

Hybrid MBE-CBE Growth and Characterization of undoped In_{0,53}Ga_{0,47}As on Fe-InP(001) for avalanche photodiodes (APDs)

Alex Brice POUNGOUE MBEUNMI

T.M. Diallo, M. El-gahouchi, M. Jellite, G. Gommé, H. Pelletier, A. Boucherif, S. Fafard, R. Arès

InGaAs/InP

WHY IT IS STILL IMPORTANT ?

Application areas

https:///serviengineteciseacom//ltdae.com/rtepests/eelsiogniricloudiana/rket-2027

Technology of APDs

Absorption Layer InGaAs

Charge Layer InGaAsP

Multiplication layer InP

SAGCM APDs

Absorption Layer InGaAs

Charge Layer AllnAs

Multiplication layer AllnAs

New SAGCM APDs

Goal:

- High cristalline quality
- Low carrier background
- Uniformity
- High growth rate

Is it possible to combine high troughput and high purity? Hybrid Epitaxy

Hybrid Epitaxy

High purity thermally cracked AsH₃

Experiments: Growth of InGaAs by Hybrid epitaxypreliminary results

InGaAs Full Gas: Calibration LM

Growth conditions

Lattice Match

- TMIn = 2 Torr
- **TEGa = 2,35 Torr**

InGaAs Full Gas: Calibration LM

Growth conditions

TEGa	TMIn	Cracked AsH ₃	Growth
(Torr)	(torr)	(torr)	T (°C)
2,35	2	10	500

Growth T (°C)=500°C

Streaky patterns

Mismatch	Hall Effect
-85 ppm	n= 1E+16 cm ⁻³

UNIVERSITÉ DE SHERBROOKE

InGaAs Full Gas: Uniformity Assessment

Growth conditions

TEGa	TMIn	Cracked AsH ₃	Growth
(Torr)	(torr)	(torr)	T (°C)
0,7	0,72	10	500

Mismatch: 980±216 ppm

- Good crystallinity
- Smooth and flat surface
- Lattice matched on InP
- 2D growth
- Uniformity on 2" wafer
- Growth rate: 1.8µm/h

InGaAs by Hybrid MBE-CBE

Effusion Cell temperature fixed at 866°C

Lattice Match

- Effusion Cell temperature: 866°C
 - TEGa [1.11; 1.115] Torr

InGaAs by Hybrid MBE-CBE: Hybrid InGaAs

Growth conditions

TEGa	Kcell	Cracked AsH ₃	Growth
(Torr)	In(°C)	(torr)	T (°C)
1,12	866	10	500

Growth T (°C)=500°C

Streaky patterns

Mismatch	Hall Effect
-96 ppm	n= 2E+14 cm ⁻³

Hybrid InGaAs: Uniformity Assessment

Growth conditions

TEGa	Kcell	Cracked AsH ₃	Growth
(Torr)	In(°C)	(torr)	T (°C)
1,12	866	10	500

Mismatch = 217 ± 263 ppm

- Good crystallinity
- Smooth and flat surface
- Lattice matched on InP
- 2D growth
- Uniformity on 2" wafer
- Growth rate: 1.25µm/h
- Lower carrier background

AFM Hybrid InGaAs et Full Gas InGaAs

InGaAs Full Gas RMS (sq)=0,2 nm Hybride InGaAs RMS (sq)=0,19 nm

Different growth dynamic

2.5 nm

2.0

1.5

1.0

0.5

0.0

Photoluminescence for both InGaAs

Very recent measurements Photoluminescence at 32K

Higher purity than InGaAs Full Gas

Conclusion

InGaAs by Hybrid Epitaxy

- Good crystallinity
- Uniformity on 2" wafer
- Higher purity than Full Gas

Future works Improve the purity Implementation in PIN detectors

Thank you for your attention!

Questions: Alex.Brice.Poungoue.Mbeunmi@usherbrooke.ca

Alex.Brice.Poungoue.Mbeunmi@USherbrooke.ca