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. Further applications include an L p version with the best constant of the functional analogue of this isoperimetric inequality and also a weighted Pólya-Szegö inequality.

Introduction 1.Overview, notation and central results

The Gagliardo-Nirenberg inequality in its sharp form states that

R n |∇f | dx ≥ nω 1/n n R n |f | n/(n-1) dx 1-1/n ∀ f ∈ C 1 c (R n ), (1.1) 
Here and throughout the whole paper, ω n is the volume of a unit ball in R n , n ∈ N \ {1}, and | • | denotes both absolute value of numbers and length of vectors. Also, whenever G ⊆ R n is open, then C 1 c (G) stands for the set of continuously differentiable scalar functions with compact support in G and C 1 c (G; R n ) for all n-vector functions with C 1 c (G) components. Inequality (1.1) was proved by Maz'ya in [START_REF] Maz'ja | Classes of domains and imbedding theorems for function spaces[END_REF] and independently by Federer and Fleming in [START_REF] Federer | Normal and integral currents[END_REF]. It was shown in both papers that it is equivalent to the classical isoperimetric inequality in R n . Nowadays this equivalence is formulated as follows (see [START_REF] Evans | Measure theory and fine properties of functions[END_REF]Section 5.6.2]): (1.1) is equivalent to

P(E) ≥ nω 1/n n L n (E) 1-1/n , (1.2) 
valid for any L n -measurable set E ⊂ R n with finite perimeter P(E); that is

P(E) := sup E div ϕ dx : ϕ ∈ C 1 c (R n ; R n ), |ϕ| ≤ 1 in R n < ∞,
Recall that equality holds in (1.

2

) if E = B R (x 0 ) := x ∈ R n : |x -x 0 | < R , any R > 0, any x 0 ∈ R n .
Maz'ya and Shaposhnikova in [START_REF] Maz | A collection of sharp dilation invariant integral inequalities for differentiable functions[END_REF]Corollary 5.1]-(see also [25, Corollary in Section 4.8]), have obtained the best constant in the following scale invariant weighted generalization of (1.1), the weights being powers of the distance to the origin: if 0 ≤ a < n -1 and an/(n -1) ≤ b ≤ a + 1, then

R n |∇f | |x| a dx ≥ C n,a,b R n |f | (n-b)/(n-1-a) |x| b dx (n-1-a)/(n-b) ∀ f ∈ C 1 c (R n ), (1.3) 
where

C n,a,b := nω n (n -b) (n-1-a)/(1+a-b) (1+a-b)/(n-b) .
The case a = 0 has been established earlier in [START_REF] Maz'ja | On certain integral inequalities for functions of many variables[END_REF]. Without the sharp constant, inequality (1.3) goes back to Il'in; see [START_REF] Il'in | Some integral inequalities and their applications to the theory of differentiable functions of many variables[END_REF]Theorem 1.4,pg 367]. It is a subcase of the Caffarelli-Kohn-Nirenberg interpolation inequality; see [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF] and also the exhaustive work of Rabier [START_REF] Rabier | Embeddings of weighted Sobolev spaces and generalized Caffarelli-Kohn-Nirenberg inequalities[END_REF]. As with (1.1), the sharp estimate (1.3) has the isoperimetric counterpart

P(E; |x| -a ) ≥ C n,a,b L n (E; |x| -b ) (n-1-a)/(n-b) , (1.4) 
valid for any L n -measurable set E ⊂ R n satisfying P(E; |x| -a ) < ∞. Here we have set (see [START_REF] Baldi | Weighted BV functions[END_REF])

P(E; |x| -α ) := sup E div ϕ dx : ϕ ∈ C 1 c (R n ; R n ), |ϕ(x)| ≤ |x| -α in R n , L n (E; |x| -b ) := E |x| -b dx. Taking a = b = 0 in (1.4) we recover (1.2). If a = 0 then -if b = a + 1, equality in (1.4) (resp. (1.3) formulated in BV (R n )) holds if E = B R (0) (resp. f = χ B R (0)
), that is to say the ball has to be centered at the origin. This is an effect of having weighted both sides by powers of the distance to the origin. The obvious changes go through if the distance is taken from a point x 0 ∈ R n .

-if b = a + 1, the same as above is true for (1.4) but equality in (1.3) is additionally achieved for any nonnegative, radially decreasing function f . Section 3 of this paper is devoted to an extension of this last case (see the first application in Section 1.2).

Several mathematicians have shown interest on different aspects of isoperimetric inequalities involving various kinds of weights; see for instance [START_REF] Brock | A weighted isoperimetric inequality in an orthant[END_REF], [START_REF] Cabré | Sobolev and isoperimetric inequalities with monomial weights[END_REF], [START_REF] Cabré | Sharp isoperimetric inequalities via the ABP method[END_REF], [START_REF] Chiacchio | Isoperimetric inequalities for the first Neumann eigenvalue in Gauss space[END_REF], [START_REF] Croce | An isoperimetric inequality for a nonlinear eigenvalue problem[END_REF], [START_REF] Csato | An isoperimetric problem with a density and the Hardy-Sobolev inequality in R 2[END_REF], [START_REF] Figalli | On the isoperimetric problem for radial log-convex densities[END_REF], [START_REF] Fusco | On the isoperimetric profile for a mixed Euclidean-log-convex measure[END_REF], [START_REF] Greco | An embedding theorem in Lorentz-Zygmund spaces[END_REF], [START_REF] Morgan | Existence of isoperimetric regions in R n with density[END_REF] and [START_REF] Pratelli | On the isoperimetric problem with double density[END_REF]. The work [START_REF] Alvino | Some isoperimetric inequalities on R n with respect to weights |x| α[END_REF] contains an extended list of the relevant references. Moreover, it gives new isoperimetric inequalities of the type (1.3) and (1.4) in the case 0 > a > b-1 (see Theorem 1.1-(iii) & (iv) there) and applications to Caffarelli-Kohn-Nirenberg inequalities. Let us mention that the preceded work [START_REF] Csato | An isoperimetric problem with a density and the Hardy-Sobolev inequality in R 2[END_REF] falls within this particular range for the parameters (n = 2, b = 0 and 0 > a > -1) and uses different methods. However, it seems that the above mentioned paper [START_REF] Maz | A collection of sharp dilation invariant integral inequalities for differentiable functions[END_REF] by Maz'ya and Shaposhnikova, where (1.4) is established, was unnoticed in the corresponding to radial weights recent literature (see for instance the reference given in [START_REF] Alvino | Some isoperimetric inequalities on R n with respect to weights |x| α[END_REF] for inequality (1.4), which is stated as Theorem 1.1-(ii) there).

The aim of this work is to investigate the end point case a = n -1 in (1.4) and (1.3) (this amounts to l + N = 0 in the notation of [START_REF] Alvino | Some isoperimetric inequalities on R n with respect to weights |x| α[END_REF]). Note the parameter assumptions for (1.3) to be valid force b to equal n in this case, so the right hand side of (1.3) is infinite unless f is supported away from the origin. We provide sharp substitutes for (1.4) and (1.3) by logarithmically correcting the weights in both of their sides. More precisely, let

X(t) := (1 -log t) -1 , t ∈ (0, 1],
and observe lim t→0 + X(t) = 0. Standard calculus shows that given R > 0, for any δ ∈ (0, R] one has

B δ (0) |x| -n X 1+θ |x| R dx = nω n δ 0 r -1 X 1+θ r R dr < ∞ if and only if θ > 0.
Keeping this in mind we read the basic result of the paper Theorem A. Suppose Ω is a bounded domain in R n , n ∈ N \ {1}, containing the origin and set R Ω := sup x∈Ω |x|. For all γ ∈ (0, n -1] and any

f ∈ C 1 c (Ω), it holds that Ω |∇f | |x| n-1 X γ |x| R Ω dx ≥ C n,γ Ω |f | n/(n-1) |x| n X 1+γn/(n-1) |x| R Ω dx 1-1/n , (1.5) 
with the best constant C n,γ := nω

1/n n γ/(n -1) 1-1/n .
Remark 1.1. Clearly, (1.5) fails for γ = 0. On the other hand, the restriction γ ≤ n -1 is not essential. Note for instance that 0 ≤ X(t) ≤ 1 for all t ∈ [0, 1], so the right hand side will further decrease upon increasing the exponent on X. Of course the constant ceases to be optimal. We don't search for the best constant in case γ > n -1 here. Our aim is to demonstrate that taking γ > 0 smaller and smaller, the weight X 1+γn/(n-1) (|x|/R Ω ) relaxes less the singularity at 0 of the weight |x| -n , but the estimate fails for γ = 0. A similar open ended condition for the parameter indicating the power on a logarithmic correction has appeared recently in the Leray-Trudinger estimate of [START_REF] Psaradakis | A Leray-Trudinger inequality[END_REF]. See [START_REF] Adimurthi; Filippas | On the best constant of Hardy-Sobolev inequalities[END_REF], [START_REF] Filippas | Optimizing improved Hardy inequalities[END_REF], [START_REF] Gkikas | Optimal non-homogeneous improvements for the series expansion of Hardy's inequality[END_REF] and [START_REF] Psaradakis | An optimal Hardy-Morrey inequality[END_REF] for examples where the range of γ has to be in a closed interval for the purposes there.

Our isoperimetric inequality with radial densities will be a direct consequence of Theorem A: with

L n E; |x| -n X 1+γn/(n-1) (|x|/R Ω ) := E |x| -n X 1+γn/(n-1) (|x|/R Ω ) dx, whenever E ⊆ Ω is L n -measurable, we have Corollary A. Suppose Ω is a bounded domain in R n , n ∈ N \ {1}
, containing the origin and set R Ω := sup x∈Ω |x|. For all γ ∈ (0, n -1] there holds

P E; |x| 1-n X γ (|x|/R Ω ) ≥ C n,γ L n E; |x| -n X 1+γn/(n-1) (|x|/R Ω ) 1-1/n , (1.6 
)

for any L n -measurable set E ⊆ Ω satisfying P(E; |x| 1-n X γ (|x|/R Ω )) := sup E div ϕ dx : ϕ ∈ C 1 c (Ω; R n ), |ϕ(x)| ≤ |x| 1-n X γ (|x|/R Ω ) in Ω < ∞.
Moreover, equality holds if E is a ball centered at the origin.

Applications

The choice b = a + 1 in (1.3) leads to the following L 1 weighted Hardy inequality

R n |∇f | |x| s-1 dx ≥ (n -s) R n |f | |x| s dx ∀ f ∈ C 1 c (R n ), (1.7) 
whenever s ∈ [1, n) (here we have switched from "b" to "s" to be consistent with the notation in [START_REF] Psaradakis | L 1 Hardy inequalities with weights[END_REF]). Actually, it takes only an integration by parts to see that for any s ∈ R \ {n} there holds

R n |∇f | |x| s-1 dx ≥ |n -s| R n |f | |x| s dx, (1.8) valid for all f ∈ C 1 c (R n ) if s < n, or all f ∈ C 1 c (R n \ {0}) if s > n.
Moreover, it is easy to check when s < n, that equality holds for any nonnegative, radially decreasing function. In contrast, if s > n it is known (see [START_REF] Psaradakis | L 1 Hardy inequalities with weights[END_REF]Section 2.1]) that the constant appearing in (1.8) is again optimal but the inequality itself can be improved. More precisely, let Ω be any domain in R n containing the origin. For s ≥ n set

I[f ] := Ω |∇f | |x| s-1 dx -(s -n) Ω |f | |x| s dx, f ∈ C 1 c (Ω \ {0}).
(1.9)

We will establish the following improvement for (1.8).

Theorem B Let Ω be a bounded domain in R n containing the origin, and set R Ω := sup x∈Ω |x|.

Then for all γ > 0, s ≥ n, and any f ∈ C 1 c (Ω \ {0}), it holds that

I[f ] ≥ γ R s-n Ω Ω |f | |x| n X 1+γ |x| R Ω dx (1.10) + C n,γ R s-n Ω Ω |f | n/(n-1) |x| n X 1+γn/(n-1) |x| R Ω dx 1-1/n
, where the second term on the right fails to appear when γ = 0.

Remark 1.2. For the first term on the right, we already know (see [START_REF] Psaradakis | L 1 Hardy inequalities with weights[END_REF]Remark 2.6]) that it fails to appear when γ = 0. Hence the above inequality includes the optimal homogeneous weighted norm improvement and the optimal critical Sobolev weighted norm improvement at the same time.

Other applications include a p-version of Theorem A with p ∈ (1, n) (see Corollary 4.1 & Theorem 4.3 for the best constant) and also a weighted Pólya-Szegö inequality (see Theorem 5.4).

Throughout the rest of this paper, Ω denotes a bounded domain in R n , n ∈ N \ {1}, containing the origin and R Ω := sup x∈Ω |x|. Furhermore, L n stands for the Lebesgue measure in R n and σ for the n -

1-dimensional Hausdorff measure in R n . B r (x) is the open ball in R n having radius r > 0 and centre at x ∈ R n ; ∂B r (x) is its boundary. In particular B n := B 1 (0) and S n-1 := ∂B 1 (0). Also, ω n := L n B 1 (x) and so σ ∂B 1 (x) = nω n .

Proof of Theorem A and Corollary A

The proof is based in the ideas of [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence) and symmetry of extremal functions[END_REF] and [START_REF] Horiuchi | Best constant in weighted Sobolev inequality with weights being powers of distance from the origin[END_REF], as applied in [START_REF] Alvino | Some isoperimetric inequalities on R n with respect to weights |x| α[END_REF] and [START_REF] Adimurthi; Filippas | On the best constant of Hardy-Sobolev inequalities[END_REF]. We start noting that since

0 ∈ Ω, given f ∈ C 1 c (Ω) we have f ∈ C 1 c (B R Ω (0)
) and hence it suffices to establish (1.5) with Ω = B R Ω (0). Moreover, being invariant under scaling, it is enough to establish it for R Ω = 1.

Consider the transformation B n x → (t, θ) ∈ [1, ∞] × S n-1 given by t := |x| 1-n , θ := |x| -1 x.
Then

t x i = -(n -1)t n/(n-1) θ i , θ x i = t 1/(n-1
) (e i -θ i θ), and writing g(t, θ) for f (x) we have

f x i = g t t x i + ∇ θ g • θ x i = -(n -1)t n/(n-1) g t θ i + t 1/(n-1) g θ i .
Altogether,

|∇f | = (n -1)t n/(n-1) g 2 t + (n -1)t -2 |∇ θ g| 2 1/2 .
Also, the absolute value of the determinant of the Jacobian matrix of this transformation is

J(t, θ) = (n -1) -1 t -1-n/(n-1) , therefore, with A := g ∈ C 1 ([1, ∞) × S n-1 ) \ {0} : g(1, θ) = 0 , we have nω 1/n n = inf f ∈C 1 c (B n ) f ≡0 B n |∇f | dx B n |f | n/(n-1) dx 1-1/n = (n -1) 1-1/n inf g∈A ∞ 1 S n-1 t -1 g 2 t + (n -1)t -2 |∇ θ g| 2 1/2 dσ(θ)dt ∞ 1 S n-1 t -1-n/(n-1) |g| n/(n-1) dσ(θ)dt 1-1/n . (2.1)
Next we define

C := inf f ∈C 1 c (B n ) f ≡0 B n |x| 1-n |∇f |X γ (|x|) dx B n |x| -n |f | n/(n-1) X 1+γn/(n-1) (|x|) dx 1-1/n . Consider this time the transformation B n x → (τ, θ) ∈ [1, ∞] × S n-1 given by τ := X -γ (|x|) = (1 -log |x|) γ , θ := |x| -1 x.
Then τ x i = -γτ 1-1/γ e τ 1/γ -1 θ i , θ x i = e τ 1/γ -1 (e i -θ i θ), and writing h(τ, θ) for f (x) we get

f x i = h τ τ x i + ∇ θ h • θ x i = e τ 1/γ -1 -γτ 1-1/γ h τ θ i + h θ i . These imply |∇f | = e τ 1/γ -1 γ 2 τ 2(1-1/γ) h 2 τ + |∇ θ h| 2 1/2 .
The absolute value of the determinant of the Jacobian matrix of the transformation is

J(τ, θ) = 1 γ τ 1/γ-1 e -n(τ 1/γ -1) ,
and taking into account that the transformation says |x| = e 1-τ 1/γ and X γ (|x|) = τ -1 , an elementary computation implies

C = γ 1-1/n inf h∈A ∞ 1 S n-1 τ -1 h 2 τ + γτ 1-1/γ -2 |∇ θ h| 2 1/2 dσ(θ)dτ ∞ 1 S n-1 τ -1-n/(n-1) |h| n/(n-1) dσ(θ)dτ 1-1/n . (2.2)
To compare the two infima in (2.1) and (2.2) we observe that since γ ∈ (0, n -1] and τ ≥ 1, we know

γτ 1-1/γ ≤ (n -1)τ.
Hence we may combine these equations to conclude

C ≥ nω 1/n n γ n -1 1-1/n .
The rest is a routine procedure. Supposing that R ∈ (0, R Ω ) we choose E = B R (0) and f = χ B R (0) , the characteristic function of B R (0). Translating for the moment |∇f | dx as the variation measure of f , it is known in this case that both

Ω |∇f | |x| n-1 X γ |x| R Ω dx and P E; |x| 1-n X γ (|x|/R Ω ) , are equal to ∂B R (0) |x| 1-n X γ (|x|/R Ω ) dσ = R 1-n X γ (R/R Ω )σ ∂B R (0) = nω n X γ (R/R Ω ).
On the other hand

Ω |f | n/(n-1) |x| n X 1+γn/(n-1) |x| R Ω dx = B R (0) 1 |x| n X 1+γn/(n-1) |x| R Ω dx = nω n R 0 r -1 X 1+γn/(n-1) r R Ω dr.
Noting that d dr X γn/(n-1) (r/R Ω ) = n/(n -1) r -1 X 1+γn/(n-1) (r/R Ω ), we conclude

Ω |f | n/(n-1) |x| n X 1+γn/(n-1) |x| R Ω dx 1-1/n = ω n n -1 γ 1-1/n X γ (R/R Ω ) = nω n X γ (R/R Ω ) C n,γ
, as required. This together with a standard mollification of the BV (Ω) function χ B R (0) shows that the constant C n,γ in (1.5) is the best possible. At the same time we have shown that equality holds in (1.6) whenever E is a ball centered at the origin.

Proof of Theorem B

By pushing further an argument of [START_REF] Psaradakis | L 1 Hardy inequalities with weights[END_REF] we deduce here the following improvement for (1.8) Proposition 3.1. For all s ≥ n, γ ≥ 0 and any f ∈ C 1 c (Ω \ {0}), it holds that

I[f ] ≥ γ R s-n Ω |f | |x| n X 1+γ |x| R Ω dx + 1 R s-n Ω |∇f | |x| n-1 X γ |x| R Ω dx. Proof. Let ϕ ∈ C 1 (Ω \ {0}; R n ).
Integrating by parts we easily get

Ω |∇f ||ϕ| dx ≥ Ω |f |divϕ dx, (3.1) 
for all f ∈ C 1 c (Ω \ {0}). Choosing ϕ(x) = -1 - |x| R Ω s-n X γ |x| R Ω |x| -s x, x ∈ Ω \ {0}, there holds |ϕ(x)| = 1 -(|x|/R Ω ) s-n X γ (|x|/R Ω ) |x| 1-s for x ∈ Ω \ {0}, hence Ω |∇f ||ϕ| dx = Ω |∇f | |x| s-1 dx - 1 R s-n Ω |∇f | |x| n-1 X γ |x| R Ω dx. (3.2)
On the other hand,

div(v) = (s -n)|x| -s + γR n-s Ω |x| -n X 1+γ |x|/R Ω , x ∈ Ω \ {0}, thus Ω |f | div ϕ dx = (s -n) Ω |f | |x| s dx + γ R s-n Ω Ω |f | |x| n X 1+γ |x| R Ω dx. (3.3) 
The proposition now follows by inserting (3.2) and (3.3) in (3.1).

Proof of Theorem B. The inequality of Theorem B readily follows from Theorem A and Proposition 3.1. In order to establish the optimality assertion, consider the function

f δ (x) := χ Bη\B δ (x); x ∈ R n , (3.4) 
where, for any r > 0, by B r we denote (until the end of this proof), the open ball of radius r centered at the origin. Here 0 < δ < η < R Ω and η is fixed. It is easily seen that the distributional gradient of f δ is given by

∇f δ = ν ∂B δ δ ∂B δ -ν ∂Bη δ ∂Bη ,
where, for any r > 0, ν ∂Br stands for the outward pointing unit normal vector field along ∂B r , and by δ ∂Br we denote the Dirac measure on ∂B r . Also the variation measure of f δ is

|∇f δ | dx = δ ∂B δ + δ ∂Bη .
Using (3.4) we showed in [29, Remark 2.4 & Remark 2.6] that the constant s -n in the inequality

I[f ] ≥ 0 for all f ∈ C 1 c (Ω \ {0}) (see (1.9) for the definition of I[f ]
) is optimal and that if γ = 0, the first term on the right of (1.10) fails to appear. In the same fashion we have

I[f δ ] Ω |f δ | n/(n-1) |x| -n X(|x|/R Ω ) dx 1-1/n = δ 1-s σ(∂B δ ) + η 1-s σ(∂B η ) -(s -n)nω n η δ r n-1-s dr nω n η δ r -1 X(r/R Ω ) dr 1-1/n = (nω n ) 1/n 2η n-s log X(η/R Ω ) -log X(δ/R Ω ) 1-1/n = o δ (1).
A standard mollification of the BV (Ω) function f δ applies to see that the above computation holds in the limit. This shows that if γ = 0, the second term on the right of (1.10) fails to appear.

Limiting case in the Caffarelli-Kohn-Nirenberg inequality

Performing a weighted variant of a classical argument of [START_REF] Federer | Normal and integral currents[END_REF] (see also [13, Section 4.5.1, pg 140]) we obtain next a substitute for the end point case (a = n -p) of the parameters in the following p-version of (1.3):

if 1 ≤ p < n, 0 ≤ a < n -p and an/(n -p) ≤ b ≤ a + p, then R n |∇f | p |x| a dx ≥ C n,p,a,b R n |f | (n-b)p/(n-p-a) |x| b dx (n-p-a)/(n-b) ∀ f ∈ C 1 c (R n ). (4.1)
This was also established by Il'in in [START_REF] Il'in | Some integral inequalities and their applications to the theory of differentiable functions of many variables[END_REF] and reproved later in [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF] as a particular case of a multiplicative embedding inequality with weights; the Cafarelli-Kohn-Nirenberg inequality. 

Ω |∇f | p |x| n-p X α |x| R Ω dx (4.2) ≥ C p n,α,p Ω |f | np/(n-p) |x| n X 1+(α+p-1)n/(n-p) |x| R Ω dx 1-p/n
, where C n,α,p = (n -p)nω

1/n n (α + p -1)/(n -p) 1-1/n / p(n -1) .
Proof. For p = 1 this is (1.5). Let 1 < p < n. We replace |f | by |f | θ in (1.5), where θ > 1 will be selected below. With β := 1 + γn/(n -1), we find

C n,γ Ω |f | θn/(n-1) |x| n X β |x| R Ω dx 1-1/n ≤ θ Ω |f | θ-1 |∇f | |x| n-1 X γ |x| R Ω dx = θ Ω |f | θ-1 |x| n(p-1)/p X β(p-1)/p |x| R Ω |∇f | |x| (n-p)/p X γ-β(p-1)/p |x| R Ω dx ≤ θ Ω |f | (θ-1)p/(p-1) |x| n X β |x| R Ω dx 1-1/p Ω |∇f | p |x| n-p X γp-β(p-1) |x| R Ω dx 1/p .
Choose θ so that θn/(n -1) = (θ -1)p/(p -1). Then θn/(n -1) = np/(n -p). Thus

C n,γ θ Ω |f | np/(n-p) |x| n X β |x| R Ω dx 1/p-1/n ≤ Ω |∇f | p |x| n-p X α |x| R Ω dx 1/p
, where we have set α := γp -β(p -1). Since β = 1 + γn/(n -1), we have

γ = (α + p -1)(n -1)/(n -p).
From this, condition 0 < γ ≤ n -1 is translated to 1 -p < α ≤ n + 1 -2p and also

β = 1 + γn/(n -1) = 1 + (α + p -1)n/(n -p),
as required.

Remark 4.2. The above estimate was known only for α = 0 when p = 2 (see [START_REF] Filippas | Optimizing improved Hardy inequalities[END_REF]Lemma 3.2]) and for α = 2 -p when p ∈ (1, 2) (see [START_REF] Gkikas | Optimal non-homogeneous improvements for the series expansion of Hardy's inequality[END_REF]Section 3]).

The best constant in (4.2) for α = 0 when p = 2 was found in [START_REF] Adimurthi; Filippas | On the best constant of Hardy-Sobolev inequalities[END_REF], while for α = 2 -p when p ∈ (1, 2) and n ≥ 3 can be extracted from the computations performed in [19, Section 3]. We can obtain the best constant for the whole range of the parameters n, α, p introduced in the above corollary, by arguing as in the proof of Theorem A.

Theorem 4.3. If 1 ≤ p < n, then for all α ∈ (1 -p, n + 1 -2p], the best constant in (4.2) is given by S n,α,p = α + p -1 n -p 1-1/n S n,p ,
where S n,p is the best constant in the Sobolev inequality (see [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF] & [START_REF] Talenti | Best constant in Sobolev inequality[END_REF]).

Proof. To avoid repetition with the proof of Theorem A, we present only the basic tasks towards the proof of (4.2) and leave their verification to the reader. As before, we may assume

f ∈ C 1 c B n . Consider the transformation B n x → (t, θ) ∈ [1, ∞] × S n-1 given by t := |x| p-n , θ := |x| -1 x.
Then, working as in the proof of Theorem A, we obtain

S p n,p = inf f ∈C 1 c (B n ) f ≡0 B n |∇f | p dx B n |f | np/(n-p) dx 1-p/n = (n -p) p(n-1)/n inf g∈A ∞ 1 S n-1 t p-2 g 2 t + (n -p)t -2 |∇ θ g| 2 p/2 dσ(θ)dt ∞ 1 S n-1 t -1-n/(n-p) |g| np/(n-p) dσ(θ)dt 1-p/n , (4.3) 
where A is as in the proof of Theorem A.

Next we define

S p n,α,p := inf f ∈C 1 c (B n ) f ≡0 B n |x| p-n |∇f | p X α (|x|) dx B n |x| -n |f | np/(n-p) X 1+(α+p-1)n/(n-p) (|x|) dx 1-p/n . Consider this time the transformation B n x → (τ, θ) ∈ [1, ∞] × S n-1 given by τ := X -α-p+1 (|x|) = (1 -log |x|) α+p-1 , θ := |x| -1 x.
It is not difficult to see that this gives

S p n,α,p (α + p -1) p(1-1/n) = inf h∈A ∞ 1 S n-1 τ p-2 h 2 τ + (α + p -1)τ 1-1/(α+p-1) -2 |∇ θ h| 2 p/2 dσ(θ)dτ ∞ 1 S n-1 t -1-n/(n-p) |h| np/(n-p) dσ(θ)dt 1-p/n . (4.4)
To compare the two infima in (4.3) and (4.4) we observe that since α ∈ (1 -p, n + 1 -2p] and τ ≥ 1, we know

(α + p -1)τ 1-1/(α+p-1) ≤ (n -p)τ.
Hence we may combine these equations to conclude

S n,α,p ≥ α + p -1 n -p 1-1/n S n,p .
It remains to show that the reverse inequality is also true. This is a consequence of the fact that the infimum in (4.3) is attained by radially symmetric functions (see [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF] & [START_REF] Talenti | Best constant in Sobolev inequality[END_REF]), which in turn means the value of the infimum in (4.3) is the same if we consider admissible functions depending on t only. With this in mind we read S n,α,p ≤ S (radial) n,α,p =

α + p -1 n -p 1-1/n S (radial) n,p = α + p -1 n -p 1-1/n S n,p ,
and the proof is complete.

Remark 4.4. The analogous remark of Remark 1.1 applies to the above theorem.

A Pólya-Szegö inequality

In this section, whenever x ∈ Ω \ {0} and γ ∈ (0, n -1], we write for convenience

v(x) := |x| -n X 1+γn/(n-1) (|x|/R Ω ), w(x) := |x| 1-n X γ (|x|/R Ω ).
Definition 5.1. For any L n -measurable E ⊆ Ω we define successively:

(i) E ⊂ R n to be the ball centered at the origin and satisfying

L n (E; v) = L n (E ; v), (5.1) 
(ii) χ E : R n → {0, 1} to be the characteristic function of E ; that is χ E := χ E .

(iii) the v-weighted rearrangement of a Borel measurable f : Ω → R given by

f (x) := ∞ 0 χ {|f |>t} (x) dt.
Remark 5.2. Since Ω contains the origin, given E ⊆ Ω, we know E ⊆ B R Ω (0). Hence the radius of E never exceeds R Ω . As a consequence, the argument of X on the right hand side of (5.1) is well defined.

Remark 5.3. The function f is nonnegative, measurable, radial and radially non-increasing. Moreover, {|f | > t} = {f > t} for all t ≥ 0, which together with (5.1) implies the weighted equimeasurability formula

L n {|f | > t}; v = L n {f > t}; v for all t ≥ 0. (5.2)
The two statements of Corollary A together with (5.1) imply

P E; w ≥ C n,γ L n (E; v) 1-1/n = C n,γ L n (E ; v) 1-1/n = P E ; w .
In particular, if E ⊆ Ω is a sufficiently smooth domain this reads

∂E w dσ ≥ ∂E w dσ. (5.3) 
With this at hand, performing a weighted variant of a standard argument (we follow the presentation of [START_REF] Fusco | Geometrical aspects of symmetrization[END_REF]Theorem 3.1] for this), we establish here the following Pólya-Szegö inequality with radial density.

Theorem 5.4. Let f ∈ C 1 c (Ω), p ≥ 1 and γ ∈ (0, n -1]. Then Ω |∇f | p |x| n-p X ϑ |x| R Ω dx ≥ Ω |∇f | p |x| n-p X ϑ |x| R Ω dx, (5.4) 
where ϑ is given by ϑ := γp -1 + γn/(n -1) (p -1).

Proof. We first recall some facts from basic geometric measure theory. In particular we are going to use the coarea formula; [25, Theorem 1. 

whenever g ∈ L 1 (Ω) is nonnegative (simply choose Φ = gχ {|u|>s} /(|∇u|+ε), ε > 0, in (5.5), and then take the limit as ε → 0 using the monotone convergence theorem). We performed the above analysis in order to show that the assumption essinf|∇u| > 0 for (5. To prove the theorem we take u = f and Φ As a final result we will apply Theorem 5.4 to produce an embedding inequality in weighted Lorentz spaces (see [START_REF] Maz'ja | Sobolev Spaces (2nd revised and augmented edition[END_REF]Section 4.8]). This is an improvement of the embedding implied by Corollary 4.1 with α = ϑ. Recall that the weighted Lorentz L(P, Q; v), P > 1, Q ≥ 1, space is defined through the seminorm Proof. By the fact that d dr X γn/(n-1) (r/R Ω ) = n/(n -1) r -1 X 1+γn/(n-1) (r/R Ω ), we find first 

= |∇f | p-1 |x| p-n X ϑ (|x|/R Ω ) in (5.5) to obtain Ω |∇f | p |x| n-p X ϑ |x| R Ω dx = ∞ 0 {|f |=t} |∇f | p-1 |x| n-p X ϑ (|x|/R Ω ) dσ(x)dt ≥ ∞ 0 {|f |=t} w dσ p {|f |=t} 1 |∇f | v dσ 1-p dt ≥ ∞ 0 {f =t} w dσ p - d dt L n {|f | > t}; v 1 
L n B |x| (0); v = n -1 γ ω n X γn/(n-1) |x| R Ω , x ∈ Ω.

  Φ is a Borel measurable nonnegative function in Ω and u : Ω → R is Lipschitz. Rademacher's theorem asserts u is differentiable L n -a.e. in Ω and setting N u := {x ∈ Ω : ∇u(x) = 0}, we may take Φ = χ Nu in (5.5) to obtain 0 = Nu |∇u| dx = ∞ 0 σ {|u| = t} ∩ N u dt. Hence σ {|u| = t} ∩ N u = 0 for L 1 -a.e. t ≥ 0. This implies (5.5) can take the form {|u|>s} g dx = ∞ s {|u|=t} g |∇u| dσdt for L 1 -a.e. s ≥ 0,

6 )

 6 to hold true (see [13, Proposition 3, Section 3.4.4]) is redundant. Observe finally that (5.6) implies d dt L n {|u| > t}; g = -{|u|=t} g |∇u| dσ for L 1 -a.e. t ≥ 0.(5.7)

7 )

 7 -p dt where we have applied first Hölder's inequality to reach the middle line, and then (5.3) together with (5.7) for g = v to reach the last line. Note that the level sets of f are smooth enough by virtue of Sard's lemma. Hence, using (5.2)Ω |∇f | p |x| n-p X ϑ |x|R Ω dx ≥ for g = v but with u = f this time. On the other hand, taking u = f andΦ = |∇f | p-1 |x| p-n X ϑ (|x|/R Ω ) in (5.5) Ω |∇f | p |x| n-p X ϑ |x| R Ω dx = ∞ 0 {f =t} |∇f | p-1 |x| n-p X ϑ |x| R Ω dσ(x)dt= |∇f | is constant on the level sets of f .

Corollary 5 . 5 .

 55 [f ] L(P,Q;v) :=L n (Ω;v) 0 f * (s) Q d(s Q/P ) n ({|f |>t};v) (s) dt.Under the assumptions of Theorem 5.4, there holdsΩ |∇f | p |x| n-p X ϑ |x| R Ω dx ≥ ω p/(n-p),p;v) .

  Hence, noting f (x) = f * L n B |x| (0); v , we computeΩ |∇f | p |x| n-p X ϑ |x| R Ω dx = Ω [f * ] L n B |x| (0); v ∇ x L n B |x| (0); n) ds,where R is the radius of the ball Ω . The one dimensional weighted Hardy inequality (see[START_REF] Maz'ja | Sobolev Spaces (2nd revised and augmented edition[END_REF] Section 1.3.1]) applies to deduceΩ |∇f | p |x| n-p X ϑ |x| R p s -p/n ds,which is the desired estimate.

  The best constant in (4.1) when p > 1 goes back at least to[START_REF] Horiuchi | Best constant in weighted Sobolev inequality with weights being powers of distance from the origin[END_REF] Lemma 3.3]. It can also be found in[START_REF] Maz | A collection of sharp dilation invariant integral inequalities for differentiable functions[END_REF] Corollary 5.1] as a particular case of their more general inequality involving Lorenz spaces; see[START_REF] Maz | A collection of sharp dilation invariant integral inequalities for differentiable functions[END_REF] Theorem 5.2].

Corollary 4.1. If 1 ≤ p < n, then for all α ∈ (1 -p, n + 1 -2p] and any f ∈ C 1 c (Ω), it holds that

Acknowledgments The author is grateful to the anonymous referees for their critical comments and also for spotting a couple of inconsistencies. The author would like to thank Giuseppina di Blasio and Giovanni Pisante for their hospitality and useful advice. Part of this work was done while visiting the Department of Mathematics and Physics of University of Campania "Luigi Vanvitelli" with the aid of the INdAM/GNAMPA Visiting Professor program (Bando 30/11/2018).