1 can be obtained from the solution for a single inclusion subject to an effective
chemical potential µ̌i on its boundary. The contribution x 9cpx´x0qy1 to the effective flux in Eq.
(35) then directly follows from (62) by time differentiation.

Remark 6. The assumption of uniform chemical potential on the boundary of spherical or cir-
cular inclusions implies that xgy1 “ 0, which is not true for a composite with non-conducting
inclusions at steady-state, as in that case:

xgy1 “
1

k2f
pk21´ k̄q ¨ ḡ. (64)

Nonetheless, this inconsistency is expected to have negligible influence on the results as long as
the macroscopic chemical potential gradient is not too large.
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Combining Eqs (33), (54) and (58), the macroscopic concentration is obtained:

c̄ptq “
p1´ fq

K2
pµ̄ptq ` ls2 ¨ xgy2ptqq `

f

K1

ż t

0
Jpt´ t1q

dµ̂

dt1
dt1, (65)

where xgy2 is given by Eq. (52) and µ̂ by Eq. (59). The macroscopic concentration has an instan-
taneous component associated with the steady-state matrix, and a transient, history-dependent
component associated with the inclusions, bringing about a memory effect. The macroscopic
flux is obtained by combining Eqs (35), (51) and (62):

j̄ “ ´k̄ ¨ ḡ ´
fl

K1

ż t

0
J 1pt´ t1q

dµ̌

dt1
dt1, (66)

where µ̌ was defined in Eq. (63). In Expression (66), the first term is the steady-state flux con-
tribution due to fast diffusion through the matrix, and the second term represents the transient
contribution to the flux due to the inclusions. The latter represents the microscale inertia, and
includes the size-effect mentioned in Section 3.2.

4.3. Isotropic estimate
When the distribution of inclusions is isotropic, the structure tensors can be simplified as

follows (see Appendix A):

s1 “ 0, S1 “
1

12
1. (67)

The mean-field model then reduces to:

c̄ “
p1´ fqµ̄

K2
`

f

K1

ż t

0
Jpt´ t1q

dµ̄

dt1
dt1 (68)

j̄ “ ´k̄ḡ ´
fl2

12K1

ż t

0
J 1pt´ t1q

dg

dt1
dt1, (69)

where k̄ is the effective conductivity of an isotropic composite with spherical, non-conducting
inclusions. A closed-form estimate of the latter for spherical inclusions is for example provided by
the Hashin-Shtrikman upper bound (Hashin and Shtrikman, 1962), see also (Benveniste, 1986)
and (Torquato, 2002):

k̄ “
1´ f

1` f
2

k2. (70)

For 2D problems with circular inclusions, the estimate becomes:

k̄ “
1´ f

1` f
k2. (71)

5. Strategy for upscaling

5.1. Internal variable representation
Eqs (65)-(66) (or (68)-(69) for isotropic composites) completely specify the RVE transient

response in terms of the past history of loading. However, the integral representation of the
loading history is not practical for numerical implementation. In this section, we reformulate the
model in terms of a finite number of internal variables, and also briefly discuss time discretisation.
The model is then illustrated in the case of an isotropic distribution of inclusions.

We start by developing an estimate J̃ptq of the chemical creep relaxation function (46) using
a finite number M of relaxation modes:

J̃ptq “ 1´
M
ÿ

m“1

Ãm expp´t{τ̃mq (72)

“

M
ÿ

m“1

Ãmp1´ expp´t{τ̃mqq ` ÃM`1 (73)
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where ÃM`1 “ 1´
řM
m“1 Ãm. Note that this estimate in general predicts a non-physical instan-

taneous concentration response to a step load in the single inclusion problem, since it does not
a priori satisfy the condition J̃p0q “ 0, unless the coefficients Ãm have been chosen such that
řM
m“1 Ãm “ 1. The error on the initial response increases as

řM
m“1 Ãm deviates from one. How-

ever the estimate is exact in the long time limit by construction. In our previous work (Brassart
and Stainier, 2018) we have proposed and discussed several strategies to identify mode ampli-
tudes and relaxation times for estimates of the form (72)-(73) with a limited number of modes,
including a collocation method and a FE-based modal analysis. The proposed methods are ap-
plicable to arbitrary inclusion geometries, thus also in cases where the chemical creep function is
not available in closed form. In this work, we consider only inclusions with a circular shape for
simplicity, for which the coefficients Am and τm have an analytical expression, cf. Eq. (47)-(48).
In this case, the simplest method for identifying the coefficients in the estimate (72)-(73) is to
truncate the infinite series up to the Mth term, that is:

Ãm “ Am, τ̃m “ τm, pm “ 1,Mq. (74)

The minimum number of modes for an accurate estimate of the chemical creep function de-
pends on the excitation time scale, see (Brassart and Stainier, 2018). For the loading conditions
considered in the following, we used M “ 20 , which is more than sufficient for the single inclu-
sions estimate (75) to be virtually identical to the reference solution obtained when considering
M Ñ8.

Based on the estimate (73), it is then possible to express the single inclusion solution in terms
of M ` 1 internal variables (Ricaud and Masson, 2009; Brassart and Stainier, 2018). For the
inclusion phase response, we write:

xcy1 “
M`1
ÿ

m“1

bm, (75)

where the internal variable bm obey the following evolution laws (Brassart and Stainier, 2018):

9bm “
1

τ̃m

˜

Ãmµ̂

K1
´ bm

¸

, pm “ 1,Mq (76)

bM`1 “
ÃM`1

K1
µ̂. (77)

Eq. (77) expresses the instantaneous response that follows from the prescription (74), which
does not satisfy

řM
m“1 Ãm “ 1. Note that the internal variable representation and associated

evolution laws remain valid even in the presence of a step load applied in t “ 0. Similarly, the
first moment of the concentration in the inclusion phase is decomposed as:

xcpx´ x0qy1 “

M`1
ÿ

m“1

dm, (78)

where the pseudo-vectors dm obey:

9dm “
l

τ̃m

˜

Ãmµ̌

K1
´ dm

¸

, pm “ 1,Mq (79)

dM`1 “
lÃM`1

K1
µ̌. (80)

Using the internal variable representation, the mean-field model (65)-(66) rewrites as:

9̄c “
p1´ fq

K2

`

9̄µ` ls2 ¨ x 9gy2
˘

` f
M
ÿ

m“1

1

τ̃m

˜

Ãm
K1

µ̂´ bm

¸

` f
ÃM`1

K1

9̂µ. (81)
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and

j̄ “ ´k̄ ¨ ḡ ´ fl
M
ÿ

m“1

1

τ̃m

˜

Ãm
K1
µ̌´ dm

¸

´ fl
ÃM`1

K1

9̌µ. (82)

These two relations completely specify the sought-after constitutive relation (17)-(18), where the
quantities bm and dm (m “ 1,M) are internal variables accounting for the loading history.

5.2. Time discretisation
In a time-discretised setting, the mean-field model (81)-(82) can be readily integrated in time

using a fully implicit Euler scheme. Suppose that all internal variables are known at a simulation
time tn pb

pnq
m ,d

pnq
m q (m “ 1,M ` 1), where the superscript indicates the time step. For given

values of the macroscopic chemical potential and its gradient at time tn`1, µ̄pn`1q and ḡpn`1q,
the corresponding values of µ̂pn`1q and µ̌pn`1q are calculated from their definition (59) and (63).
The updates pbpn`1q

m ,d
pn`1q
m q can then be calculated as:

bpn`1q
m “ bpnqm `

∆t

τ̃m

˜

Ãmµ̂
pn`1q

K1
´ bpn`1q

m

¸

, pm “ 1,Mq (83)

b
pn`1q
M`1 “

ÃM`1

K1
µ̂pn`1q. (84)

and:

dpn`1q
m “

∆tl

τ̃m

˜

Ãmµ̌
pn`1q

K1
´ dpn`1q

m

¸

, pm “ 1,Mq (85)

d
pn`1q
M`1 “

lÃM`1

K1
µ̌pn`1q. (86)

Eqs (83) and (85) are linear and can thus be solved analytically for bpn`1q
m and dpn`1q

m . The
updates of macroscopic concentration and macroscopic fluxes are finally calculated:

c̄pn`1q “
p1´ fq

K2

´

µ̄pn`1q ` ls2 ¨ xgy
pn`1q
2

¯

` f
M`1
ÿ

m“1

bpn`1q
m (87)

j̄pn`1q “ ´k̄ ¨ ḡpn`1q ´ f
M`1
ÿ

m“1

dpn`1q
m (88)

where xgypn`1q
2 is calculated from ḡpn`1q using Eq. (52). Algorithmic tangent operators Bc̄pn`1q

Bµ̄pn`1q ,
Bc̄pn`1q

Bḡpn`1q ,
Bj̄pn`1q

Bc̄pn`1q and
Bj̄pn`1q

Bḡpn`1q can be obtained by straightforward differentiation in view of two-scale
simulations.

The complete model comprises respectively 3pM ` 1q and 4pM ` 1q internal variables in 2D
and 3D. For the chosen value M “ 20, this leads to respectively 63 and 84 internal variables.
However, given that internal variables obey linear evolution laws, the computational cost of the
mean-field model is actually very small. Note that the number M could probably be further
reduced without impacting much the quality of the prediction.

5.3. Numerical example
We illustrate the model in the case of a composite with an isotropic distribution of inclusions

in 2D (circular inclusions) and 3D (spherical inclusions). Per-phase concentration responses in
a RVE subjected to a step load µ̄Hptq are represented in Fig. 3a. The average concentration of
each phase is normalised by its equilibrium value, µ̄{Kr. Time is normalised by a characteristic
time for diffusion in the inclusion, a2{D1. Since the matrix is assumed infinitely fast in the RVE,
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Figure 3: Predictions of the isotropic mean-field model in response to (a) a unit step loading µ̄ptq “ Hptq and (b)
a unit step loading ḡx “ Hptq.

the equilibrium concentration is reached instantaneously in the matrix. In contrast, the average
concentration in the slow inclusion phase gradually evolves towards its equilibrium value. The
kinetics also depends on the chosen geometry, circular or spherical. According to the model, the
per-phase concentration response is independent of any applied macroscopic gradient ḡ (because
of isotropy), and the results in the figure thus also hold in the presence of an applied gradient.

Per-phase flux contributions in a RVE subject to a step load in terms of macroscopic chemical
potential gradient in the x-direction, ḡxHptq (with ḡy “ ḡz “ 0), are represented in Fig. 3b. The
inclusion phase contributes to the macroscopic flux through the term x 9cpx´x0qy1, and the matrix
phase through the average flux xjxy2 “ xjxy{p1´ fq. These terms are normalised in such a way
that the curves are independent of specific values of volume fraction, RVE size and material
parameters. The inclusion contribution tends to infinity at small times but quickly decays with
time, while the average flux in the steady-state matrix is constant. According to the model, both
contributions are independent of any applied macroscopic chemical potential µ̄, and the results
in the figure also hold for a non-zero applied macroscopic chemical potential.

6. Model validation

We validate the proposed mean-field model by comparing its predictions to reference results
obtained by solving the transient diffusion problem on 2D RVEs using the Finite Element Method
(FEM). Three random realisations of RVEs with 20 inclusions and volume fraction f “ 0.1 were
considered (Fig. 4). Morphology tensors s1 and S1 for each of these inclusion distributions
were calculated numerically from the inclusion positions and are reported in the figure. One can
see from the calculated values of s1 and S1 that the considered inclusion distributions are not
perfectly isotropic, which directly results from the limited number of inclusions, as well as from
the fact that inclusions were not allowed to intersect RVE boundaries in the random sequential
algorithm used to generate the random microstructures. Therefore, the general anisotropic model
(65)-(66) was used. Effective anisotropic conductivity tensors k̄ were calculated numerically for
each geometry by subjecting each unit cell to unit chemical potential gradients in each direction,
assuming non-conducting inclusions.

The material properties and external loading time scale T were selected in such a way that
the assumptions of steady-state matrix and transient inclusions hold simultaneously. These
two conditions are met provided that τ2 ! T ă τ1, with τ1 “ a2{D1 and τ2 “ l2{D2. For
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Figure 4: The three considered random distributions with N “ 20 and f “ 0.1.

a fixed a{l ratio, the range of relevant time scales thus increases with the diffusivity contrast
D2{D1 “ K2k2{K1k1. In the following, we used K2{K1 “ 6 and k2{k1 “ 105, in combination
with excitation periods T “ 0.1τ1. If the conductivity contrast is reduced at constant loading
time scale, the steady-state matrix assumption breaks down and the mean-field model is no longer
accurate. The effect of decreasing diffusivity contrast on the accuracy of the model predictions is
examined in Appendix B. If one simultaneously increases the loading time scale to maintain the
matrix in a steady state, then one may reach the point where the inclusions are also in a steady
state. In this case the model also looses its interest, and one should instead rely on available
mean-field estimates derived under steady-state RVE assumption.

The geometries were meshed with „ 12500 second-order triangular elements using the soft-
ware Gmsh (Geuzaine and Remacle, 2009). Fully-implicit, finite element simulations were carried
out using an in-house finite element code. Reference FE predictions of the macroscopic concen-
tration and flux were obtained from their definition (33) and (35), and volume averages were
numerically-calculated as weighted averages over integration points. All simulations (mean-field
and full-field) were carried out using a time step ∆t “ 10´3τ1. The number of internal variables
in each single inclusion companion problem was set to M “ 20, as previously mentioned.

In the following, we also compare mean-field predictions of concentrations to a simpler model
that assumes that concentrations are at equilibrium with the macroscopic chemical potential at
all times:

c̄eq “ fc1,eq ` p1´ fqc2,eq “
µ̄

K̄
, (89)

with c1,eq “ µ̄{K1 and c2,eq “ µ̄{K2. In Eq. (89), the effective chemical modulus K̄ is given by:

K̄ “

ˆ

f

K1
`
p1´ fq

K2

˙´1

. (90)

6.1. Macroscopically-uniform chemical potential
We first consider macroscopic loading conditions where the macroscopic chemical potential

varies harmonically in time, and the macroscopic chemical potential gradient is zero:

µ̄ptq “ µ0 sinpωtq
ḡ “ 0

(91)
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Figure 5: Effective behaviour corresponding to the loading conditions (91). (a)-(b): Macroscopic concentration
and inclusion average concentration in the first geometry. (c)-(d): Moments of the inclusion concentration rates
for the three geometries represented in Fig. 4.

where ω “ 2π{T is the angular frequency, T “ 0.1τ1 the excitation period and µ0 a constant. In
the absence of a macroscopic chemical potential gradient, the chemical potential in the matrix
is uniform at all times and equal to the macroscopic chemical potential, and the average flux in
the matrix vanishes. Each inclusion is subject to a uniform, time-varying macroscopic chemical
potential µ̄ptq on its boundaries. We thus expect the mean-field model to be exact in this case,
up to the discretisation error introduced by considering a finite number of internal variables and
the time-discretisation error. We found these two sources of error to be negligible with the chosen
values for M and ∆t.

The average concentration response is shown in Fig. 5(a)-(b) for the first geometry (Fig.
4(a)). Identical results are found for the other two geometries. The concentration response
is independent of the particular arrangement of inclusions, and is perfectly predicted by the
mean-field model at both macro and phase levels, as expected. The actual transient response is
markedly different from the response obtained from a the simple equilibrium model (89), which
directly follows from the inclusion transient response. The first moments of the concentration
rate in the x- and y-directions are shown in Fig. 5(c)-(d) for the three geometries, also showing
excellent agreement. In contrast to the average inclusion concentration, the first moment of
the concentration does depend on the specific arrangement of the inclusions in the RVE, and
induces a non-zero macroscopic flux. These contributions to the flux would vanish if the inclusion
distribution was perfectly isotropic.
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6.2. Macroscopically non-uniform chemical potential
Next, we consider loading conditions that involve a combination of time-varying macroscopic

chemical potential and macroscopic chemical potential gradient. As a first example, consider the
following loading conditions:

µ̄ptq “ µ0
t
τ1

ḡxptq “ g0 sinpωtq
ḡyptq “ 0

(92)

where ω “ 2π{T , T “ 0.1τ1, and µ0 and g0 are constants with g0 “ 10µ0{l.
Macroscopic and average inclusion concentration responses for the first geometry are shown

in Figs 6(a)-(b). A similar degree of accuracy was found for the other two geometries. The
mean-field model provides a very good estimate of the inclusion average concentration (Fig.
6(b)). The prediction of the macroscopic concentration is less accurate, which is due to a less
accurate prediction of the matrix average concentration in the presence of a macroscopic chemical
potential gradient, Eq. (54). The oscillations in the predicted concentration response at both
inclusion and macroscopic levels result from anisotropy through the vectors s1 and s2 in Eqs (54)
and (58)-(59), respectively. In comparison, the simple equilibrium model (89) does not capture
the effect of anisotropy, and significantly overestimates the concentration at both inclusion and
macroscopic levels.

Macroscopic flux components are shown in Figs 6(c)-(d) for the first geometry. Both compo-
nents are very well predicted by the mean-field model, which means that the approximation of
non-conducting inclusions in a steady-state matrix is realistic in order to predict the macroscopic
flux. The non-zero flux component in the y-direction results from the slight anisotropy in the
inclusion distribution, and is much smaller in magnitude than the flux in the x-direction. In
the mean-field model, anisotropy is accounted for through the anisotropic effective conductivity
tensor (here computed numerically) and through the moment of the rate of concentration in the
inclusion, see below.

Moments of concentration rate in the inclusions are represented in Figs 6(e)-(f). The agree-
ment between the mean-field model and the FE results is reasonably good. In particular, the
mean-field model captures the anisotropic response. A comparison of Figs 6(c) and (e) shows
that the transient inclusion contribution to the macroscopic flux in the x-direction is negligible.
Comparing Figs 6(d) and (f), it appears that the inclusion contribution to the macroscopic flux
becomes more significant. However, the inclusion contribution is weighted by the inclusion vol-
ume fraction in Eq. (66) and therefore the net effect of the macroscopic flux remains small. This
effect probably explains the slight discrepancy between FE and mean-field results in Fig. 6(d).

As a second example, consider loading conditions in which the macroscopic chemical potential
ramps up before reaching a plateau, from where a rotating chemical potential gradient of unit
norm is superimposed:

µ̄ptq “

"

µ0
5t
τ1

if t ď 0.2τ1

1 otherwise
(93)

ḡxptq “

"

0 if t ď 0.2τ1

g0 sinpωpt´ 0.2τ1qq otherwise (94)

ḡyptq “

"

0 if t ď 0.225τ1

g0 sinpωpt´ 0.225τ1qq otherwise (95)

where ω “ 2π{T , T “ 0.1τ1, and µ0 and g0 are constants such that g0 “ µ0{l.
Predictions of the mean-field model are compared to the reference FE results in Fig. 7.

Predictions of the concentration response on Figs (7)(a)-(b) are very good, both at RVE and
inclusion level. Both components of the macroscopic flux, Figs (7)(c)-(d), are also very well
predicted by the mean-field model. The components of the moment of concentration rate in the
inclusion are represented in Figs (7)(e)-(f), and are also well predicted by the model. Like in the
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Figure 6: Effective behaviour corresponding to the loading conditions (92). (a) Effective concentration, (b)
inclusion average concentration, and (c)-(d) macroscopic flux components for the first geometry. (e)-(f) Moments
of the inclusion concentration rates for the three considered geometries.
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previous examples, the effect of the anisotropy in the distribution of inclusions on the moment
of the concentration is apparent. However, this term has negligible impact on the macroscopic
flux, which is dominated by diffusion through the steady-state matrix.

7. Two-scale simulations

7.1. Comparison to full-field results
We now use the mean-field model developed and validated in the three previous sections

to solve 2D boundary-value problems at macroscopic scale. We consider the transient diffusion
problem through a slab of material of length L in the x-direction, as represented in Fig 8(a).
The microstructure was generated by juxtaposing 10 identical unit cells of size l with random
distributions of 10 inclusions in the x-directions, so that L “ 10l. The volume fraction of
inclusion is f “ 0.1. The material properties are such that K2{K1 “ 6 and k2{k1 “ 105. The
slab is subject to the following boundary conditions:

µpL, y, tq “ µpptq, jxp0, y, tq “ jypx, 0, tq “ jypx, L, tq “ 0. (96)

The last three boundary conditions correspond to symmetry planes. Full-field solution to this
problem is obtained using FEM on a mesh of the fully-resolved microstructure. Effective con-
centrations and fluxes over each unit cell are then calculated from their definition (33) and (35),
where volume averages are numerically calculated by carrying out weighted averages over the
integration points.

The same macroscale boundary-value problem is also solved using a two-scale approach.
At macroscale, the actual heterogeneous medium is replaced by an equivalent homogeneous
medium with behaviour described by the mean-field model, Eqs (65)-(66). Here, for simplicity,
we assumed an isotropic response, that is, we set s1 “ 0 and S1 “ p1{12q1 in the mean-field
model. The effective isotropic conductivity k̄ was estimated using the Hashin-Shtrikman upper
bound in 2D, Eq. (71). The problem can then be solved in 1D (Fig. 8(b)).

The 1D diffusion problem is solved numerically using FEM. As is standard, the weak form of
the diffusion problem is obtained by multiplying the species conservation equation (15) by a test
function wpxq that vanishes on BΩµ (here, x “ L), integrating along the slab, using integration
by parts and the boundary condition jxp0, tq “ 0, to finally obtain:

ż L

0

ˆ

9̄cw ´ j̄x
dw

dx

˙

dx “ 0. (97)

The weak form is discretised in space using a finite element interpolation of the unknown field
µ̄:

µ̄ “
Nn
ÿ

I“1

µ̄IξI , (98)

where the superscript I “ 1, . . . , Nn refers to the node number, µ̄I are the nodal values and ξI the
shape functions. We adopt a standard Galerkin formulation and use the same shape functions to
interpolate the test function w. Here, linear shape functions were used. We obtain Nn equations
for the Nn nodal values:

ż L

0

ˆ

9̄cξI ´ j̄x
dξI

dx

˙

dx “ 0 pI “ 1, . . . , Nnq. (99)

The integral is evaluated numerically using a simple quadrature method with one integration
point. Integration in time is performed using a fully-implicit Euler scheme. At every integration
point and time step tpn`1q, the macroscopic chemical potential µ̄pn`1q and ḡpn`1q

x are calculated
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Figure 7: Effective behaviour corresponding to the loading conditions (93)-(95). (a) Effective concentration, (b)
inclusion average concentration, and (c)-(d) macroscopic flux components for the first geometry. (e)-(f) Moments
of the inclusion concentration rates for the three considered geometries.
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Figure 8: a) Schematic of the diffusion boundary-value problem in a composite slab of length L and Finite Element
mesh. Details of the microstructure are fully resolved. (b) Two-scale simulation of the same problem using an
effective medium. At macroscale, a 1D Finite Element model with first-order elements is used, with element size
corresponding to the RVE size. The constitutive behaviour in each element is obtained from the mean-field model.

from the interpolation (98), and updates c̄pn`1q and j̄pn`1q
x (as well as updates of internal vari-

ables) are calculated using the scheme outlined in Section 5.2. The slab was discretised using 10
elements of size l, assuming that each element corresponds to one unit cell in the full-field model
(Fig. 8(b)). The comparison between the two approaches is presented in the following.

As a first example, consider a step load of the following form:

µpptq “ µ0Hptq, (100)

with µ0 a constant. Concentration profiles obtained with the full-field and the two-scale ap-
proaches are shown in Fig. 9. Simulation times are normalised by the characteristic time for
diffusion in the inclusion, τ1. The actual data points are located at the integration points, while
the lines are guides for the eye. The agreement is excellent, for both the macroscopic and the
inclusion concentration response. The non-Fickian response of the composite is apparent from
the concentration response in x “ L, where the value of chemical potential is applied. Indeed,
for Fickian behaviour, one would expect that the concentration is one-to-one related to the (con-
stant) chemical potential. This is not the case here, as the concentration in x “ L slowly evolves
in time to reach their equilibrium value. The prediction of the two-scale approach using Eq.
(89) for the effective concentration is also shown. In that case, the macroscopic concentration
at x “ L is at equilibrium, however the concentration profile in the slab does no agree with the
full-field results. The discrepancy is due to the transient inclusion response, Fig. 9(b), and has
an impact also at macroscale Fig. 9(a).

As a second example, consider the following harmonic loading conditions:

µbpL, tq “ µ0 sinpωtq (101)

with ω “ 2π{T and µ0 is a constant. The macroscopic and average inclusion response in the first
unit cell with centre of volume at x “ 0.05L are represented in Fig. 10. Full-field predictions
correspond to the volume average of the local fields in that unit cell, and mean-field results are
obtained for the integration point located at x “ 0.05L. The agreement between full-field and
mean-field results is remarkable.

Finally, we consider a ramp loading of the form:

µ̄ptq “

"

µ0
5t
τ1

if t ď 0.2τ1

µ0 otherwise
(102)
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Figure 9: Profiles of macroscopic concentration (a) and average inclusion concentration (b) in a composite slab
subject to a step load at x “ L and natural boundary conditions on the three other boundaries. Black lines are
the 2D full-field results and color lines are the results obtained by combining a 1D finite element approach with
the mean-field model.
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Figure 10: Time evolution of the (a) macroscopic and (b) average inclusion response at macroscopic coordinate
x{L “ 0.05 in the slab subject to harmonic loading conditions.

The macroscopic and average inclusion responses in the unit cells at x “ 0.05L are represented
in Fig. 11. Once again, the agreement between full-field results and mean-field predictions is
excellent.

7.2. Limiting regimes
The results of the previous section show that the transient behaviour of the composite is

non-Fickian, as a result of the slow diffusion in the inclusion phase. The significance of the slow
relaxation of the inclusion depends however of the time scale for diffusion throughout the entire
system. Let us introduce a characteristic length Λ, which represents the length scale for diffusion
through the matrix over a time scale comparable to the inclusion diffusion time:

Λ “
a

D2τ1 “

c

D2

D1
a. (103)

The length Λ is intrinsic to the material and is independent of the characteristic size L of the
macroscopic boundary-value problem. The macroscopic length L and intrinsic material length
Λ can be combined to define a dimensionless parameter χ:

χ ”
Λ2

L2
“
a2

L2

D2

D1
. (104)

The dimensionless parameter χ represents the ratio of the inclusion diffusion time, a2{D1 to the
time for diffusion through the matrix over a distance L, L2{D2.

When the size of the macroscale boundary value problem is much larger than the characteristic
length, L " Λ (χ ! 1), diffusion in the inclusion phase can be considered at equilibrium relative
to macroscale diffusion through the matrix. In this case, the RVE may be considered at steady-
state, and the overall behaviour is Fickian. In contrast, when the macroscopic length L becomes
comparable or less than the characteristic length Λ (χ ě 1), the transient response in the
inclusions at microscale impacts the overall behaviour. In the example of the previous sub-
section, L{Λ “ 0.23 (χ “ 18.9), and the transient inclusion response impacted the overall
behaviour significantly.

Remark 7. In the limit L ! Λ (χ " 1), diffusion through the entire system is very fast (thanks
to the presence of fast diffusion paths through the matrix), and the field of macroscopic chemical
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Figure 11: Time evolution of the (a) macroscopic and (b) average inclusion response at macroscopic coordinate
x{L “ 0.05 in the slab subject to a ramp load.

potential instantaneously reaches its equilibrium value, while the concentration response is tran-
sient. One may however question the validity of the model in this case, as it may no longer be
possible to define a RVE since the separation of scale hypothesis (19) does no longer hold.

The limiting regimes are illustrated in the following example. Consider again the 1D diffusion
problem through a slab of length L. The slab is subjected to a step load, identical to Eq. (100).
The problem is numerically solved using the 1D finite element method in combination with the
isotropic mean-field model. The material properties are such that K2{K1 “ 1 and k2{k1 “ 105.
The radius of the inclusions (assuming 10 inclusions with volume fraction f “ 10%) is a “ 0.056l.
The intrinsic length is thus Λ “ 18l (χ “ 314pl{Lq2). Three values of the macroscopic length
L are successively considered: L “ 100l, L “ 10l and L “ l. In all cases, the number of finite
elements in the simulation is set to 100, which means that the finite element length does no
longer represent the RVE size. We have verified that our results are insensitive to the number
of elements in the FE discretisation.

Figure 12 shows the profiles of inclusion concentrations at various simulation times in the
three boundary-value problems. In Fig. 12a, the macroscopic length L is much larger than
Λ, L “ 100l “ 5.6Λ (χ “ 0.0314). The overall relaxation of the system is limited by the
long-range diffusion through the matrix, rather than the diffusion through the inclusion, due to
the large difference in length scales. As a result, the RVE problem is at steady-state, and the
overall system behaves in a Fickian manner. This can be seen from the inclusion concentration
value in x “ L, which is at all times equal to its equilibrium value, xcy1 “ µ0{K1. The case
L “ 10l “ 0.56Λ (χ “ 3.14) is represented in Fig. 12b, showing the clear non-Fickian effects,
similar to the previous sub-section. Finally, Fig. 12c shows profile in the case L “ l “ 0.056Λ
(χ “ 314). In this case, diffusion through the matrix of the RVE is so fast that the all fields can
be considered homogeneous. However, the concentration is not at equilibrium, and gradually
relaxes in time.

The overall relaxation time of the system under a step load is represented in Fig. 12(d) as
a function of the problem size L in a log-log plot. The overall relaxation time is defined as the
time needed for the average inclusion response in the first integration point (nearest to x “ 0)
to reach 95% of its equilibrium value. Fickian behaviour is characterised by a relaxation time
scaling with L2, and is observed for L ą Λ. When L ă Λ, the behaviour is non-Fickian, and the
relaxation time tends to a constant value that coincides with the time for diffusion in an inclusion
of radius a. The two-scale model predictions are similar to the predictions of phenomenological
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Figure 12: (a)-(c) Profiles of average inclusion concentration in slabs for varying ratio of the slab length L to the
intrinsic length Λ. (d) Overall relaxation time Tr as a function of the L{Λ ratio.

theories for coupled interdiffusion and viscous flow (Brassart et al., 2018), as well as a theory for
coupled self-diffusion and viscous flow (Li et al., 2014).

8. Conclusion

In this work we have developed a mean-field estimate for the transient diffusion response of
composites in which there is high contrast in the phase diffusivities. According to Eq. (65),
the macroscopic concentration is a function of both the macroscopic chemical potential and its
gradient, and involves a history-dependent contribution due to transient diffusion in the slow
inclusions. The dependence in the macroscopic chemical potential gradient however vanishes in
the case of isotropic composites, as expected (Eq. (68)). The macroscopic flux also depends
on both the macroscopic chemical potential and its gradient (Eq. (66)), and the dependence in
the former vanishes in the isotropic case (Eq. (69)). The mean-field model can be written in
terms of internal variables for efficient time-integration, enabling two-scale simulations at very
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low computational cost compared to full-field or FE2 simulations.
The model has been validated by comparing its predictions to full-field results at both RVE

and macroscale, showing excellent agreement. It was found that the macroscopic flux is dom-
inated by the fast transport through the matrix, and is accurately described by the effective
conductivity of the composite in steady-state and assuming non-conducting inclusions. On the
other hand, the history-dependent contribution of the inclusions to the macroscopic flux is neg-
ligible. The transient inclusion response however significantly affect the overall concentration
response. In particular, it leads to a non-Fickian behaviour when used to solve macroscale
boundary-value problems.

While the effective transient behaviour of composites was previously investigated using either
asymptotic homogenisation, e.g. Auriault (1983), or computational homogenisation, e.g. Larsson
et al. (2010), we believe that the proposed approach based on mean-field approximation is origi-
nal. The main advantage of the approach is that the effective constitutive equations are obtained
in closed-form, allowing two-scale simulations at a reasonable cost. Our model also differs in its
construction and final expressions from the volume-averaged expressions of the Porous Electrode
Theory (Thomas et al. (2002); Smith and Bazant (2017)), in which transient diffusion in the
inclusions is described by a source term in the averaged conservation equations. In contrast,
our approach does not introduce any source term, but instead suggests that the macroscopic
chemical potential is history dependent, as a result of the micro-to-macro transition. The latter
also provides a justification to phenomenological models which do not rely on the chemical equi-
librium assumption at macroscopic scale, see e.g. (Brassart and Suo, 2013) (coupled diffusion
and elasto-plasticity) and (Brassart et al., 2016, 2018) (coupled diffusion and viscoplasticity).

The presently-proposed approach has a number of limitations. First, it rigorously applies to
cases where the steady-state assumption holds in the matrix, but not in the inclusions. Such cases
are found for a range of excitation time scales when the diffusivity contrast between the phases
is very large. Second, the model assumes that the macroscopic gradient of chemical potential is
not too large over the length scale of a RVE, in order for the first-order homogenisation approach
to hold and also for the assumption of uniform chemical potential on the inclusion boundaries
to be reasonable. Finally, the model is restricted to linear diffusion behaviour, since it relies on
the single inclusion solution for which an exact solution only exists in the linear case. While the
present work only considered spherical or circular inclusions, more general inclusion shapes (e.g.
ellipsoids) could easily be considered. Strategies for identifying the chemical creep function for
arbitrary inclusion shapes have been proposed in Brassart and Stainier (2018).

Future work could include the extension to nonlinear diffusion behaviour due to concentration-
dependent mobility coefficients and chemical moduli. A first, heuristic approach at the single
inclusion level is provided in (Brassart and Stainier, 2018), however more sophisticated techniques
could certainly be proposed. Extending the mean-field model to coupled chemo-mechanical prob-
lems would also be important to address problems such as diffusion in battery electrodes. The
first step to consider would be to revisit the linear diffusion problem in a single inclusion, includ-
ing chemo-mechanical coupling in two ways: volumetric expansion associated with concentration
change and pressure-dependency of the chemical potential. Analytical or semi-analytical solu-
tions can probably be obtained for simple geometries, see e.g. Hetnarski (1964) or Ortner and
Wagner (2014) for thermo-elasticity. Alternatively, a computational approach for example based
on modal analysis could be adopted, see e.g. Brassart and Stainier (2018). At the composite
level, a suitable mean-field assumption would also need to be introduced in order to partition the
strain between the phases, see e.g. Nemat-Nasser and Hori (1998). A third, important direction
for future work will be to generalise the model to the fully-transient case in order to address
smaller diffusivity contrasts.
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Appendix A. Estimates of structure tensors for isotropic inclusion distributions

Estimates for s1 and S1 in the case of an isotropic distribution of inclusions are obtained by
considering ensemble averages for many RVE realisations:

s1 “
1

l

¿

˜

1

N

N
ÿ

k“1

pxk ´ x0q

¸

PNdx1dx2...dxN (105)

S1 “
1

l2

¿

˜

1

N

N
ÿ

k“1

pxk ´ x0q b pxk ´ x0q

¸

PNdx1dx2...dxN (106)

where PN is the N-particle probability density function (Torquato (2002)). For a random distri-
bution of overlapping circular (2D) or spherical (3D) inclusions, it is simply given by:

PN “
1

V N
, (107)

where V is the RVE area (2D) or volume (3D). The overlapping inclusion assumption is reasonable
at a low volume fraction of inclusions. Using the latter expression and carrying out the integration
in (105) and (106), we find:

s1 “ 0 (108)

S1 “
1

12
1 (109)

In this work we assumed that (109) also holds for non-dilute isotropic distributions of non-
penetrable inclusions.

Appendix B. Effect of the conductivity contrast on model predictions

Figure 13 shows the effective concentration response in the first geometry subject to a
macroscopically-uniform, time-varying chemical potential, Eq. (91). FE results are shown for
decreasing values of the conductivity contrast k2{k1. On the other hand, the mean-field model
is insensitive to the conductivity contrast as far as the concentration response is concerned. In-
deed, the predictions of the average concentration in the matrix and in the inclusion, Eqs (54)
and (58), do not depend on the phase conductivities in the absence of a macroscopic chemical
potential gradient. While the FE results are practically indistinguishable for contrast values of
105 and 104, significant differences appear for lower values of the contrast. The matrix is then
no longer at steady-state, and therefore the assumption of uniform chemical potential within the
matrix and on the inclusion boundary does no longer hold. A similar loss of accuracy is found
regarding mean-field predictions of moment of concentration rate in the inclusions (not shown).

The case of macroscopically non-uniform, time-varying chemical potential is examined in Fig.
14 for decreasing values of the conductivity contrast. The loading conditions are given in Eq.
(92). Results are shown for the first geometry, but the same conclusions hold for the other two
considered geometries. Similar to the previous example, the mean-field model does no longer
accurately predict the concentration response for contrasts of 103 and below (Figs 14(a)-(b)).
The fact that the model is less accurate in predicting the matrix average concentration (even
at high diffusivity contrast) was previously mentioned in Section 6.2. The macroscopic flux
component in the x-direction is shown in Figs 14(c)-(d). Here, we used the Hashin-Shtrikman
bound (71) as an analytical estimate of the effective conductivity. The mean-field model is valid
for the two larger values of the contrast (14(c)). In this case the macroscopic flux is dominated
by the average flux in the matrix, and is well predicted by the mean-field model. The mean-
field model looses its accuracy at lower values of the contrast (14(d)). While Hashin-Shtrikman
estimate of the volume average of the flux (51) remains accurate for the contrasts 103 and 102
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Figure 13: Macroscopic concentration and inclusion average concentration corresponding to the loading conditions
(91) applied to the first geometry, for decreasing values of the conductivity contrast k2{k1.

(not shown), the moment of the concentration rates in both the matrix and in the inclusion
then also contribute significantly to the macroscopic flux. Among these two contributions, the
moment of the concentration rate in the matrix is the most significant and is not captured by
the mean-field model, which assumes a steady-state matrix.
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Figure 14: Effective behaviour corresponding to the loading conditions (92) applied to the first geometry, for
decreasing values of the conductivity contrast k2{k1. (a)-(b) Macroscopic and average inclusion concentration.
(c)-(d) x-component of the macroscopic flux.
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