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Time-varying Time-Frequency Complexity

Measures for Epileptic EEG Data Analysis
Marcelo A. Colominas, Mohamad El Sayed Hussein Jomaa, Nisrine Jrad,

Anne Humeau-Heurtier and Patrick Van Bogaert

Abstract—Objective: Our goal is to use existing and to propose
new time-frequency entropy measures that objectively evalu-
ate the improvement on epileptic patients after medication by
studying their resting state EEG recordings. An increase in
the complexity of the signals would confirm an improvement
in the general state of the patient. Methods: We review the
Rényi entropy based on time-frequency representations, along
with its time-varying version. We also discuss the entropy based
on singular value decomposition computed from a time-frequency
representation, and introduce its corresponding time-dependant
version. We test these quantities on synthetic data. Friedman
tests are used to confirm the differences between signals (before
and after proper medication). Principal component analysis is
used for dimensional reduction prior to a simple threshold
discrimination. Results: Experimental results show a consistent
increase in complexity measures in the different regions of the
brain. These findings suggest that extracted features can be
used to monitor treatment. When combined, they are useful
for classification purposes, with areas under ROC curves higher
than 0.93 in some regions. Conclusion: Here we applied time-
frequency complexity measures to resting state EEG signals from
epileptic patients for the first time. We also introduced a new
time-varying complexity measure. We showed that these features
are able to evaluate the treatment of the patient, and to perform
classification. Significance: The time-frequency complexities, and
their time-varying versions, can be used to monitor the treatment
of epileptic patients. They could be applied to a wider range of
problems.

Index Terms—EEG data, epilepsy, Rényi entropy, signal com-
plexity, SVD entropy, time-frequency.

I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) is a technique

that records variations of the electrical potentials along

time between 2 electrodes placed over the scalp. EEG data has

a powerful temporal resolution of the order of the millisecond.

These recordings are a good reflect of the electrical activity

at rest or during an activation task within both close and far

groups of neurons [1].

The probably most studied pathology through EEG is

epilepsy [2]. This neurological disorder is characterized by
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Ingénierie des Systèmes, 62 avenue Notre-Dame du Lac, 49000 Angers,
France (correspondence e-mail: marcelo.colominas@univ-angers.fr).
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the occurrence of recurrent unprovoked epileptic seizures.

Examples of works dealing with the analysis and/or prediction

of seizures can be found in [3], [4]. Most epileptic patients do

present on their resting state EEG recordings, even when no

seizure occurs, i.e. in the interictal state, abnormal transients

that are called interictal epileptiform discharges (IED). These

IED display a particular morphology called spikes and waves

or sharp waves [2].

As a seizure is characterized by a synchronous discharge

of a group of neurons, the complexity of the EEG signal is

expected to decrease during a seizure. Studies have shown

that this decrease of the complexity of the signals may

even be identified before seizure, with the perspective to

predict it [5]. One of the most common ways to measure

this complexity is through entropy, and its several variants

[6], [7]. The application of entropy to EEG is widespread

nowadays [8], [9], [10], [11], even with examples of entropies

computed from time-frequency representations [12]. However,

some of these entropy measures can have some limitations

to discriminate signals of different complexity, which will be

illustrated. Because of that, it is the purpose of the present

work to propose new time-varying complexity measures useful

to better distinguish signal complexities and to apply them

to the study of EEG recordings from children with benign

childhood epilepsy with centrotemporal spikes (BECTS). This

form of epilepsy is the most common epileptic syndrome of

childhood and has usually a favorable evolution with full re-

covery expected at adolescence and absence or mild cognitive

deficits. However, atypical evolution may occur with strong

exacerbation of IED during sleep, that may even consist in a

pattern of continuous spikes and waves during sleep (CSWS).

In this situation, the goal of the treatment is to decrease IED

during sleep in order to limit cognitive deterioration [13], [14].

The paper is organized as follows. We recall the concepts of

multicomponent signals and entropies based on time-frequency

representations in Sec. II. In Sec. III we illustrate the need

for time-varying entropy quantities, reviewing existing ones

and introducing a new time-varying entropy based on singular

value decomposition (SVD). We evaluate its performance on

synthetic signals. Sec. IV is devoted to the analysis of resting

state EEG recordings (segments without IED) of epileptic

children before and after proper medication. Finally, Sec. V

concludes the paper.

II. MULTICOMPONENT SIGNALS AND
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TIME-FREQUENCY ENTROPIES

The multicomponent signals, which are made of a super-

position of a small number of components modulated both

in amplitude and frequency (AM-FM), are a versatile way

to model phenomena such as audio signals [15], biomedical

signals [16], or economic temporal series [17]. In the EEG

context, a multicomponent model was assumed in [12], [18],

[19].

For a signal of K components we have

x(t) =
K∑

k=1

xk(t) =
K∑

k=1

ak(t) cos(2πφk(t)), (1)

with ak(t), φ
′
k(t) > 0 ∀t. In this case, the temporal variations

of ak(t) and φ′
k(t) are much smaller than those of φk(t),

which adds new constraints: |a′k(t)|, |φ
′′
k(t)| < ǫφ′

k(t), for a

small ǫ > 0. The signals modeled as in (1) have a special

structure in a time-frequency plane: every component occupies

a “ribbon” around its instantaneous frequency φ′(t). The

more components we have, the more ribbons and the larger

occupancy of the plane we will get.

If we analyze the signal (1) with the (modified) Short Time

Fourier Transform (STFT)

F g
x (t, f) =

∫
x(u)g(u− t)e−i2πf(u−t)du, (2)

where g(t) is an even real compact-supported window with

supp{G(f)} ⊆ [−B,+B] 1, then its spectrogram is

Sg
x(t, f) = |F g

x (t, f)|
2 ≈

K∑

k=1

a2k(t)|G(f − φ′
k(t))|

2, (3)

provided φ′
k+1(t)−φ′

k(t) > 2B, ∀k. For the sake of simplicity,

and due to its symmetry for real signals, we considered only

positive frequencies for the spectrogram, and we will do so

for the rest of this work.

A. Time-Frequency Complexity

A widespread manner to measure the information and com-

plexity of the time-frequency plane comes from the analogy

between signal energy densities and probability densities [20],

[21]. In this analogy, the instantaneous energy |x(t)|2 and the

spectral energy |X(f)|2 2 act as unidimensional densities of

the energy of the signal in time and frequency respectively,

while the time-frequency representation (TFR) of the signal

would behave as a bidimensional energy density in time-

frequency. However, to consider TFR Rx(t, f) as a true

density, it should satisfy 3 the marginal properties
∫

Rx(t, f)df = |x(t)|2,

∫
Rx(t, f)dt = |X(f)|2, (4)

the energy conservation property
∫∫

Rx(t, f)dtdf =

∫
|X(f)|2df =

∫
|x(t)|2dt, (5)

1This is only an approximation since the compact-supportness of g prevents
G to have a compact support.

2X(f) =
∫
x(t)e−i2πftdt is the Fourier transform of x(t).

3The total amount property
∫∫

Rx(t, f)dtdf = 1 is trivial since it can be
always satisfied through a proper normalization.

and the non-negativity property

Rx(t, f) ≥ 0. (6)

If a given TFR satisfies requirement (4), it automatically

satisfies requirement (5), but the converse is not true [22].

Unfortunately most TFRs do not satisfy the three requirements

simultaneously. The bilinear distributions that are manifestly

positive and satisfy the marginal properties do not exist [22].

Wigner-Ville distribution satisfies the marginals but takes

negative values, as well as all fixed-kernel Cohen’s class

TFRs that satisfy requirement (4) [21]. The spectrogram,

on the other hand, satisfies the positivity property, but it

does not do so with the marginals (although it satisfies the

energy conservation property) [22], [23]. The negativity of the

Wigner-Ville distribution prevented the authors in [21] to use

a classical Shannon entropy [24] of the TFR. Instead, they

opted, as in [20], for a Rényi entropy [25], which apparently

solves the non-positivity issue by taking the logarithm outside

of the integral:

Hα
R(Rx) =

1

1− α
log2

∫∫
R̃x

α
(t, f)dtdf. (7)

However, because of the negative values of the Wigner-Ville

distribution, it is still possible for (7) to not exist, since∫∫
Rα

x (t, f)dtdf < 0 could happen for odd α. This is a bad

result since odd orders α > 1 make this entropy asymptotically

invariant to the well-known cross-terms of the Wigner-Ville

distribution.

All this drives us not to use the Wigner-Ville distribution,

and we will opt for the spectrogram instead. Although it

does not satisfy the marginal properties (4), it was already

successfully used in the context of time-frequency complexity

measures in [19], [26]. Its realness and positivity would also

allow us to compute a Shannon entropy, but we will not make

use of this in the present work.

A different way to measure the complexity of the time-

frequency plane comes from the SVD entropy, first introduced

in [27], and used in the context of time-frequency representa-

tions in [18]. The SVD of the time-frequency representation

expands it as

Rx(t, f) =
∞∑

n=1

σnun(t)vn(f), (8)

by solving a system of two coupled integral equations [22],

[28]. A Shannon entropy is applied on the singular values σn’s,

after normalization:

HV (Rx) = −
∑

n

σn∑
n σn

log2

(
σn∑
n σn

)
. (9)

B. Properties of the TF Entropies

The rationale behind the Rényi and Shannon entropies is

that for concentrated TFRs of signals made of a small number

of components the entropy would attain low values, while

for scattered TFRs of more complicated signals it would take

larger values. The “counting” property of the Rényi entropy

for TFRs is properly described in [21], and it is one of the

main reasons for which it is used as a measure of complexity
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Fig. 1. AM-FM signals of different complexities and their spectrograms. Left: pure tone as in (10), with f0 = 25. Middle left: chirp signal as in (12), with
f0 = 25 and k = 10. Middle right: three pure tones, f0,1 = 25, f0,2 = 50, f0,3 = 75. Right: three chirps. In all four cases, the signals are defined for
0 ≤ t ≤ T = 1 and were generated with a sampling frequency of fs = 1000. The spectrograms were obtained with a Hann window of 200 samples, and
for 0 ≤ f ≤ 100.

of the TF plane. Moreover, a study of the Rényi entropy of the

spectrogram of a multicomponent signal can be found in [26].

However, it should be remarked that this entropy seems to be

rather transparent to the nonstationarity of the signal. Provided

the multicomponent signal hypothesis holds, the results are

very similar for a monochromatic signal and for a chirp. Let

x1(t) = cos(2πf0t), (10)

be a pure tone with a spectrogram

Sg
x1
(t, f) = |G(f − f0)|

2, (11)

depicted on Fig. 1 left, and

x2(t) = cos(2πf0t+ πkt2), (12)

be a chirp signal, where its spectrogram

Sg
x1
(t, f) ≈ |G(f − (f0 + kt))|2, (13)

can be appreciated on Fig. 1 middle left. For both signals, the

entropy would be

Hα
R(S

g
x1,2

) = log2 T +
1

1− α
log2

( ∫
|G(f)|2αdf

(
∫
|G(f)|2df)α

)
(14)

where supp{x1, x2} ⊆ [0, T ]. Table I presents the numerical

results for α = 2. It can be observed the very similar results for

the Rényi entropy of x1(t) and x2(t). The estimated number

of components (NoC) is [29], [26]

Nα
x = 2H

α
R(Sx)−H̊α

R , (15)

where H̊α
R is the Rényi entropy of a pure tone (which is the

same value as (14)).

On the other hand, the SVD entropy is able to see these

differences in frequency modulation. For the spectrogram of a

single pure tone, Sg
x = a2(t)|G(f − f0)|

2, the singular value

decomposition contains only one term, with only one non-zero

singular value (all the columns are multiple of each other, or

exactly equal for a(t) constant). Equation (9) would yield a

null value, while for spectrograms of frequency modulated

signals Sg
x ≈ a2(t)|G(f − φ′(t))|2, the SVD entropy attains

higher values. In a complementary way to the Rényi entropy,

the SVD entropy is rather transparent to the number of

components. For a superposition of K pure tones (with the

same amplitude modulation) Sg
x3

= a2(t)
∑K

k=1 |G(f−f0,k)|
2

(Fig. 1 middle right, with K = 3), this entropy retrieves again

a null value. For a sum of several chirp signals (x4(t), Fig.

1 right), the entropy will give us a similar value to that of a

single one.

Table I summarizes with numerical results the behavior of

the Rényi entropy, the number of components based on it (as

in (15)) and the SVD entropy of a pure tone, a sum of pure

tones, a chirp and a sum of chirps. While the Rényi entropy

cannot distinguish between x1(t) and x2(t), the SVD entropy

is able to do so. The counting property of the Rényi entropy is

well illustrated, as well as the “inmunity” of the SVD entropy

to the number of components. The complementary nature of

these two complexity measures will be exploited for EEG data

analysis.

III. THE NECESSITY OF TIME-VARYING QUANTITIES

We have illustrated the capabilities of the TF entropies to

differentiate signals based on the amount of information they

carry. While the Rényi entropy focuses on the number of com-

ponents, the SVD entropy does it on their (non)stationarity.

Yet, for very simple signals of different complexities, both

might be unable to see a significant difference between them.

Let us consider the signals y1(t) depicted on Fig. 2 left,

and y2(t) on Fig. 2 right. Although they may look similar,

the second one is indeed more complex, since it carries more

information (two transients onset against only one). But the

fact that both spectrograms have the same integral value makes

the Rényi entropy unable to differentiate them. Also, since one

TFR can be obtained from the other by simply permutating

TABLE I
RÉNYI ENTROPY, NUMBER OF COMPONENTS (NOC) BASED ON THE RÉNYI

ENTROPY AND SVD ENTROPY FOR THE SIGNALS DEPICTED ON FIG. 1.

x1(t) x2(t) x3(t) x4(t)
Rényi 13.336 13.378 14.921 14.965
NoC 1 1.029 3 3.093
SVD 0.0027 1.796 0.0361 1.946
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Fig. 2. Signals of different complexities, its spectrograms and its time-varying
entropies. Left: pure tone plus one transient of half duration. Right: pure tone
plus two transients of quarter duration each. In both cases, the signals are
defined for 0 ≤ t ≤ T = 1 and were generated with a sampling frequency
of fs = 1000. The spectrograms were obtained with a Hann window of 200
samples, and for 0 ≤ f ≤ 100.

columns, the singular values are the same, and so does the

SVD entropy. This can be confirmed on Table II.

A time-varying approach for these complexity measures is

needed not only to detect when a change occurred, but also to

characterize the signals as a whole in a non-local manner. The

marginal statistics of these time-varying quantities are useful

to this purpose. The short-time Rényi entropy was introduced

in [29]. For a slice of width ∆t, the local Rényi entropy is

defined as

Hα
R(Rx; t) =

1

1− α
log2

∫ t+∆t/2

t−∆t/2

∫
R̃x

α
(τ, f)dτdf, (16)

where R̃x(t, f) = Rx(t, f)/
∫ t+∆t/2

t−∆t/2
Rx(a, b)dadb is the

locally normalized time-frequency representation. It should be

noted that, in general, Hα
R(Rx) 6=

∫
Hα

R(Rx; t)dt due to the

nonlinearity of the logarithm and to the local normalization.

A time-varying estimation of the number of components is

constructed as [29]

Nα
x (t) = 2H

α
R(Rx;t)−H̊α

R(t), (17)

where H̊α
R(t) is the time-varying Rényi entropy of a pure tone.

The reader can appreciate the mean, standard deviation and

total variation 4 of Hα
R(Sx1,2

; t) on Table II, along with the

ratio between the two signals. Those figures significantly dif-

ferent from 1 were highlighted. While the first two quantities

do not present significant difference, the total variation is able

to differentiate the two signals, with a higher value for the

one that carries more information. The counting property of

this entropy can be confirmed on the third row of Fig. 2,

where it can be appreciated how Nα
x (t) behaves much as an

instantaneous counter.

4For a signal x(t), its total variation is defined as TVx =
∫
|x′(t)|dt.

TABLE II
RÉNYI ENTROPY, NUMBER OF COMPONENTS (NOC) BASED ON THE RÉNYI

ENTROPY AND SVD ENTROPY FOR THE SIGNALS DEPICTED ON FIG. 2,
ALONG WITH THE MEANS, STANDARD DEVIATIONS AND TOTAL

VARIATIONS OF ITS TIME-DEPENDENT VERSIONS. PARAMETERS: α = 2,
∆t = 101.

y1(t) y2(t) Ratio

Rényi Hα
R 13.97 14.02 0.996

NoC Nα 1.555 1.617 0.961
SVD HV 1.177 1.295 0.909

mean(Hα
R(t)) 10.66 10.74 0.992

std(Hα
R(t)) 0.4514 0.3855 1.171

tv(Hα
R(t)) 2.262 4.482 0.505

mean(Nα(t)) 1.558 1.625 0.958
std(Nα(t)) 0.473 0.438 1.079
tv(Nα(t)) 2.366 4.745 0.498

mean(HV (t)) 0.3215 0.5871 0.548
std(HV (t)) 0.3233 0.286 1.130
tv(HV (t)) 3.679 6.697 0.549

The same approach could be taken with the SVD entropy.

We propose here to define a time-varying version of this com-

plexity measure by taking the singular value decomposition of

a slice of width ∆t of the time-frequency representation:

Rx(τ, f) =
∞∑

n=1

σ̂n,tûn,t(τ)v̂n,t(f), (18)

for t −∆t/2 ≤ τ ≤ t +∆t/2. Then, the local SVD entropy

is

HV (Rx; t) = −
∑

n

σ̂n,t∑
n σ̂n,t

log2

(
σ̂n,t∑
n σ̂n,t

)
. (19)

For those windows where the signal is more stationary, the

time-varying SVD entropy would attain low values, while

where the instantaneous frequency varies faster, the values

would be increased. Specifically, for those windows where

the signal has constant frequency we expect a null value; as

the window advances into the transition zone the value would

increase up to log2(2) = 1, when the center of the window

corresponds with the onset time of one of the transients,

to decrease again to zero as the window advances out of

the transition. The fourth row of Fig. 2 depicts the values

of HV (Rx; t), confirming our explanation. The difference

between the two signals is now evident. Table II presents the

mean, standard deviation, and total variation of this quantity

for the two signals. The differentiation becomes clear. For the

Rényi entropy, a common value of α = 2 was used [26],

A window of ∆t = 101 samples was used for all the time-

varying quantities.

IV. REAL EEG DATA FROM EPILEPTIC PATIENTS

The EEG recordings of patients with BECTS are quite

remarkable due to the presence of spikes over the cen-

trotemporal regions (unilateral or bilateral) with a biphasic

or triphasic appearance and a relatively high amplitude [13].

Studies suggest that cognitive deficits might be correlated with

the frequency of spikes [30], [31]. This should prompt the

clinician to lower this spike discharge frequency using anti-

epileptic drugs (AED). However this issue remains controver-

sial as AED may, by their own, create or aggravate pre-existing

4



cognitive dysfunction. A decreasing of the amount of spikes

in patients with BECTS after being medicated with sulthiame

was reported [32]. A syndrome quite close to BECTS is

epilepsy with CSWS, whose patients were reported to diminish

the frequency of spikes after medication with levetiracetam

[33]. This study also showed that the clinical improvement of

some patients was associated to decreased diffusion of the IED

over the whole scalp even if the frequency of spikes was not

decreased [33]. Moreover, the temporal association between

clinical improvement and decrease of spikes is not always

strict [14]. Taken together, this highlights that other methods

to analyze EEG are suitable. In the past years, a lot of studies

attempted to correlate cognitive outcome with the resting state

activity in various neurological conditions including epilepsy

(for a review, see [34] and [35]).

We will focus our attention on resting state signals, i.e.

epochs without IED. Knowing that signals from healthy sub-

jects present larger complexity [36], [5], [37], we wonder if

this will be confirmed on resting state signals of patients with

BECTS and related conditions before and after medication.

Does the complexity of the resting state signals increase after

proper medication? If positive, we expect to compute larger

values of entropy on these epochs corresponding to recordings

after medication. This procedure would allow for a better

monitoring of the treatment.

A second question we will address is: Is this difference big

enough as to separate the signals into two disjoint clusters?

If positive, these time-frequency complexity features are good

enough for classification task.

A. Database

The EEG data of 3 epileptic patients acquired in the Univer-

sité Libre de Bruxelles, Hôpital Erasme (agreement of local

ethical committee number P2015/242) were analyzed. Patients

were studied at baseline (T0) and about 4-6 weeks after a

change of the AED regimen aimed to reduce IED (T1). Table

III shows a summary of clinical data, diagnoses, AED at T0

and T1, and IED quantification on awake and sleep EEG using

a spike-wave index (SWI) during sleep and an EEG grade that

assesses the diffusion of IED, as previously proposed [33]. It

was concluded from the visual analysis and quantification of

the SWI during NREM sleep, performed by an experienced

neurophysiologist (co-author P.V.B.), that patient BE001 did

not respond to the change of AED (a benzodiazepine), and

that patients BE003 and BE004 showed impressive EEG

improvement after introduction of levetiracetam.

All the subjects were lied down comfortably and brain

activity was recorded both during eyes open and eyes closed.

The activity was recorded by 256 electrodes (hdEEG) with the

Cz electrode as reference. The sampling frequency was 1000

Hz.

B. Preprocessing and selection of epochs

The preprocessing stage consisted of three steps: band-pass

filtering, artifact removal and selection of spike-free epochs.

For the first task, we applied a high-order filter between

0.5 Hz and 45 Hz, with a transition bandwidth of 0.22 Hz.
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Fig. 3. Thirteen regions of interest from the hdEEG (256 channels) recordings.
PF: Pre-Frontal. F: Frontal. RF: Right Frontal. LF: Left Frontal. C: Central.
RC: Right Central. LF: Left Central. RT: Right Temporal. LT: Left Temporal.
P: Parietal. RP: Right Parietal. LP: Left Parietal. O: Occipital.

The removal of artifacts was performed through Independent

Component Analysis (ICA) [38] discarding those sources

identified as artifacts before reconstruction. For the selection

of epochs, a trained neurophysiologist visually isolated the

spikes in order to obtain spike-free epochs of 1 second of

duration. These epochs are the signals to be analyzed, playing

the role of x(t) of the previous sections. The choice of the

length of the epochs was conditioned by the fact that one

patient presented only 12 non-consecutive seconds of spike-

free signals at T0. We were forced to segment this data into

12 epochs of 1 second, and proceed in the same way for

the other two patients (although with more epochs). Shorter

epochs would be affected by border effects. Therefore, an

epoch of one second is a good trade-off between border effects

and the difficulty of having longer spike-free segments.

C. Features

The features to be used will be: total number of components

based on Rényi entropy (to be referred as NoC in the figures),

mean of time-varying number of components (MN), standard

deviation of time-varying number of components (SN), total

SVD entropy (VT), and mean of time-varying SVD entropy

(MV). For every one of the epochs e, e = 1 . . . E, we

compute the five mentioned features, Cp, p = 1 . . . 5, for every

electrode. Then, we define the features for a whole region A
as the mean of the corresponding feature for that epoch among

the electrodes belonging to that specific region (see Fig. 3 for

the regions and electrodes):

CA,p
e =

1

#A

∑

i∈A

Cp
i,e, (20)

where #A is the cardinality of the set A.
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TABLE III
SUMMARY OF THE DATABASE. M: MALE, F: FEMALE, LTG: LAMOTRIGINE, ETS: ETHOSUXIMIDE, CLB: CLOBAZAM, LEV: LEVETIRACETAM, W: WAKE,

S: NREM SLEEP. SWI CALCULATIONS AND EEG GRADES WERE PERFORMED AS DETAILED IN [33].

Patient (number, Diagnosis Localization of IED Treatment Treatment SWI at EEG grade EEG grade
age in years, according to at T0 at T1 T0 and T1 at T0 at T1

gender) the 10-20 system

BE001, 10, M Epilepsy w/ CSWS T5 LTG + ETS LTG + ETS + CLB 75% T0, 67% T1 3 (W and S) 3 (W and S)
BE003, 8, F Atypical BECTS C3 VPA + LTG VPA + LEV 75% T0, 50% T1 3 (W and S) 0 W, 1 S
BE004, 9, M BECTS C3 None LEV 60% T0, 70% T1 3 (W and S) 1 (W and S)

D. Results and discussion

We begin this subsection analyzing the results for patient

BE004. We processed E = 30 epochs of 1 second of duration

during eyes open for both baseline (T0) and after six weeks

on levetiracetam (T1). The values for the five features for

the thirteen regions (region-wise computed as in (20)) can

be appreciated on boxplots in Fig. 4. It can be seen how,

in general, the features attain higher values for those epochs

corresponding to T1. In order to objectively measure this

increase, we performed a Friedman test [39] for every feature

and for every region, and mark with an asterisk (‘∗’) those

with p < 0.05. The increasing of the features is observed

on most of the regions, especially in the frontal area (regions

prefrontal, frontal, and right and left frontal) with 12 out of

20 features experiencing it; and in the centrotemporal area

(regions central, right and left central, and right and left

temporal) with 21 out of 25 features with a significant increase.

(We also test the features for a decreasing complexity on T1

with negative results). The fact that the major increasing is

observed on the centrotemporal area is relevant since studies

have shown that these regions are the sources of IED in

BECTS. These results shed light on our first question: the

complexity on the resting state signals does increase after

proper medication.

In order to evaluate the capability of these features to

perform a classification task, we performed a Principal Com-

ponent Analysis (PCA) [40] for every feature on every region.

Then, the first principal component (a mere linear combination

of the five features) was used as the sole feature for binary

classification. The ROC curves obtained for different values

of the discrimination threshold are presented on Fig. 5, along

with the areas under the curves (AUC). The better results

again are on the centrotemporal area, with an AUC higher

than 0.93 for left central region, i.e. the region of the brain

where IED were localized in this patient. Now we are able to

answer our second question: when used combined, these time-

varying time-frequency entropy measures are able to perform

a classification task with good results when analyzing EEG

data from epileptic patients.

For patient BE003 we were able to isolate only E = 12
epochs without any spike because of the large amount of spikes

present on the T0 recording. The results are summarized on

Table IV. We mark with asterisks (‘∗’) those features that

present a significant difference (p < 0.05, Friedman test).

As with the previous example, the results are good enough

as to evidence the difference between the T0 recording and

the T1 (six weeks on levetiracetam). We observed an even

performance across regions. We also present the AUCs, with

TABLE IV
SUMMARY OF THE RESULTS FOR THE PATIENT BE003 (T0 VS. T1).
PARAMETERS: HANN WINDOW OF 200 SAMPLES FOR STFT, α = 2,

∆t = 21. SIGNIFICATIVE DIFFERENCES ARE MARKED WITH ‘∗’. E = 12
EPOCHS.

Region NoC VT MN SN MV AUC

Pre-Frontal ∗ ∗ ∗ ∗ 0.972
Frontal ∗ ∗ ∗ 0.917

Right Frontal ∗ ∗ ∗ ∗ 0.938
Left Frontal ∗ ∗ ∗ ∗ 0.993

Central ∗ ∗ ∗ ∗ 1.000
Right Central ∗ ∗ ∗ 0.944
Left Central ∗ ∗ ∗ ∗ ∗ 0.979

Right Temporal ∗ ∗ ∗ 0.979
Left Temporal ∗ ∗ ∗ ∗ ∗ 0.993

Parietal ∗ ∗ ∗ ∗ 1.000
Right Parietal ∗ ∗ ∗ ∗ 0.986
Left Parietal ∗ ∗ ∗ ∗ ∗ 0.972

Occipital ∗ ∗ ∗ ∗ 1.000

better results on the centrotemporal area, with an AUC up

to 1 for the central region. These remarkable results must be

considered carefully since they might be conditioned by the

small sample.

The results for patient BE001 are presented in a summarized

manner on Table V. Here we analyzed 30 epochs. The results

are, in general, worse than those of the other two patients:

less features present significant differences and the AUCs

have lower values. This is the patient that did not present

an improvement of the EEG. This could suggest that the

complexity measures here presented are more sensitive than

visual analysis of EEG to appreciate changes related to drugs.

All the records were analyzed using a Hann window of 200

samples for the STFT, a value of α = 2 for the Rényi entropy,

and ∆t = 21 for the time-varying entropy measures. In all

cases, we only considered eyes open epochs because of two

reasons: the first one is that in this state there are less IED in

some patients, and the second one is because it is the highest

complexity state (it is known that the stronger alpha rhythm

during eyes closed drives the complexity down).

The global scheme here applied on high density EEG

recordings might also be applied on other types of neurophys-

iological signals, such as regular EEG or magnetoencephalog-

raphy (MEG). As long as there is a difference in complexity

between two states or populations, the procedure proposed

here may reveal it. Here, besides the global entropies, we used

marginal statistics of their time-varying versions, but other

features derived from the same complexity measures might

be used as well.
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Fig. 4. Results for the 13 regions for patient BE004. The baseline records (T0) are shown in blue, while the records after six weeks on leveteracitam (T1) are
shown in red. Those features that present significant differences (p < 0.05 in a Friedman test) are indicated with a star (‘∗’). NoC: Number of Components,
according to (15). VT: total SVD entropy, (9). MN: mean of the time-varying number of components, (17). SN: standard deviation of the time-varying number
of components. MV: mean of the time-varying SVD entropy, (19). Parameters: Hann window of 200 samples. ∆t = 21 samples. α = 2.
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Fig. 5. Results for the 13 regions for patient BE004. The ROC curves were performed on the first principal component obtained via PCA on the five features.
The horizontal axes correspond to 1-specificity, while the vertical axes correspond to sensitivity. The areas under the curves are also shown.

V. CONCLUSIONS

The entropies based on time-frequency representations have

been largely used on real world applications. In this work,

we review them and introduced a new time-varying quantity:

the short-time SVD entropy. We applied the global time-

frequency entropies along with statistics from their time-

varying counterparts to a particular problem: the analysis of

resting state EEG recordings from epileptic patients before and

after proper medication.

The results show an increase in the complexity for most

of the regions of the brain. This increase may be used, along

with the clinical exam and the decreasing in the amount of

spikes, to better monitoring the treatment of the patients. The

complexity features also show that, when combined, they are

able to perform classification between the state before and

after proper medication. We made no use of the preestablished

EEG frequency bands, which may sometimes slightly differ

between authors, but considered the whole frequency content

of the signal instead, with no a priori band separation.

The complexity measures presented here can be applied

to a wider range of problems. For instance, in epilepsy,

the time-varying versions are suitable for the prediction of
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TABLE V
SUMMARY OF THE RESULTS FOR THE PATIENT BE001 (T0 VS. T1).
PARAMETERS: HANN WINDOW OF 200 SAMPLES FOR STFT, α = 2,

∆t = 21. SIGNIFICATIVE DIFFERENCES ARE MARKED WITH ‘∗’. E = 30
EPOCHS.

Region NoC VT MN SN MV AUC

Pre-Frontal ∗ ∗ ∗ ∗ ∗ 0.711
Frontal ∗ ∗ ∗ ∗ ∗ 0.716

Right Frontal ∗ 0.679
Left Frontal ∗ ∗ ∗ 0.862

Central ∗ 0.604
Right Central ∗ 0.590
Left Central ∗ ∗ ∗ ∗ 0.793

Right Temporal ∗ ∗ ∗ ∗ 0.739
Left Temporal ∗ ∗ ∗ ∗ ∗ 0.933

Parietal ∗ ∗ ∗ ∗ ∗ 0.779
Right Parietal ∗ ∗ ∗ 0.732
Left Parietal ∗ ∗ ∗ ∗ ∗ 0.882

Occipital ∗ ∗ ∗ ∗ ∗ 0.858

epileptic seizures. A deeper study of the regional changes

of the complexities should shed light on the localization of

epileptic foci.

A weakness of this study is that data of only 3 patients were

analyzed. Our preliminary results will be expanded in a larger

cohort of patients.
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