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A B S T R A C T

Enteric methane (CH4) production attributable to beef cattle contributes to global greenhouse gas emissions. Re-
liably estimating this contribution requires extensive CH4 emission data from beef cattle under different man-
agement conditions worldwide. The objectives were to: 1) predict CH4 production (g d−1 animal−1), yield [g (kg
dry matter intake; DMI)−1] and intensity [g (kg average daily gain)−1] using an intercontinental database (data
from Europe, North America, Brazil, Australia and South Korea); 2) assess the impact of geographic region, and
of higher- and lower-forage diets. Linear models were developed by incrementally adding covariates. A K-fold
cross-validation indicated that a CH4 production equation using only DMI that was fitted to all available data
had a root mean square prediction error (RMSPE; % of observed mean) of 31.2%. Subsets containing data with
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≥25% and ≤18% dietary forage contents had an RMSPE of 30.8 and 34.2%, with the all-data CH4 production
equation, whereas these errors decreased to 29.3 and 28.4%, respectively, when using CH4 prediction equations
fitted to these subsets. The RMSPE of the ≥25% forage subset further decreased to 24.7% when using multiple
regression. Europe- and North America-specific subsets predicted by the best performing ≥25% forage multiple
regression equation had RMSPE of 24.5 and 20.4%, whereas these errors were 24.5 and 20.0% with region-spe-
cific equations, respectively. The developed equations had less RMSPE than extant equations evaluated for all
data (22.5 vs. 23.2%), for higher-forage (21.2 vs. 23.1%), but not for the lower-forage subsets (28.4 vs. 27.9%).
Splitting the dataset by forage content did not improve CH4 yield or intensity predictions. Predicting beef cattle
CH4 production using energy conversion factors, as applied by the Intergovernmental Panel on Climate Change,
indicated that adequate forage content-based and region-specific energy conversion factors improve prediction
accuracy and are preferred in national or global inventories.

1. Introduction

The livestock sector emits about 7.1 gigatonnes of CO2 equivalents of
greenhouse gases per year, which represented approximately 14.5% of
total global anthropogenic greenhouse gas emissions in 2005 (Gerber et
al., 2013). Cattle emitted 4.6 gigatonnes CO2 equivalents, of which 2.5
gigatonnes originated from beef and 2.1 gigatonnes from dairy cattle,
whereas small ruminants and buffalos emitted 0.47 and 0.62 gigatonnes
CO2 equivalents, respectively. Methane from enteric fermentation con-
tributed about 45% of the combined CO2 equivalents emissions from
the two cattle types. World-wide beef cattle systems produced 35 mil-
lion tonnes of meat, whereas dairy cattle systems produced 27 million
tonnes. Meat protein greenhouse gas emission intensity from beef cattle,
and combined meat and milk protein intensity from dairy cattle vary
from about 200 to 1100, and 50 to 350kg CO2 equivalents per kg edi-
ble protein, respectively, depending on the region of the world (Opio et
al., 2013). Based on expected farming and consumer lifestyle practices
and the predicted world population growth, compared to 1995, global
enteric CH4 emissions are predicted to increase by 70% by 2055 (Popp
et al., 2010). To offset this increase and to deal with the highly variable
and typically greater CH4 emission intensity of beef cattle systems, accu-
rate prediction of beef cattle CH4 emissions across regions are urgently
required.

Various beef cattle CH4 prediction equations, for which a variety
of diet and animal characteristics were used as covariates, based on
treatments means (e.g., Ellis et al., 2009; Escobar-Bahamondes et al.,
2017a) or individual animal data (Ellis et al., 2007; Moraes et al., 2014)
have been published. Although the use of individual animal data as
applied in the latter two studies contributes to more explained vari-
ation of CH4 production due to dry matter intake (DMI) differences
at the animal level, all previously mentioned studies only comprised
data from specific geographical locations. In contrast to these equations,
which may be appropriate for cattle systems under similar regional con-
ditions, the widely used Intergovernmental Panel on Climate Change
(IPCC) methodology recommends a generic CH4 energy conversion fac-
tor (Ym) without any adjustment for different geographical locations
(IPCC, 2014). The Ym quantifies enteric CH4 emission as a fraction of the
gross energy intake and discriminates between diets with forage con-
tents of ≤10 and >10% DM, with Ym being 3.0% and 6.5% of the gross
energy intake, respectively. However, more complex equations account-
ing for dietary nutrient composition and individual animal characteris-
tics in addition to total feed intake may perform better than those that
ignore these covariates for various cattle categories (Ellis et al., 2007,
2009; Moraes et al., 2014; Santiago-Suarez et al., 2016). Therefore,
more complex beef cattle CH4 prediction equations that draw from data-
bases with a broad range of diets and geographic conditions may more
accurately predict global CH4 emissions. Publications of inventories that
investigated cattle enteric CH4 emissions in certain countries or regions
(e.g., Basarab et al., 2005; Kebreab et al., 2008; Bannink et al., 2011;
Castelan-Ortega et al., 2014; Charmley et al., 2016) compared to an in

tercontinental evaluation (e.g., Niu et al., 2018) confirm the utility of
the latter approach.

The objectives of the current study were: 1) to collate an interconti-
nental database of enteric CH4 production of individual animal records
of beef cattle; 2) to determine the key variables for predicting beef cat-
tle enteric CH4 production (g d−1 animal−1), yield [g (kg DMI)−1] and
intensity [g (kg average daily body weight gain)−1] and their respective
relationships; 3) to develop and cross-validate intercontinental and re-
gion-specific models, and models for lower- and higher-forage diets.

2. Materials and methods

2.1. Database

The ‘GLOBAL NETWORK’ project is an international collaborative
initiative of animal scientists (http://animalscience.psu.edu/fnn; ac-
cessed May 16, 2017). All animal scientists with an interest in green-
house gas research and with access to CH4 measurements from beef cat-
tle were invited to collaborate and contribute data to this collaborative
CH4 mitigation data analysis. The resultant beef cattle CH4 database that
was developed from this initiative contains 2015 individual beef cattle
records from 52 studies conducted from 1969 to 2015 by research en-
tities from Europe (n=869 from 18 studies), North America (n=649
from 14 studies), Brazil (n=313 from 12 studies), Australia (n=174
from 7 studies) and South Korea (n=10 from 1 study). The European
studies were conducted in the UK (n=313 from 7 studies), Switzer-
land (n=96 from 1 study), Belgium (n=72 from 4 studies), Ireland
(n=147 from 2 studies) and France (n=241 from 4 studies). Eleven
North American studies were from the United States (n=492), and 3
were conducted in Canada (n=157). The database includes records of
enteric CH4 production along with corresponding DMI, dietary gross en-
ergy, crude protein, ether extract (EE), neutral detergent fiber (NDF),
starch, ash and forage contents, average daily body weight gain (ADG)
and body weight (BW). The database comprised a broad variety of beef
cattle that included growing and finishing steers, bulls and heifers, preg-
nant heifers, and pregnant, non-pregnant, dry and lactating beef cows.
Various pure beef breeds and crossbreeds were included, viz., Aberdeen
Angus, Blonde d’Aquitaine, Belgian Blue, Brahman, Brown Swiss×Lim-
ousin, Charolais, Hanwoo, Holstein×Zebu, Hereford×Angus, Luing
and Nellore.

The original studies in the database (complete data bibliography is
provided in Supplementary information) investigated the impact of diet
composition on enteric CH4 production or cattle metabolism. However,
some studies tested the effect of a specific feed additive, nutrient or
the use of hormone supplementation, and the data from these treat-
ments were excluded. The excluded treatments included rapeseed cake
and nitrate (Troy et al., 2015), limestone (Zanetti et al., 2017), Acacia
tannins, maca, garlic and lupine seeds (Staerfl et al., 2012), monensin
(Caetano et al., 2016, 2018), organosulfur compounds (garlic extracts)
(Peiren et al., unpublished) and essential oils (Castro Montoya et al.,
2015), lipids (Duthie et al., 2015), dried corn distillers grains (Hüner-
berg et al., 2013a, b), linseed oil and protected fat (Fiorentini et al.,
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2014), soybean oil and protected fat (Silva et al., 2018), glycerin (Lage
et al., 2016), whole soybeans (Rossi et al., 2017), monensin (Hales et al.,
2012; Hales et al., 2013, 2014 2015, unpublished; Berndt et al., unpub-
lished), diethylstilbestrol (Rumsey et al., 1981) and growth hormone-re-
leasing factor (Lapierre et al., 1992). After removal of data associated
with the aforementioned treatments, 1413 individual records were re-
tained.

Records with missing CH4 or DMI values were removed from the
database; records from respiration chambers in which two animals were
housed simultaneously were combined by averaging the CH4 and DMI
and all other variables regarding the two animals; records from repeated
measurements within the same experimental period were averaged over
the individual measurements recorded. In total, 1366 individual animal
records were subsequently retained. In addition, records from growing
cattle with negative ADG, and a study for which DMI varied from 9.0 to
32.5kg d−1 (Rooke et al., 2015, unpublished) were discarded from the
dataset, leaving 1257 records retained. Finally, studies were screened
on the basis of mean CH4 yield after which two studies, for which the
control treatments contained 60 and 82% forage had unrealistically low
CH4 yields of 10.3 and 11.3g (kg DMI)−1 (San Vito et al., 2016; De Car-
valho et al., 2016), respectively, were considered outliers and removed
from the dataset. This resulted in the retention of 1248 records.

2.2. Model development

Production, yield and intensity of CH4 were predicted by fitting
mixed-effects models according to:

where yij denotes the jth response variable of CH4 production (g d-1 an-
imal-1), CH4 yield [g (kg DMI)−1] or CH4 intensity [g (kg ADG)−1] from
the ith study; β0 denotes the fixed effect of intercept; xij1 to xijk denote
the fixed effects of predictor variables and β1 to βk are the correspond-
ing slopes; si and ɛij denote the random effect of study and residual er-
ror, respectively, distributed as si ∼ N(0, ), ɛij ∼ N(0, ) for CH4
production, and ɛij ∼ N(0, ) for CH4 yield and intensity; is the be-
tween-study variance, is the residual variance, and is the resid-
ual error variance being proportional to the dependent variable.

In order to provide equations that depend on various predictor vari-
ables, eight categories of CH4 production models were developed, of
which four used a fixed and another four a selected combination of co-
variates: DMI only (DMI_C), DMI and dietary NDF content (DMI+ND-
F_C), DMI and dietary starch content (DMI+STA_C), DMI and dietary
EE content (DMI+EE_C); a selection of DMI and the dietary NDF,
starch, forage, EE, crude protein and ash contents (Diet_C), the Diet_C
covariates plus BW (Animal_C), the Animal_C covariates except DMI
(Animal_no_DMI_C), and DMI, the dietary NDF and crude protein con-
tents, and BW (Global_C). Global_C was exclusively associated with co-
variates that had few or no missing data points. In addition to these
eight categories, CH4 production was predicted using Ym only. The
mixed-effects model to estimate Ym of this GLOBAL NETWORK Tier 2
equation only included yij, β0, si, and ɛij of the previously shown model,
with ɛij ∼ N(0, ). According to the CH4 production models, six cate-
gories of CH4 yield prediction models were developed: dietary NDF con-
tent only (NDF_C), dietary starch content only (STA_C), dietary EE con-
tent only (EE_C); a selection of the dietary NDF, starch, forage, EE, crude
protein and ash contents (Diet_no_DMI_C), the Animal_no_DMI_C covari-
ates, and dietary NDF, forage and crude protein contents and BW (Glob-
al_no_DMI_C). Finally, eight categories of CH4 intensity prediction mod-
els were developed: DMI_C, DMI+NDF_C, DMI+STA_C, DMI+EE_C,
Diet_C, Animal_C, Animal_no_DMI_C and Global_C.

Covariates that play a key role in predicting CH4 production were
selected for Diet_C, Diet_no_DMI_C, Animal_C, Animal_no_DMI_C, Glob

al_C and Global_no_DMI_C using a multistep selection approach. Model
selection started with all potential covariates associated with the par-
ticular model category. Subsequently, one or more next selection steps
were performed if not all records without missing values for the se-
lected covariates were used in the previous step. A backward selection
approach was applied throughout the different steps, i.e., only covari-
ates selected in a previous step could be selected for the next step. The
model selection procedure stopped when the selected covariates were
the same as the ones selected in the previous step. With this procedure,
a model equation was constructed based on records that contained no
missing values for the final selection of covariates and data sufficiency
was maximized for the development of model equations throughout the
different categories.

The Bayesian information criterion (BIC; e.g., James et al., 2014) was
computed for all fitted models. The BIC is a well-known quantitative ap-
proach to model selection that favors more parsimonious models over
more complex models by penalizing the number of parameters included
in the model. Models with the smallest BIC were selected, as a smaller
BIC indicates a better tradeoff between the goodness of fit and the num-
ber of model parameters. In addition, the presence of multicollinearity
of fitted models was examined based on the variance inflation factor.
The largest variance inflation factor among all predictor variables was
considered as an indicator of multicollinearity (Kutner et al., 2005). The
identified predictor variables were removed from the model one at a
time using a stringent variance inflation factor cutoff value of 3 (Zuur et
al., 2010). All models were fitted using the lme function (Pinheiro and
Bates, 2000) of R language and environment for statistical computing (R
Core Team, 2017; version 3.5.2).

2.3. Data handling

The entire database contained a wide variety of dietary forage con-
tents (57.6±29.8% DM; average±SD), ranging from 8 to 100% DM.
The database was split into a higher-forage subset containing the
records with ≥25% forage, and a lower-forage subset containing all data
with ≤18% forage. No studies tested forage contents between 18 and
25%. Because of the small coefficient of variation, dietary starch could
not be selected for the lower-forage Diet_C, Animal_C, and Animal_no_D-
MI_C equations. To explore the geographical impact of CH4 production,
all European, North American and Brazilian higher-forage data were
also used as separate subsets. Because of the scarcity of data from Aus-
tralia and South Korea, no specific equations for the latter two regions
were developed. Data from growing and finishing cattle for which ADG
was measured were selected for a growing cattle subset, which enabled
the development of CH4 intensity [g (kg ADG)−1] equations. Other out-
liers were identified using the interquartile range method (Zwillinger
and Kokoska, 2000) based on all dependent and independent variables
as in Niu et al. (2018). A factor of 1.5 for extremes was used in con-
structing boundaries to identify outliers for dependent variables and a
factor of 2.5 for independent variables. Outliers were identified only for
the complete database. The CH4 intensity [g (kg ADG)−1] values were
log transformed to stabilize normality before outlier identification. After
removal of records with interquartile range identified outliers in the CH4
production and variables, 1021 records from 114 dietary treatments and
39 studies were retained. Of these records 882 were from 104 treat-
ments and 38 studies in the higher-forage subset, 139 from 10 treat-
ments and 8 studies from the UK, Ireland, France, Canada and Brazil
in the low-forage subset, 307 from 28 treatments and 15 studies in the
European higher-forage subset, 394 from 36 treatments and 10 studies
the North American higher-forage subset, 104 from 17 treatments and 7
studies the Brazilian higher-forage subset, 72 from 22 treatments and 5
studies from Australia, and 5 from 1 treatment and 1 study from South
Korea.

3



UN
CO

RR
EC

TE
D

PR
OO

F

H.J. van Lingen et al. Agriculture, Ecosystems and Environment xxx (xxxx) xxx-xxx

The cleaned dataset used for analysis comprised measurements of
enteric CH4 emission that were obtained from respiration chambers
(n=676), the GreenFeed system (n=87), and the sulfur hexafluoride
(SF6) tracer technique (n=258). Animals were either kept in confine-
ment or on pasture (n=991 vs. 30, respectively). Types of forage fre-
quently used in higher-forage diets included fresh alfalfa, sugarcane,
sugarcane bagasse, corn silage, barley straw, whole-crop barley silage,
whole-crop wheat silage, grass herbage, elephant grass, grass silage,
grass seed hay, grass hay wrapping, timothy and natural grassland hay.
Types of forage frequently used in lower-forage diets were barley straw,
wheat straw, whole-crop wheat silage, corn silage and whole-crop bar-
ley silage. Concentrate ingredients in higher-forage and lower-forage di-
ets included dried distillers grains, barley, canola meal, soybean meal,
soybean hulls, crude glycerin, corn grain, cereal by-products, dehy-
drated alfalfa, dehydrated beet pulp, citrus pulp, wheat distillers grains,
whole grain oats and minerals.

2.4. Cross-validation and model evaluation

The predictive accuracy of the developed CH4 prediction models
was evaluated using a leave-one-out cross-validation (e.g., James et al.,
2014), in which all individual studies were consecutively taken as the
testing set for model evaluation, while all remaining studies were taken
as the training set for model fitting. Currently, most national enteric
CH4 inventories are based on energy conversion factors recommended
by the IPCC (2006), which were evaluated, i.e., not cross-validated. The
IPCC models and the developed models throughout all categories were,
if applicable, evaluated on the various (sub)sets using a combination
of model evaluation metrics. Furthermore, equations from Yan et al.
(2000, 2009) based on data from Northern Ireland, Ellis et al. (2007)
based on data from North America, Ellis et al. (2009) based on data
from Canada, Patra (2017) based on data from Brazil, India, Australia
and Zimbabwe, Escobar-Bahamondes et al. (2017a) based on data from
North America, Europe, Australia, Japan and New Zealand, Charmley
et al. (2016) based on data from Australia, and the Mitscherlich equa-
tion from Mills et al. (2003) based on data from the UK were evaluated
given that the covariates used in these published equations were avail-
able in the present database. Of these previously published extant equa-
tions, the equation that performed the best using our data and the single
regression equation that only depended on DMI and performed the best
using our data were reported in the present study. Data from studies in-
cluded in the present database used for the development of these extant
equations were excluded from evaluations of those extant equations to
ensure independent evaluation.

First, the mean square prediction error (MSPE) was calculated ac-
cording to Bibby and Toutenburg (1977) as:

where Oi and Pi denote the observed and predicted value of the response
variable for the ith observation, respectively, and n denotes the number
of observations. The square root of the mean square prediction error
(RMSPE) was used to assess overall model prediction error. In the pre-
sent study, RMSPE was expressed as a proportion of observed CH4 pro-
duction, yield or intensity means. The MSPE was decomposed into mean
bias (MB), slope bias (SB) and random bias to identify systematic biases,
of which the MB and SB were calculated as follows:

where and denote the predicted and observed means, sp denotes
the standard deviation of predicted values, so denotes the standard de

viation of observed values, and r denotes the Pearson correlation co-
efficient. Second, the ratio of RMSPE and so, namely RMSPE-observa-
tions standard deviation ratio (RSR), which accounts for the specific
variability of the data used for evaluation (Moriasi et al., 2007), was
used to compare the performance of models based on data from differ-
ent (sub)sets. Smaller values of RSR indicate less prediction error com-
pared to the standard deviation of the observations, with RSR=1 indi-
cating the RMSPE is equal to observed data variance. If RSR>1, is a
better predictor than Pi. Third, the concordance correlation coefficient
(CCC; Lin, 1989), which quantifies both accuracy and precision based
on the bias correction factor (Cb) and r by comparing the best-fit line
and observations to the identity line (y = x), respectively, was calcu-
lated. The CCC is given as:
CCC= r ⋅ Cb,

The closer the CCC of a model to 1, the better the model perfor-
mance.

Different forage proportion cutoff values with increments of 5% from
15 to 50% were tested to evaluate the effect of the cutoff for splitting the
database into higher-forage and lower-forage subsets on equation per-
formance. Cutoff values of 0, 15, 20, 25, 30, 35, 40, 45, and 50% forage
DM were used for evaluation. Per cutoff value, an RSR weighted to the
number of observations for the DMI_C equation was calculated for the
higher-forage and lower-forage CH4 production equations, after which
the optimal cutoff value could be determined.

3. Results

The inclusion criterion for dietary treatment had different effects
on the variables means, viz., DMI (8.13 vs. 8.06kg d−1; cleaned vs. un-
cleaned averages, respectively), and NDF (35.0 vs. 35.0% of DM), starch
(34.0 vs. 30.5% of DM), EE (3.02 vs. 3.52% of DM), ash (6.29 vs. 7.26%
of DM), and forage (51.0 vs. 58.1% of DM) content of the diet, BW
(478 vs. 487kg), CH4 production (161 vs. 164g d−1 animal−1), CH4 yield
[20.0 vs. 20.4g (kg DMI)−1], CH4 intensity [145 vs. 207g (kg ADG)−1]
and Ym (6.0 vs. 6.0% of the gross energy intake). Summary statistics for
the (sub)sets of the present cleaned database that included intake, di-
etary nutrient composition, BW, ADG and CH4 variables are presented
in Tables 1 and S1.

3.1. Methane production equations

The DMI_C all-data CH4 production (g d−1 animal−1) equation indi-
cated a positive relationship of DMI with CH4 production (Eq. 1; Table
2; regression coefficient ± 2⋅SE gives a rough estimate of the 95% con-
fidence interval boundaries that correspond to a P-value of 0.05, all
P-values <0.05 were not reported). The DMI+NDF_C, DMI+STA_C
and DMI+EE_C equations had positive, negative and negative regres-
sion coefficients for dietary NDF, starch and EE in relation to CH4 pro-
duction, respectively (Eqns. 2–4). The RSR, which is the most appropri-
ate statistic for evaluating equations based on different numbers of ob-
servations, for the DMI_C, DMI+NDF_C, DMI+STA_C and DMI+EE_C
equations indicated similar predictive performance, whereas the CCC
indicated the DMI+NDF_C equation performed better than the DMI_C
and DMI+EE_C equations (0.63 vs. 0.60 and 0.61, respectively). Di-
etary forage content and DMI were selected for the Diet_C and Ani-
mal_C equations (Eqns. 5–6), with BW also selected for the Animal_C
equation. Dietary forage and ash and BW were selected for the Ani-
mal_no_DMI_C equation (Eq. 7). The Animal_C was the best perform-
ing all-data equation developed in the present analysis, with RSR and
CCC of 0.61 and 0.76, respectively. Across the developed all-data equa-
tions, slope bias ranged from 1.01 to 12.7%, which was consistently
associated with under-prediction at the high end and over-prediction
at the low end of production (Fig. 1). Overall, models with a
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Table 1
Variable summary statistics for all data, higher-forage (data associated with a forage content ≥25%), lower-forage (data associated with a forage content ≤18%), European higher-forage (EUR-HF) and North American higher-forage (NrAm-HF) entries of the
GLOBAL NETWORK beef cattle database.

Item* All data (n=1021) Higher-forage (n=882) Lower-forage (n=139) EUR-HF (n=307) NrAm-HF (n=394)

Mean Min Max SD Mean Min Max SD Mean Min Max SD Mean Min Max SD Mean Min Max SD

DMI (kg d −1) 8.13 2.26 17.5 2.82 7.81 2.26 17.5 2.86 10.1 4.77 15.6 1.89 9.46 3.17 15.7 2.12 6.16 2.26 14.1 2.51
GEI (MJ d −1) 150 42.6 317 53.7 144 42.6 317 53.1 191 88.2 300 37.1 177 57.8 299 42.0 114 42.6 254 45.4
Diet composition (% of DM)
CP 14.6 6.19 22.5 2.56 14.6 6.19 21.3 2.60 14.6 11.4 22.5 2.35 14.3 7.80 19.2 1.84 15.6 10.0 21.3 2.52
EE 3.02 0.372 7.02 1.20 2.87 0.372 7.02 1.05 3.90 0.377 5.63 1.57 3.65 0.372 5.80 1.40 2.58 0.669 5.50 0.825
Ash 6.29 3.22 13.7 2.11 6.52 3.22 13.7 2.13 4.85 3.50 8.00 1.24 6.06 3.40 11.4 1.80 6.51 3.22 13.7 2.29
NDF 35.0 17.2 73.9 11.2 36.6 17.2 73.9 11.2 24.7 19.8 33.3 3.12 37.5 26.1 68.4 7.25 32.9 17.5 67.8 9.76
ADF 19.3 6.92 50.8 8.13 20.6 7.50 50.8 8.06 11.6 6.92 14.5 1.99 21.7 14.0 40.3 5.15 17.5 7.50 36.5 7.28
STA 34.0 2.50 64.1 13.6 32.2 2.50 64.1 14.3 42.0 32.0 56.9 4.52 25.3 2.50 40.3 10.3 41.2 16.8 64.1 12.6
For 51.0 8.0 100 27.7 57.7 25.0 100 24.0 9.8 8.0 18.1 3.18 64.6 31.0 100 16.9 47.9 25.0 100 23.6
ADG (kg d −1) 1.25 0.060 3.38 0.431 1.19 0.060 3.38 0.438 1.46 0.552 2.22 0.330 1.22 0.088 1.99 0.348 NA NA NA NA
BW (kg) 478 133 791 148 454 133 791 144 625 376 734 76.5 571 133 791 128 391 196 699 116
Methane emissions
CH4 (g d−1) 161 37.0 372 70.5 162 37.0 372 73.5 153 45.1 310 46.4 215 40.9 372 71.8 125 37.0 313 57.5
CH4/DMI (g kg −1) 20.0 6.29 35.1 5.05 20.7 6.29 35.1 4.75 15.2 7.50 30.9 4.29 22.5 6.64 35.1 5.19 20.3 6.29 33.3 4.21
CH4/ADG (g kg −1) ♪ 4.98 3.31 6.68 0.522 5.08 3.31 6.68 0.528 4.68 3.84 5.71 0.362 5.20 3.31 6.68 0.517 NA NA NA NA
Ym (% of GEI)§ 6.0 1.9 10.4 1.5 6.3 1.9 10.4 1.4 4.5 2.3 8.7 1.2 6.7 2.0 10.3 1.5 6.2 1.9 10.4 1.3

*DM=dry matter, DMI=dry matter intake, GEI=gross energy intake, CP=dietary crude protein, EE=dietary ether extract, NDF=dietary neutral detergent fiber, ADF=dietary acid detergent fiber, STA=dietary starch, For=dietary forage,
ADG=average daily body weight gain, BW=body weight.
‡Min=minimum, Max=maximum, SD=standard deviation.
♪ ln transformed values.
§Methane conversion factor (%): energy of CH4 as a proportion of GEI; the specific energy of CH4 is 55.65MJkg−1.
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Table 2
All-data CH4 emission (g d−1 animal−1) prediction equations for various categories and model performance across the data (sub)sets based on root mean square prediction error (RMSPE;
% of mean), RMSPE-observations-standard-deviation-ratio (RSR), mean and slope bias (MB and SB; % of mean square prediction error), and concordance correlation coefficient (CCC).

Eq. Model development Model performance

Category§ Prediction equation * n† (Sub)set ‡ pǂ RMSPE RSR MB SB CCC

[1] DMI_C 54.2 (7.6) + 12.6 (0.6) × DMI 1021 All-data 991 31.2 0.71 0.69 12.55 0.60
Higher-
forage

852 30.8 0.67 3.86 27.26 0.64

Lower-
forage

139 33.9 1.12 34.96 0.59 0.27

[2] DMI+NDF_C –16.4 (9.0) + 12.1 (0.6) × DMI+2.10 (0.16) × NDF 1021 All-data 991 31.4 0.71 0.92 1.99 0.63
Higher-
forage

852 31.8 0.69 1.82 2.81 0.65

Lower-
forage

139 28.7 0.94 3.45 2.10 0.32

[3] DMI+STA_C 126 (11) + 11.5 (0.9) × DMI – 1.75 (0.16) × STA 704 All-data 704 28.9 0.71 6.09 1.01 0.65
Higher-
forage

575 28.7 0.70 13.87 1.80 0.68

Lower-
forage

129 30.1 0.96 15.77 0.64 0.35

[4] DMI+EE_C 83.0 (9.8) + 11.9 (0.6) × DMI – 7.31 (1.69) × EE 754 All-data 754 29.4 0.71 1.35 8.83 0.61
Higher-
forage

644 29.2 0.67 0.08 19.59 0.64

Lower-
forage

110 30.3 1.21 37.59 4.20 0.25

[5] Diet_C –0.767 (7.493) + 12.0 (0.5) × DMI+1.12 (0.06) × For 1021 All-data 991 29.5 0.67 2.39 1.24 0.70
Higher-
forage

852 29.5 0.64 1.30 2.12 0.72

Lower-
forage

139 29.8 0.98 17.57 0.30 0.32

[6] Animal_C, Global_C –28.3 (8.3) + 10.3 (0.6) × DMI+1.12 (0.06) × For +
0.0885 (0.0150) × BW

1003 All-data 991 26.9 0.61 2.20 1.37 0.76

All-data ♪,♯ 646 22.5 0.52 3.05 0.41 0.84
Higher-
forage

852 26.8 0.58 2.00 1.83 0.78

Lower-
forage

139 27.8 0.91 3.72 0.65 0.35

[7] Animal_no_DMI_C 6.03 (10.40) + 1.25 (0.07) × For – 2.29 (0.77) × Ash +
0.212 (0.015) × BW

992 All-data 991 30.9 0.70 0.55 1.98 0.65

Higher-
forage

852 30.9 0.67 0.23 3.04 0.68

Lower-
forage

139 31.3 1.03 5.86 3.26 0.11

[8] GLOBAL NETWORK Tier 2 [0.061 (0.001) × GEI] / 0.05565 1021 All-data 991 28.5 0.64 0.59 0.27 0.75
All-
data♪,♫

991 28.3 0.64 0.23 0.87 0.76

[9] IPCC Tier 2 (2006) ¶ (0.065×GEI) / 0.05565 – All-data ♪ 991 29.9 0.68 7.97 3.04 0.75
[10] Charmley et al. (2016) –6.10+20.6 × DMI – All-data ♪,ǁ 939 28.9 0.66 0.00 1.15 0.74
[11] Escobar-Bahamondes et al.

(2017a)
–35.0+0.08 × BW+1.2 × For – 69.8 × EEI^3+3.14
× GEI

– All-data ♪,♯ 646 23.2 0.54 11.66 2.12 0.85

§ Category acronyms (e.g., DMI_C) are explained in the ‘Model development’ subsection of the ‘Methods and Materials’ section.
* Equations are presented with regression coefficient standard errors in parenthesis; DMI=dry matter intake (kg d−1), NDF=dietary neutral detergent fiber (% of DM), STA=dietary

starch (% of DM), EE=dietary ether extract (% of DM), Ash=dietary ash (% of DM), For=dietary forage (% of DM), BW=body weight (kg), GEI=gross energy intake (MJ d-1),
EEI=ether extract intake (kg d-1).

† n = number of observations used to fit model equations.
‡ All-data=all data collected for analysis, Higher-forage=data associated with a forage content ≥25%, Lower-forage=data associated with a forage content ≤18%.
ǂ p = numbers of observations used for model evaluation.
¶ IPCC=Intergovernmental Panel on Climate Change.
♪ Performance was evaluated, not cross-validated.
♫ No independent evaluation.
ǁ The 991 data points minus data from Tomkins et al. (2011) and Kennedy and Charmley (2012) to ensure independent evaluation.
♯ The 991 data points minus data from Pinares-Patiño et al. (2003), Chaves et al. (2006), McGeough et al. (2010a, b), Doreau et al. (2011), Staerfl et al. (2012), Hünerberg et al.

(2013ab) and Troy et al. (2015) to ensure independent evaluation.

higher number of covariates tended to have less slope bias and had less
between-study variance ( not shown).

The RSR of the all-data DMI_C CH4 production equation was 0.71
(Table 3). Splitting the database into higher-forage and lower-forage
subsets at cutoffs of 15 to 50% resulted in very similar weighted aver-
age RSR values of 0.68 to 0.69. The cutoff of 20% that was applied re-
sulted in an RSR of 0.94 for the lower-forage subset at this cutoff value,
whereas the cutoff values from 25 to 50% had all lower RSR values for
the lower-forage subset. This might suggest that the lower-forage sub-
set is a better predictor at a higher cutoff. However, the prediction of

the data associated with ≤20% forage did not improve at cutoff values
>20% (results not shown), indicating that data with >20% forage de-
creased the RSR of the lower-forage subset, but not the data associated
with ≤20% forage. Based on these differences in performance and the
fact that diets containing ≤20% forage are commonly fed to cattle in
intense feedlot production systems, the data were split at 20% forage
throughout the present study, which made all lower-forage data contain
≤18% forage and the higher-forage ≥25% forage.

The higher-forage CH4 production equations overlapped with the
all-data equations, where DMI and dietary NDF, starch and EE in the

6
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Fig. 1. Observed vs. predicted plots for all-data methane emission (g d−1 animal−1) prediction equations for the different categories, viz., dry matter intake (DMI_C), dry matter intake and
neutral detergent fiber (DMI+NDF_C), dry matter intake and starch (DMI+STA_C), dry matter intake and ether extract (DMI+EE_C), diet (Diet_C), animal (Animal_C), animal without
DMI (Animal_no_DMI_C), GLOBAL NETWORK Tier 2, IPCC Tier 2 (2006), and the extant Charmley et al. (2016) and Escobar-Bahamondes et al. (2017) equations. The gray and black solid
lines represent the fitted regression line for the relationship between observed and predicted values, and the identity line (y = x), respectively.

DMI_C, DMI+NDF_C, DMI+STA_C and DMI+EE_C equations showed
regression coefficients with the same sign (Eqns. 12–15; Table 4). More-
over, similar covariates were selected for the Diet_C, Animal_C and Ani-
mal_no_DMI_C equations as for the all-data equations, although the An-
imal_no_DMI_C equation did not contain dietary ash (Eqns. 16–18). The
higher-forage equations predicted the higher-forage subset better than
the all-data equations, with mean RSR of 0.62 vs. 0.66 and CCC of
0.70 vs. 0.68, respectively, for the DMI_C, DMI+NDF_C, DMI+STA_C,
DMI+EE_C, Diet_C, Animal_C and Animal_no_DMI_C

equations. The developed higher-forage equations under-predicted CH4
production at the high end and over-predicted it at the low end of pro-
duction, with the multiple regression equations having less slope bias
than the DMI_C equation (Fig. 2). In line with the all-data equations,
models with a higher number of covariates had less between-study vari-
ance.

In accordance with the all-data and the higher-forage equations, DMI
was positively related to CH4 production in the lower-forage DMI_C
equation (Eq. 20; Table 5). The DMI+NDF_C, DMI+STA_C

7
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Table 3
Root mean square prediction error-standard-deviation-ratio (RSR) of the DMI_C CH4 production (g d−1) equations based on lower-forage (≤forage content cutoff) and higher-forage (>for-
age content cutoff) subsets, their number of observations (n), and the average RSR weighted to the number of higher- and lower-forage observations (All) for various diet forage content
cutoff values to split the entire dataset into lower-forage and higher-forage subsets.

(Sub)set Forage content cutoff (% of DM)

0 15 20 25 30 35 40 45 50

Higher-forage NA 0.65 0.64 0.65 0.68 0.68 0.69 0.70 0.62
n NA 902 882 783 672 664 602 579 474
Lower-forage NA 0.95 0.94 0.78 0.69 0.70 0.68 0.68 0.73
n NA 119 139 238 349 357 419 442 547
All 0.71 0.68 0.68 0.68 0.69 0.69 0.69 0.69 0.68

and DMI+EE_C equations indicated no significant relationships be-
tween the corresponding dietary NDF, starch and EE contents with CH4
production (Eqns. 21–23; P-values of 0.14, 0.10 and 0.57, respectively).
The lower-forage DMI_C equation predicted the lower-forage subset bet-
ter than the all-data equations based on RSR, whereas the highest CCC
of 0.35 for the lower-forage subset were obtained from the all-data
DMI+STA_C and Animal_C equations (Eqns. 3, 6; Table 2). System-
atic bias, that is the sum of mean and slope bias, was less than 5.75%
for these developed lower-forage equations (Table 5), except for the
DMI+STA_C equation that had 3.70 and 20.18% mean and slope bias,
respectively. The minor slope bias of the lower-forage DMI_C equation
(≤0.03%) was due to under-prediction of CH4 production at the high
end and over-prediction at the low end (Fig. 3).

In contrast to the higher-forage equations, dietary NDF and starch
contents in the European higher-forage DMI+NDF_C and DMI+STA_C
equations were not related to CH4 production (Eqns. 29–30, Table 6;
P-values of 0.20 and 0.69, respectively). Furthermore, DMI, dietary NDF
and EE were selected for the Diet_C equation (Eq. 32) with BW also be-
ing selected for the Animal_C equation (Eq. 33), whereas DMI and BW,
and BW were selected for the Global_C and Animal_no_DMI_C equations,
respectively (Eqns. 34–35). The North American higher-forage equa-
tions were largely in line with the higher-forage equations. However,
the Animal_no_DMI_C equation also contained dietary ash (Eq. 44; Table
7) as obtained for the all-data equation, and the Global_C equation also
contained dietary crude protein (Eq. 45), The European higher-forage
and North American higher-forage equations under-predicted CH4 at the
high end and over-predicted it at the low end of production, except
for the European higher-forage DMI+EE_C equation, which under-pre-
dicted CH4 at the low end and over-predicted at the high end (Figs.
4 and 5). Dietary NDF and EE contents in the Brazilian higher-forage
DMI+NDF_C and DMI+EE_C equations were not significantly related
to CH4 production (Eqns. 49–50, Table S2; P-values of 0.28 and 0.05, re-
spectively), the Diet_C equation contained DMI and dietary ash (Eq. 51),
whereas the Animal_no_DMI_C equation contained dietary forage (Eq.
52). Slope bias varied from 9.05 to 18.9% for the developed Brazilian
higher-forage equations, except for the Animal_no_DMI_C equation for
which 32.9% slope bias was obtained. Equations under-predicted CH4
production at the low end and over-predicted at the high end, whereas
the Animal_no_DMI_C equation showed a negative observed vs. pre-
dicted correlation (Fig. S1). Compared to the higher-forage equations,
the European higher-forage, North American higher-forage and Brazil-
ian higher-forage data were more adequately predicted by the European
higher-forage (mean RSR of 0.80 vs. 0.85, mean CCC of 0.50 vs. 0.48;
respectively; Tables 4 and 6), North American higher-forage (mean RSR
of 0.53 vs. 0.57, mean CCC of 0.80 vs. 0.77; respectively; Tables 4 and
7) and Brazilian higher-forage (mean RSR of 1.13 vs. 1.35, respectively;
Tables 4, S2), although mean CCC indicated Brazilian higher-forage
data was more adequately predicted using the higher-forage than the

Brazilian higher-forage equations (0.17 vs. 0.11, respectively; Tables 4,
S2).

The IPCC (2006) Tier 2 higher-forage equation had an RSR of 0.68
and a CCC of 0.75 when evaluated using all data (Eq. 9; Table 2). Pre-
dicting the higher-forage subset with this equation resulted in RSR and
CCC of 0.53 and 0.84, respectively (Eq. 9; Table 4). Despite this high ac-
curacy of prediction of the Tier 2 approach, increased variance appeared
along the unity line of the predicted vs. observed plots (Figs. 1 and 2).
The IPCC Tier 2 (2006) lower-forage equation had an RSR of 1.38, a
CCC of 0.17 and 59.6% mean bias for the lower-forage subset (Eq. 25;
Table 5). The GLOBAL NETWORK Tier 2 equations with Ym of 6.1% and
6.3% (Eqns. 8, 19; Tables 2 and 4) performed slightly better than the
IPCC Tier 2 (2006) equation for the all-data and higher-forage (sub)sets,
respectively [note that the IPCC equations were validated, the GLOBAL
NETWORK equations were cross-validated], whereas the lower-forage
GLOBAL NETWORK Tier 2 equation with Ym of 4.5% resulted in RSR of
0.90, a CCC of 0.43 and 0.47% of mean bias (Eq. 24) performed obvi-
ously better than the lower-forage IPCC Tier 2 equation. Although the
IPCC currently uses a 10% forage cutoff, a Ym of 4.5% is still more ac-
curate than a Ym of 3.0% for the present data, with RSR being 0.98
and 1.51, and CCC being 0.40 and 0.16 for the GLOBAL NETWORK and
IPCC Tier 2 lower-forage equations, respectively (Eqns. 24–25). The Eu-
ropean higher-forage and North American higher-forage subsets were
associated with RSR of 0.66 and 0.48, and CCC of 0.71 and 0.88 for
the IPCC Tier 2 (2006) equation, respectively (Eq. 9; Tables 6 and 7),
whereas RSR of 1.81 and CCC of 0.21 were obtained for the Brazilian
higher-forage subset (Eq. 9; Table S2). Compared to the latter equation,
the GLOBAL NETWORK Tier 2 equations with Ym of 6.6 and 6.3% per-
formed similarly based on RSR and CCC for the European higher-forage
and North American higher-forage subset (Eqns. 36, 46; Tables 6 and 7),
whereas less mean bias was obtained with 1.89 vs. 3.54% and 2.51 vs.
8.70%, respectively. The Brazilian higher-forage subset was better pre-
dicted when using the GLOBAL NETWORK Tier 2 approach resulted in
a Ym of 5.5%, an RSR of 1.29, and a CCC of 0.28 (Eq. 53; Table S2).

Equations developed by Ellis et al. (2009); Charmley et al. (2016)
and Escobar-Bahamondes et al. (2017a) were among the best perform-
ing extant equations and outperformed the Yan et al. (2000, 2009),
Mills et al. (2003); Ellis et al. (2007) and Patra (2017) equations for
all (sub)sets. The best performing equation of Charmley et al. (2016)
performed better than the all-data DMI_C equation (Eqns. 1, 10; Table
2). The all-forage equation of Escobar-Bahamondes et al. (2017a) ap-
peared to perform most accurately among all of the equations (Eq. 11).
However, only 646 data points were available for independent evalu-
ation. Based on RSR, it did not outperform the Animal_C equation for
these 646 data points. For the higher-forage subset, the best Charmley
et al. (2016) and the Escobar-Bahamondes et al. (2017a) equations per-
formed the best based on CCC (Eqns. 20, 11; Table 4), but not on RSR.
The Ellis et al. (2009) equation that also depended on the NDF:starch
ratio (Eq. 26; Table 5) performed the best for the lower-forage data
with RSR of 0.89 and CCC of 0.41. For the European higher-forage sub
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Table 4
Higher-forage CH4 emission (g d−1 animal−1) prediction equations for various categories and model performance across the data subsets based on root mean square prediction error
(RMSPE; % of mean), RMSPE-observations-standard-deviation-ratio (RSR), mean and slope bias (MB and SB; % of mean square prediction error), and concordance correlation coefficient
(CCC).

Eq. Model development Model performance

Category§ Prediction equation * n† (Sub)set ‡ pǂ RMSPE RSR MB SB CCC

[12] DMI_C 52.8 (7.5) + 13.8 (0.6) × DMI 882 Higher-
forage

852 29.3 0.64 0.28 22.78 0.68

EUR-HF 307 29.3 0.88 26.42 15.91 0.43
NrAm-HF 394 27.3 0.59 16.37 27.26 0.75
BRZ-HF 75 26.1 1.40 31.70 22.96 0.23

[13] DMI+NDF_C 23.8 (9.1) + 13.5 (0.6) × DMI+0.844 (0.165) × NDF 882 Higher-
forage

852 29.1 0.64 0.20 17.83 0.69

EUR-HF 307 29.0 0.87 27.08 14.11 0.45
NrAm-HF 394 25.2 0.55 13.46 21.70 0.80
BRZ-HF 75 24.9 1.34 24.24 26.05 0.25

[14] DMI+STA_C 83.4 (11.4) + 13.6 (0.8) × DMI – 0.594 (0.161) × STA 575 Higher-
forage

575 26.6 0.65 1.42 16.37 0.68

EUR-HF 273 26.0 0.93 21.41 4.37 0.35
NrAm-HF 269 24.7 0.56 16.08 20.02 0.78
BRZ-HF 14 29.2 2.47 77.05 9.49 −0.04

[15] DMI+EE_C 66.4 (9.5) + 13.3 (0.6) × DMI – 3.69 (1.56) × EE 644 Higher-
forage

644 27.8 0.64 1.32 15.45 0.69

EUR-HF 122 26.1 1.00 43.22 6.45 0.39
NrAm-HF 394 28.4 0.61 18.29 28.79 0.73
BRZ-HF 104 24.0 1.33 30.48 19.06 0.23

[16] Diet_C 23.4 (8.1) + 13.2 (0.5) × DMI+0.571 (0.080) × For 882 Higher-
forage

852 27.9 0.61 0.49 15.52 0.72

EUR-HF 307 27.9 0.84 25.38 12.04 0.49
NrAm-HF 394 23.1 0.50 8.40 17.91 0.83
BRZ-HF 75 22.6 1.21 14.48 25.25 0.28

[17] Animal_C, Global_C –6.41 (8.31) + 11.3 (0.6) × DMI+0.557 (0.077) × For
+ 0.0996 (0.0142) × BW

864 Higher-
forage

852 24.6 0.54 0.80 14.74 0.80

Higher-
forage♯

567 21.2 0.47 0.11 10.43 0.86

EUR-HF 307 24.5 0.73 18.25 11.11 0.61
NrAm-HF 394 20.3 0.44 3.82 11.92 0.88
BRZ-HF 75 21.2 1.14 1.36 27.11 0.22

[18] Animal_no_DMI_C 17.9 (10.4) + 0.732 (0.091) × For + 0.226 (0.015) ×
BW

864 Higher-
forage

852 30.8 0.67 0.01 13.23 0.65

EUR-HF 307 26.3 0.79 14.80 11.89 0.52
NrAm-HF 394 33.1 0.72 18.90 5.82 0.65
BRZ-HF 75 27.0 1.45 31.74 25.94 −0.14

[19] GLOBAL NETWORK Tier
2

[0.063 (0.002) × GEI] / 0.05565 882 Higher-
forage

852 24.6 0.54 2.12 1.37 0.82

Higher-
forage♪,♫

852 24.0 0.52 0.14 0.62 0.83

[9] IPCC Tier 2 (2006) ¶ (0.065×GEI) / 0.05565 – Higher-
forage♪

852 24.1 0.53 1.19 0.06 0.84

[20] Charmley et al. (2016) 21.0 × DMI – Higher-
forage ♪,ǁ

829 25.4 0.57 0.10 0.05 0.81

[11] Escobar-Bahamondes et
al. (2017a)

–35.0+0.08 × BW+1.2 × For – 69.8 × EEI^3+3.14
× GEI

– Higher-
forage♪,♯

567 23.1 0.51 9.61 1.56 0.86

§ Category acronyms (e.g., DMI_C) are explained in the ‘Model development’ subsection of the ‘Methods and Materials’ section.
* Equations are presented with regression coefficient standard errors in parenthesis; DMI=dry matter intake (kg d−1), NDF=dietary neutral detergent fiber (% of DM), STA=dietary

starch (% of DM), EE=dietary ether extract (% of DM), For=dietary forage (% of DM), BW=body weight (kg), GEI=gross energy intake (MJ d-1), EEI=ether extract intake (kg d-1).
† n = number of observations used to fit model equations.
‡ Higher-forage=data associated with a forage content ≥25%, EUR-HF=European data associated with a forage content ≥25%, NrAm-HF=North American data associated with a

forage content ≥25%, BRZ-HF=Brazilian data associated with a forage content ≥25%.
ǂ p = numbers of observations used for model evaluation.
¶ IPCC=Intergovernmental Panel on Climate Change.
♪ Performance was evaluated, not cross-validated.
♫ No independent evaluation.
ǁ The 852 data points minus data from Tomkins et al. (2011) and Kennedy and Charmley (2012) to ensure independent evaluation.
♯ The 852 data points minus data from Pinares-Patiño et al. (2003), Chaves et al. (2006), McGeough et al. (2010a, b), Doreau et al. (2011), Staerfl et al. (2012), Hünerberg et al. (2013a,

b) and Troy et al. (2015) to ensure independent evaluation.

set, the best Charmley et al. (2016) and the Escobar-Bahamondes et
al. (2017a) equations (Eqns. 37, 11; Table 6) did not perform bet-
ter than the Animal_C equation when just considering RSR and CCC
values, although the Animal_C equation was evaluated using fewer
data points. For the North American higher-forage subset, the best
performing Charmley et al. (2016) equation (Eq. 47; Table 7) per-
formed similarly to the Global_C equation based on RSR, whereas the
Charmley et al.

(2016) equation performed even slightly better based on CCC. Despite
the accuracy of the various equations of Charmley et al. (2016) and
in contrast to the Animal_C equations, the predicted vs. observed plots
showed increasing variation along the unity line for all-data in partic-
ular (Fig. 1). However, the best-performing equations that were devel-
oped, which was the Animal_C equation for most subsets, did not show
increasing variation along the unity line. This indicates that the best
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Fig. 2. Observed vs. predicted plots for higher-forage methane emission (g d−1 animal−1) prediction equations for the different categories, viz., dry matter intake (DMI_C), dry matter in-
take and neutral detergent fiber (DMI+NDF_C), dry matter intake and starch (DMI+STA_C), dry matter intake and ether extract (DMI+EE_C), diet (Diet_C), animal (Animal_C), animal
without DMI (Animal_no_DMI_C), GLOBAL NETWORK Tier 2, IPCC Tier 2 (2006), and the extant Charmley et al. (2016) and Escobar-Bahamondes et al. (2017) equations. The gray and
black solid lines represent the fitted regression line for the relationship between observed and predicted values, and the identity line (y = x), respectively.

performing equations that were developed explain variation that is not
captured by the Charmley et al. (2016) equations. These higher preci-
sions obtained from the best performing equations is also indicated by
the correlation coefficients of predicted vs. observed values on which
the CCC is calculated (result not shown).

3.2. Methane yield equations

Positive, negative and negative slope regression coefficients were ob-
tained for the NDF_C, STA_C and EE_C all-data CH4 yield [g (kg DMI)−1]
equations (Eqns. 54–56, Table S3), respectively, which aligned with
the all-data CH4 production equations. The Diet_no_DMI_C and Glob-
al_no_DMI_C equations selected dietary forage (Eqns. 57–58), whereas
dietary EE and ash were also selected for the Diet_no_DMI_C
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Table 5
Lower-forage CH4 emission (g d−1 animal−1) prediction equations and model performance using the lower-forage subset based on root mean square prediction error (RMSPE; % of mean),
RMSPE-observations-standard-deviation-ratio (RSR), mean and slope bias (MB and SB; % of mean square prediction error), and concordance correlation coefficient (CCC).

Eq. Model development Model performance

Category§ Prediction equation * n† (Sub)set ‡ pǂ RMSPE RSR MB SB CCC

[20] DMI_C, Diet_C, Animal_C,
Global_C

46.6 (19.4) + 9.54 (1.80) × DMI 139 Lower-forage 139 28.4 0.94 4.81 0.03 0.26

[21] DMI+NDF_C 112 (47) + 9.46 (1.79) × DMI – 2.58 (1.72) ×
NDF

139 Lower-forage 139 29.3 0.96 4.74 1.34 0.25

[22] DMI+STA_C 42.0 (38.9) + 9.85 (1.88) × DMI+0.0331
(0.7546) × STA

129 Lower-forage 129 34.5 1.11 3.70 20.18 0.23

[23] DMI+EE_C 57.0 (18.1) + 8.84 (1.74) × DMI – 1.17 (2.03) ×
EE

110 Lower-forage 110 24.1 0.96 4.54 1.22 0.26

[24] GLOBAL NETWORK Tier 2 [0.045 (0.002) × GEI] / 0.05565 139 Lower-forage 139 27.9 0.92 3.13 3.02 0.39
Lower-
forage♪,♫

139 27.3 0.90 0.47 3.99 0.43

Lower-
forage♪,ǁ

101 25.2 0.98 2.27 12.91 0.41

[25] IPCC Tier 2 (2006)
Lower-forage¶

(0.030×GEI) / 0.05565 – Lower-
forage♪

139 42.1 1.38 59.60 0.08 0.17

Lower-
forage♪,ǁ

101 39.0 1.51 64.08 0.35 0.16

[26] Ellis et al. (2009); Eq. N 48.2+14.1 × DMI – 20.5 × (STA/NDF) – Lower-
forage♪

129 27.8 0.89 0.26 2.04 0.41

[27] Ellis et al. (2009); Eq. A 41.2+12.0 × DMI – Lower-
forage♪

139 27.9 0.92 6.19 0.15 0.34

§ Category acronyms (e.g., DMI_C) are explained in the ‘Model development’ subsection of the ‘Methods and Materials’ section; no Animal_no_DMI_C equation available.
* Equations are presented with regression coefficient standard errors in parenthesis; DMI=dry matter intake (kg d−1), NDF=dietary neutral detergent fiber (% of DM), STA=dietary

starch (% of DM), EE=dietary ether extract (% of DM), GEI=gross energy intake (MJ d-1).
† n = number of observations used to fit model equations.
‡ Lower-forage=data associated with a forage content ≤18%.
ǂ p = numbers of observations used for model evaluation.
¶ IPCC=Intergovernmental Panel on Climate Change.
♪ Performance was evaluated, not cross-validated.
♫ No independent evaluation.
ǁ A subset containing ≤10% forage records only was used (as recommended by the IPCC, 2006).

equation, and dietary crude protein for the Global_no_DMI_C equation.
The NDF_C, STA_C, EE_C, Diet_no_DMI_C and Global_no_DMI_C equa-
tions had RSR values of 0.98, 1.06, 1.01, 0.97 and 0.96, respectively.
The NDF_C, STA_C and EE_C higher-forage CH4 yield equations indi-
cated positive, negative and negative relationships to CH4 yield, respec-
tively (Eqns. 59–61, Table S4), whereas only dietary forage content was
selected for the Diet_no_DMI_C equation (Eq. 62). The higher-forage CH4
yield was associated with RSR of 1.03 to 1.21 (Table S3) when pre-
dicted by the all-data equations, whereas the higher-forage equations
predicted CH4 yield of this subset with RSR values from 0.98 to 1.04
(Table S4). The higher-forage equations reproduced the observed varia-
tion in CH4 yield less adequately than the all-data equations, with even a
negative observed vs. predicted relationship for the higher-forage STA_C
and EE_C equations (Figs. S2–S3).

3.3. Methane intensity equations

In contrast to the CH4 production equations, the DMI regression co-
efficients in the all-data DMI_C and DMI+EE_C CH4 intensity equa-
tions [g (kg ADG)−1] contained zero in their confidence intervals (P-val-
ues of 0.14 and 0.22, respectively), whereas the DMI+NDF_C and
DMI+STA_C equations had a positive regression coefficient for DMI
(Eqns. 63–66; Table S5). In line with the CH4 production equations, di-
etary NDF, starch and EE contents in the DMI+NDF_C, DMI+STA_C
and DMI+EE_C equations had positive, negative and negative relation-
ships with CH4 intensity, respectively. Dietary forage content was se-
lected for the Diet_C, Animal_no_DMI_C and Global_C equations (Eqns.
67–69), with DMI also being selected for the Diet_C equation and BW
also being selected for the Global_C equation. The Diet_C, Animal_no_D-
MI_C and Global_C equations had RSR values of 0.99, 1.00 and 0.96, re-
spectively, and appeared to predict the variation in CH4 intensity most
adequately (Fig. S4), whereas the other all-data CH4 intensity equations
had RSR greater than 1 and appeared to predict the variation in CH4 in-
tensity less adequately.

The higher-forage DMI_C, DMI+STA_C and DMI+EE_C equations
did not indicate that DMI was related to CH4 intensity (Eqns. 70, 72–73,
Table S6; P-values of 0.06, 0.52 and 0.93, respectively). Dietary NDF
was positively related to CH4 intensity (Eq. 71), whereas dietary starch
and EE contents were not related to CH4 intensity (Eqns. 72–73; P=
0.32). Dietary ash content was selected for the Diet_C equation (Eq.
74), whereas BW were selected for the Animal_C and Global_C equa-
tions (Eqns. 75–76), with dietary NDF also being selected for the Glob-
al_C equation. All higher-forage CH4 intensity equations had RSR≥1.03.
Furthermore, as also obtained for the higher-forage CH4 yield equa-
tions, the higher-forage CH4 intensity equations did not reproduce the
observed variation in CH4 intensity of the higher-forage subset more ad-
equately than the all-data CH4 intensity equations (Figs. S4-S5), which
was also indicated by the RSR and CCC values.

4. Discussion

Global applicability is an important attribute of prediction equa-
tions of beef cattle enteric CH4 emission. Various beef cattle systems
that are applied world-wide may fit in our analysis. For more details
about these beef cattle fattening systems, we refer to e.g., De Vries et
al. (2015); Gerssen-Gondelach et al. (2017) and Drouillard (2018). Our
database, in which data (1021 individual records) from a variety of
geographical regions across the world is represented, therefore, con-
tributes to the overall robustness and global applicability of our all-data
and higher-forage equations in particular. Hence, CH4 production of
beef cattle will be accurately predicted for data samples that repre-
sent a wider set of conditions throughout the world, which is a unique
feature of the present equations. Several CH4 prediction equations for
beef cattle have been published previously, but they were developed
from relatively small databases and only for one specific geographic
region, such as Yan et al. (2009) using 108 individual animal records
from 5 studies from Northern Ireland, Ellis et al. (2007) using 83 treat-
ment means from 14 studies from North America, Ellis et al. (2009) us
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Fig. 3. Observed vs. predicted plots for lower-forage methane emission (g d−1 animal−1) prediction equations for the different categories, viz., dry matter intake (DMI_C), dry matter
intake and neutral detergent fiber (DMI+NDF_C), dry matter intake and starch (DMI+STA_C), dry matter intake and ether extract (DMI+EE_C), GLOBAL NETWORK Tier 2, IPCC Tier 2
(2006), and the extant Ellis et al. (2009) equations. The gray and black solid lines represent the fitted regression line for the relationship between observed and predicted values, and the
identity line (y = x), respectively.

ing 872 individual animal records from 12 studies from Alberta
(Canada), and Moraes et al. (2014) using individual records from 414
heifers and 458 steers housed at one research station in the United
States.

In the present study, we collated a wide-ranging database that in-
cluded a large number of studies from Europe, North America, Brazil,
Australia and South Korea, which represented diverse global beef pro-
duction systems. Studies from tropical areas were, however, not pre-
dominant in the present analysis, for which we refer to Charmley et al.
(2016) who included studies from tropical Australia, and Patra (2017)
who included studies from India, Zimbabwe, Australia and Brazil. Fur-
thermore, Escobar-Bahamondes et al. (2017a) had a database compris-
ing 148 treatment means from 38 studies with diets containing >40%
forage, and a database comprising 43 treatment means from 17 stud-
ies with diets containing <20% forage. Therefore, their analysis for
lower-forage diets, in particular, included more data from more stud-
ies than ours, but their cutoff values for lower and higher forage were
based on differences in microbiome composition rather than the pre-
diction error used in the present analysis. Furthermore, their analysis
did not explore intercontinental variation in beef cattle CH4 emissions
and did not have the benefit of using individual animal records. Other
unique strengths of the present study are the development of CH4 yield
and intensity equations, whereas beef cattle studies are commonly lim-
ited to only total CH4 production, and the inclusion of dietary forage
content as a covariate of the three CH4 emission metrics.

Our database includes data obtained with different CH4 (viz., respi-
ration chambers, GreenFeed system, SF6) and DMI (viz., weighing and
estimating using marker techniques) measurement methods. The differ-
ent CH4 measurement techniques have their strengths and weaknesses
(Hammond et al., 2016; Hristov et al., 2018), whereas directly weigh-
ing the amount of feed offered and refusals and their dry matter con-
tent is regarded as more accurate than the ytterbium and n-alkane mark-
ers used for some studies in the present database, which may over- or
underestimate DMI (Pérez-Ramírez et al., 2012). However, the devel-
opment of a DMI_C CH4 production equation specific for respiration
chamber, GreenFeed system and SF6 subsets did not consistently im-
prove the RSR and CCC of the corresponding subsets compared with
the all-data DMI_C equation (results not shown). Furthermore, includ-
ing CH4 measurement method as a covariate in the statistical model of
an all-data DMI_C equation did not improve the model fit. Similar re-
sults were obtained for measurement method of DMI. Therefore, CH4
and DMI measurement methods did not have a major effect on the
performance of the equations developed in the present analysis. How-
ever, the relatively high and low accuracies with which the region-spe-
cific subsets could be predicted may be related to the CH4 measure-
ment methods, because the percentage of use of respiration chambers in
the European higher-forage, North American higher-forage and Brazil-
ian higher-forage subsets differed substantially (48, 95 and 0%, respec-
tively). Finally, statistically accounting for cattle breed or cattle type
(e.g., steers, heifers, cows) was considered, but did not or not consis
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Fig. 4. Observed vs. predicted plots for European higher-forage methane emission (g d−1 animal−1) prediction equations for the different categories, viz., dry matter intake (DMI_C), dry
matter intake and neutral detergent fiber (DMI+NDF_C), dry matter intake and starch (DMI+STA_C), dry matter intake and ether extract (DMI+EE_C), dietary (Diet_C), animal (Ani-
mal_C), animal without DMI (Animal_no_DMI_C), global (Global_C), GLOBAL NETWORK Tier 2, and IPCC Tier 2 (2006), and the extant Charmley et al. (2016) and Escobar-Bahamondes
et al. (2017) equations. The gray and black solid lines represent the fitted regression line for the relationship between observed and predicted values, and the identity line (y = x), respec-
tively.

tently improve the prediction of CH4 production throughout the subsets.
Non-linear CH4 prediction equations such as the Mitscherlich equa-

tion were previously found to outperform linear equations in some
studies (e.g., Mills et al., 2003; Patra, 2017). However, for the present
database, fitting non-linear equations, viz., Monomolecular, Exponen-
tial, Mitscherlich and Power forms, did not result in improved predic-
tion of CH4 production compared to the linear DMI_C equations (result

not shown). The latter result is in line with the non-linear Mills et al.
(2003) and Patra (2017) equations that did not outperform the lin-
ear Charmley et al. (2016) equations. This suggests that a multiple lin-
ear regression approach, as used for the development of our Animal_C
and Global_C equations rather than non-linear approaches, improves the
precision and accuracy of prediction of CH4 production. The utility of
ADG and digestibility of EE, NDF, nitrogen, gross energy, DM and or-
ganic matter for predicting CH4 was also evaluated, but these covari
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Fig. 5. Observed vs. predicted plots for North American higher-forage methane emission (g d−1 animal−1) prediction equations for the different categories, viz., dry matter intake (DMI_C),
dry matter intake and neutral detergent fiber (DMI+NDF_C), dry matter intake and starch (DMI+STA_C), dry matter intake and ether extract (DMI+EE_C), dietary (Diet_C), animal
(Animal_C), animal without DMI (Animal_no_DMI_C), global (Global_C), GLOBAL NETWORK Tier 2 (2006), IPCC Tier 2 (2006), and the extant Charmley et al. (2016) equation. The gray
and black solid lines represent the fitted regression line for the relationship between observed and predicted values, and the identity line (y = x), respectively.

ates did not result in better prediction of CH4 production than achieved
by the various equations that are presented.

The linear regression equations of Charmley et al. (2016) that de-
pended on DMI and outperformed our DMI_C equations were fitted us-
ing models that included more terms than just DMI, which resulted in
nearly unbiased predictions of CH4. Furthermore, the data Charmley
et al. (2016) used were only from certain regions in Australia and
may have been relatively homogeneous. The equations developed us-
ing these data may then result in accurate prediction of CH4 production

based on only DMI. Therefore, the prediction bias for our various An-
imal_C and Global_C equations and some potential overestimation of
between-study variance that remained may vanish by the inclusion of
even more covariates in the statistical model. The negligible bias ob-
tained for the European higher-forage Animal_C equation, for which di-
etary crude protein and EE contents were available for all individual
animal records used for fitting this model, and suggests that multiple
regression equations are associated with less bias. Despite prediction
biases of mixed-effects models being associated with the inclusion of
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Table 6
European higher-forage CH4 emission (g d−1 animal−1) prediction equations for various categories and model performance based on root mean square prediction error (RMSPE; % of
mean), RMSPE-observations-standard-deviation-ratio (RSR), mean and slope bias (MB and SB; % of mean square prediction error), and concordance correlation coefficient (CCC).

Eq. Model development Model performance

Category§ Prediction equation * n† (Sub)set ‡ pǂ RMSPE RSR MB SB CCC

[28] DMI_C 60.5 (16.4) + 15.0 (1.4) × DMI 307 EUR-HF 307 26.3 0.79 4.86 15.69 0.48
[29] DMI+NDF_C 38.1 (23.3) + 14.9 (1.4) × DMI+0.598 (0.470) × NDF 307 EUR-HF 307 25.9 0.77 5.21 13.15 0.51
[30] DMI+STA_C 92.4 (21.7) + 11.7 (2.0) × DMI+0.113 (0.285) × STA 273 EUR-HF 273 25.6 0.92 9.92 2.20 0.30
[31] DMI+EE_C 133 (34) + 14.5 (2.0) × DMI – 18.4 (6.6) × EE 122 EUR-HF 122 23.7 0.91 1.86 13.87 0.54
[32] Diet_C –20.9 (43.6) + 14.3 (2.0) × DMI+4.04 (1.06) × NDF – 15.4

(3.8) × EE
122 EUR-HF 122 18.4 0.70 5.57 0.97 0.70

[33] Animal_C –102 (40.5) + 11.6 (2.1) × DMI+3.74 (0.79) × NDF – 11.1
(3.0) × EE+0.164 (0.054) × BW

122 EUR-HF 122 16.7 0.64 3.49 0.00 0.75

EUR_HF♯ 109 15.5 0.58 1.31 0.13 0.79
[34] Animal_no_DMI_C 34.1 (18.7) + 0.287 (0.028) × BW 307 EUR-HF 307 27.0 0.81 10.37 3.73 0.50
[35] Global_C 24.3 (17.7) + 9.37 (2.06) × DMI+0.153 (0.040) × BW 307 EUR-HF 307 24.5 0.73 8.88 11.91 0.58
[36] GLOBAL NETWORK

Tier 2
[0.066 (0.003) × GEI] / 0.05565 307 EUR-HF 307 22.9 0.69 7.03 2.04 0.68

EUR-
HF♪,♫

307 21.8 0.65 1.89 1.34 0.71

[9] IPCC Tier 2, 2006 ¶ (0.065×GEI) / 0.05565 – EUR-HF♪ 307 22.0 0.66 3.54 1.61 0.71
[37] Charmley et al. (2016) –15.3+24.7 × DMI – EUR-HF♪ 307 21.9 0.66 0.61 0.16 0.72

122 19.7 0.75 2.09 3.18 0.66
[11] Escobar-Bahamondes et

al. (2017a)
–35.0+0.08 × BW+1.2 × For – 69.8 × EEI^3+3.14 ×
GEI

– EUR-
HF♪,♯

109 16.0 0.60 0.61 0.37 0.77

§ Category acronyms (e.g., DMI_C) are explained in the ‘Model development’ subsection of the ‘Methods and Materials’ section.
* Equations are presented with regression coefficient standard errors in parenthesis; DMI=dry matter intake (kg d−1), NDF=dietary neutral detergent fiber (% of DM), STA=dietary

starch (% of DM), EE=dietary ether extract (% of DM), BW=body weight (kg), GEI=gross energy intake (MJ d-1), EEI=ether extract intake (kg d-1).
† n = number of observations used to fit model equations.
‡ EUR-HF=European data associated with a forage content ≥25%.
ǂ p = numbers of observations used for model evaluation.
¶ IPCC=Intergovernmental Panel on Climate Change.
♪ Performance was evaluated, not cross-validated.
♫ No independent evaluation.
♯ The 307 data points minus data from Pinares-Patiño et al. (2003), McGeough et al. (2010ab), Doreau et al. (2011), Staerfl et al. (2012) and Troy et al. (2015) to ensure independent

evaluation.

the random study effect (see also White et al., 2017), which applies
to models with fewer covariates in particular, omission of the random
study effect will affect the inference made on the covariates and may re-
sult in type II errors (St-Pierre, 2001). Therefore, for achieving unbiased
predictions, mixed-effects models are ideally applied to datasets without
missing values throughout the different covariates. Such datasets will re-
sult in greater variation of the dependent variable explained by multiple
fixed-effects terms and less overestimation of the random study effect.

4.1. Key predictor variables

Dry matter intake was the most important predictor of enteric CH4
production as it was significantly and positively related to CH4 pro-
duction for all-data and the higher-forage, lower-forage, European
higher-forage and North American higher-forage subsets. A positive re-
lationship between DMI and CH4 production is in agreement with pre-
vious dairy and beef cattle studies (e.g., Ellis et al., 2007; Hristov et al.,
2013a; Richmond et al., 2015; Bell et al., 2016; Charmley et al., 2016;
Niu et al., 2018) and this is because more CH4 is produced when more
substrate is available for microbial fermentation and in turn methano-
genesis. In addition, all Diet_C and Animal_C models based on these five
(sub)sets selected DMI for the prediction of CH4 production, and the An-
imal_no_DMI_C equations did not perform as well as the Animal_C equa-
tions, indicating the importance of DMI relative to other covariates.

The positive relationship between the all-data CH4 production and
dietary NDF content also aligns with previous results (e.g., Ellis et al.,
2007; Yan et al., 2009; Niu et al., 2018). The coefficients of variation
were 43.8, 45.4 and 30.3% for CH4 production, and 32.0, 30.6 and
8.6% for dietary NDF content for the all-data and the higher-forage and
lower-forage subsets, respectively. This decrease in variation is in line

with the disappearance of this positive relationship for the all-data and
higher-forage vs. the lower-forage equations. Therefore, developing sub-
sets with limited variation in forage percentage seems to have masked
the positive relationship between CH4 production and dietary NDF con-
tent. Furthermore, dietary nutrient contents change at the expense of
other nutrients. Dietary NDF content may increase at the expense of
more rapidly fermentable carbohydrates, which is positively associated
with CH4 production (Hatew et al., 2015). The latter hypothesis aligns
with a model with DMI and dietary NDF and starch fitted to all data hav-
ing regression coefficients that were positive, positive and not different
from zero for DMI and dietary NDF and starch, respectively (result not
shown). However, the lignin fraction of NDF being undegradable indi-
cates that increased dietary NDF may not result in more CH4 production
in case of high lignin contents. Warner et al. (2016) observed lower CH4
production but higher CH4 yield per unit of digestible organic matter for
dairy cattle fed grass silage of high lignin and NDF content, compared
with grass silage of low lignin and NDF content. The observation of Na
et al. (2017) who found different CH4 yields per unit of DMI for deer
and goats, but not per unit of digestible DMI may also support this hy-
pothesis.

Dietary starch content is negatively related to CH4 production as it
typically increases propionate production in the rumen, yielding less
H2 for the reduction of CO2 to CH4 (Martin et al., 2010; Grainger and
Beauchemin, 2011). The effect of dietary starch on CH4 production ap-
peared to be less pronounced for higher-forage diets in dairy cows (Van
Gastelen et al., 2015), which may explain why no relationship between
dietary starch content and CH4 production was found for the European
higher-forage subset, which had the highest forage content of all sub-
sets. Furthermore, it was suggested that a critical dietary content of
starch is required to decrease CH4 production (Martin et al., 2010; Van
Gastelen et al., 2015), possibly more than approximately 20% of DM,
and that slight differences in intakes of starch, and other major carbo
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Table 7
North American higher-forage CH4 emission (g d−1 animal−1) prediction equations for various categories and model performance based on root mean square prediction error (RMSPE; %
of mean), RMSPE-observations-standard-deviation-ratio (RSR), mean and slope bias (MB and SB; % of mean square prediction error), and concordance correlation coefficient (CCC).

Eq. Model development (Sub)set ‡ Model performance

Category§ Prediction equation * n† pǂ RMSPE RSR MB SB CCC

[38] DMI_C 33.9 (7.7) + 14.7 (0.6) × DMI 394 NrAm-
HF

394 25.3 0.55 0.00 26.45 0.78

[39] DMI+NDF_C 1.58 (8.30) + 14.2 (0.6) × DMI+1.05 (0.16) × NDF 394 NrAm-
HF

394 23.8 0.52 0.02 16.29 0.82

[40] DMI+STA_C 89.7 (10.7) + 14.2 (0.8) × DMI – 1.17 (0.17) × STA 269 NrAm-
HF

269 21.4 0.49 1.90 9.73 0.84

[41] DMI+EE_C 43.7 (8.8) + 14.7 (0.6) × DMI – 3.72 (1.52) × EE 394 NrAm-
HF

394 25.0 0.54 0.01 25.47 0.78

[42] Diet_C 7.41 (7.12) + 14.1 (0.6) × DMI+0.632 (0.069) × For 394 NrAm-
HF

394 22.2 0.48 0.01 11.10 0.85

[43] Animal_C, –15.1 (7.5) + 12.7 (0.6) × DMI+0.644 (0.066) × For + 0.0779
(0.0134) × BW

394 NrAm-
HF

394 20.1 0.43 0.02 6.12 0.88

[44] Animal_no_DMI_C 14.0 (12.3) + 0.965 (0.104) × For + 0.207 (0.018) × BW – 3.02
(0.95) × Ash

394 NrAm-
HF

394 32.2 0.70 0.32 5.45 0.63

[45] Global_C –38.8 (10.9) + 12.7 (0.6) × DMI+0.605 (0.066) × For + 1.61
(0.56) × CP+0.0779 (0.0133) × BW

394 NrAm-
HF

394 20.0 0.43 0.04 3.03 0.89

[46] GLOBAL
NETWORK Tier 2

[0.063 (0.003) × GEI] / 0.05565 394 NrAm-
HF

394 21.9 0.48 0.81 0.03 0.87

NrAm-
HF♪,♫

394 21.4 0.46 2.51 0.02 0.88

[9] IPCC Tier 2, 2006 ¶ (0.065×GEI) / 0.05565 – NrAm-
HF♪

394 22.2 0.48 8.70 0.50 0.88

[47] Charmley et al.
(2016)

20.5 × DMI – NrAm-
HF♪

394 20.0 0.43 0.45 0.02 0.90

§ Category acronyms (e.g., DMI_C) are explained in the ‘Model development’ subsection of the ‘Methods and Materials’ section.
* Equations are presented with regression coefficient standard errors in parenthesis; DMI=dry matter intake (kg d−1), NDF=dietary neutral detergent fiber (% of DM), STA=dietary

starch (% of DM), EE=dietary ether extract (% of DM), For=dietary forage (% of DM), GEI=gross energy intake (MJ d-1), BW=body weight (kg).
† n = number of observations used to fit model equations.
‡ NrAm-HF=North American data associated with a forage content ≥25%.
ǂ p = numbers of observations used for model evaluation.
¶ IPCC=Intergovernmental Panel on Climate Change.
♪ Performance was evaluated, not cross-validated.
♫ No independent evaluation.

hydrates (e.g., hemicellulose, cellulose and lignin) cannot explain the
difference in CH4 emissions of cattle (Moe and Tyrrell, 1979; Moate et
al., 2019). This may also explain why no relationship between dietary
starch content and CH4 production was obtained based on the European
higher-forage subset. The lack of a relationship between CH4 production
and dietary starch content for the lower-forage subset may be related to
the small variation in starch content (coefficient of variation is 13.1%).

The positive relationship that was obtained between CH4 production
and dietary forage aligns with previously published studies (e.g., Yan et
al., 2000; Hristov et al., 2013) stating that either increased forage or de-
creased concentrate proportion in the diet yielded more CH4. Johnson
and Johnson (1995) referred to cattle fed more than 90% concentrate
producing only half of the CH4 produced by cattle fed more common
concentrate proportions, and Aguerre et al., 2011 observed a linear in-
crease in CH4 yield upon increasing dietary forage content from 47 to
68%. Nevertheless, a modeling study by Sauvant and Giger-Reverdin
(2009) predicted that a decrease in CH4 yield is only observed for di-
etary forage contents less than 65%. Despite the latter prediction, the
frequent appearance of dietary forage in the equations developed in the
present study indicates dietary forage content is a decent predictor of
CH4 emission, possibly more robust than dietary NDF content that was
less frequently selected for the developed equations.

Dietary lipid content is commonly negatively related to CH4 produc-
tion (Grainger and Beauchemin, 2011). Lipids may inhibit cellulolytic
bacteria, protozoal and archaeal activity, decrease NDF digestibility,
and supply non-fermentable energy to the rumen, outcomes that can
decrease CH4 production (Maia et al., 2007; Beauchemin et al., 2008;
Guyader et al., 2014). Long-chain saturated fatty acids may have a
minimal inhibitive effect on archaeal activity and CH4 production,

whereas fatty acids such as C12:0 and C18:3 were found to be rela-
tively potent reducers (Machmüller and Kreuzer, 1999; Patra, 2013).
Therefore, the actual decrease in CH4 production obtained from lipids
may depend on their fatty acid composition, although this is not con-
firmed by all in vivo studies (e.g., Grainger and Beauchemin, 2011).
More importantly, the removal of data associated with dietary lipid and
oil supplements excluded data with higher dietary EE contents, which
more potently decrease CH4 production (Patra, 2013), may explain why
DMI+EE_C equations did not perform better than the DMI_C equations,
despite the significant relationships that were obtained for CH4 produc-
tion and yield with dietary EE content.

Dietary crude protein content being positively associated with the
all-data CH4 yield in the present analysis aligns with the observation
that dietary nitrogen content is positively related to fiber digestibility
(Dijkstra et al., 1996). However, decreased CH4 production may only
be observed from cattle fed a diet that is deficient in rumen degrad-
able protein (Sutter et al., 2017). In the present study, we did not
observe any relationship between crude protein content and NDF di-
gestibility, r=0.04. However, we did observe a correlation between
crude protein content and organic matter and dry matter digestibil-
ity, r=0.42 and r=0.37, respectively. This is possibly due to higher
starch degradability, which could not be verified because of the lack of
starch degradability data. Van Lingen et al. (2018) applying a multi-
variate regression approach found that the methodological issues such
as the structure of random-effects (co)variance matrices and the combi-
nation of fixed-effects variables affect the statistical inference regarding
the relationship between dietary crude protein and CH4 production or
yield. Therefore, also based on dietary crude protein selected for only
one equation, the latter relationship may not be commonly strong as
well as it may not generally exist. Dietary crude protein may actually
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be associated with lesser CH4 production when sufficient rumen degrad-
able protein is fed so as not to limit fermentation in the rumen due to
N shortage (Dijkstra et al., 2011), and may be considered a less robust
predictor of CH4 production than dietary NDF and starch.

A positive relationship between BW and CH4 production observed
in various equations in the present analysis aligns with previous cattle
research (Yan et al., 2009; Moraes et al., 2014; Escobar-Bahamondes
et al., 2017a). Demment and Van Soest (1985) and Smith and Bald-
win (1974) observed rumen volume and weight proportional to BW of
animals. Consequently, smaller animals ingest less feed and emit less
CH4 (Hristov et al., 2013b). In addition, empirical modeling (Sauvant
and Nozière, 2016) and mechanistic model simulations (Huhtanen et
al., 2015, 2016) indicated the DMI/BW ratio to be an important factor
for CH4 yield. At similar DMI, smaller cattle tend to produce less CH4
as the passage rate from the rumen to the intestine may be higher due
to a greater DMI/BW ratio. This has been confirmed in sheep for which
animals yielding less CH4 had smaller rumen size (Goopy et al., 2014).
Therefore, BW influences DMI, and DMI and rumen volume determine
the passage rate of ruminal digesta, which affects feed digestibility, ru-
men fermentation conditions, and ultimately CH4 production and yield.

4.2. Best performing equations

Various equations and model categories for predicting beef cattle
CH4 emission have been applied on various subsets in the present study.
The Ym models have only one parameter and are the simplest models,
the DMI_C models are still fairly simple, whereas the Animal_C mod-
els are potentially the most complex. The Animal_C model commonly
performed best among all models and outperformed the GLOBAL NET-
WORK Tier 2 equations, except for the European higher-forage subset.
The DMI appeared to be the major predictor of enteric CH4 production
in beef cattle, but may not always be available for individual animals
on commercial farms, which points to the value of the Animal_no_D-
MI_C models. Using dietary forage content and BW as a covariate com-
monly improved the prediction of CH4 compared with a DMI_C equa-
tion. Therefore, the on-farm availability of all previously mentioned
variables is recommended. This availability also enables the evaluation
of the effect of dietary nutrient composition on CH4 production. More-
over, the DMI+STA_C equation (Eq. 3) appeared to perform well, and
might also be used for the prediction of beef cattle CH4 production, al-
though this equation was based on fewer observations. Nevertheless, di-
etary starch content was never selected for the Diet_C, Animal_C, Ani-
mal_no_DMI_C and Global_C equations, whereas NDF content was, indi-
cating that DMI+STA_C equations may be slightly less robust than Di-
et_C and Animal_C equations.

If dietary forage content is known to be >25%, we recommend
the use of the higher-forage equations, because the RSR and CCC of
these equations are lower and higher, respectively, compared to the
higher-forage subset evaluation of the all-data equations. Based on
their predictive performance, the higher-forage Animal_C and the
Escobar-Bahamondes et al. (2017a) equations (Eqns. 17, 11; Table 4)
are specifically recommended. Despite its lower precision, the Charmley
et al. (2016) equation (Eq. 20) will still give an accurate estimate of
CH4 production if only DMI is available. If dietary forage percentage is
≤18%, we recommend the Ellis et al. (2009) equations (Eqns. 26–27;
Table 5). In addition, we recommend the lower-forage DMI_C or all-data
DMI+NDF_C, DMI+STA_C and Animal_C equations that performed
relatively well (Eqns. 20, 2–3, 6; Tables 2 and 5). If dietary forage
content is between 18 and 25%, we suggest an all-data equation that
includes dietary forage, or dietary NDF or starch, because of the for-
age content that is commonly related to the latter two carbohydrate
fractions. The European higher-forage and North American higher-for-
age equations performed somewhat better on RSR and CCC than the
higher-forage equations for the European higher-forage and North

American higher-forage subsets, and less systematic bias was obtained
for the region-specific equations. Therefore, we most strongly recom-
mend the Diet_C, Animal_C and Charmley et al. (2016) equations (Eq.
32–33, 37; Table 6). For North American higher-forage data, the Glob-
al_C and Charmley et al. (2016) equations are recommended in particu-
lar (Eqns. 45, 47; Table 7).

Models that assumed a fixed Ym, such as the IPCC and GLOBAL NET-
WORK Tier 2 equations, performed nearly as good as the developed
more complex best performing equations in most cases. The Tier 2 equa-
tions may, therefore, have a high potential for predicting beef cattle CH4
production as well, in particular for higher-forage diets, although the
higher variance along the unity lines of the predicted vs. observed plots
indicates a lack of precision. Moreover, the substantial mean bias that
was obtained for the lower-forage subset in particular emphasizes the
importance of an accurate estimate of Ym. In cases where dietary forage
contents are not close to the means of the present data (sub)sets, we do
not recommend the use of the Ym equations considered in the present
study, but an equation that contains dietary forage, NDF or starch. A
Ym of 4.5% that was obtained for lower-forage diets may be fairly accu-
rate given a Ym of 5.2% that was reported for 42 treatments means with
≤17% forage (Escobar-Bahamondes et al., 2017b), and a Ym of 3.8%
for 34 treatments means with ≤18% forage (Escobar-Bahamondes et al.,
2017a). Both of these studies reported 9.5% forage on average for stud-
ies collected from multiple continents. These Ym values are all higher
than the 3.0%, which the IPCC uses for ≤10% forage diets. The ≤10%
forage records in the present analysis, which also had a Ym of 4.5% sug-
gests that the Ym value for lower-forage diets used by the IPCC needs
to be reconsidered. However, practices such as feeding steam-flaked
corn (Hales et al., 2012) and dietary supplementation with monensin
(Appuhamy et al., 2013) may require alternative prediction as these di-
ets may have a Ym value of 3.0%. This also applies to fat supplemented
diets (Grainger and Beauchemin, 2011; Patra, 2013).

For CH4 yield predictions, the all-data NDF_C, Diet_no_DMI_C and
Global_no_DMI_C CH4 yield equations (Eqns. 54, 57–58) had RSR val-
ues <1 and are suitable for use if dietary forage content is unknown.
The Global_no_DMI_C equations may also be used if dietary forage con-
tent is known to be ≤18%. The higher-forage Diet_no_DMI_C CH4 yield
equation is the only equation to consider for forage contents >25%
(Eq. 62; Table S4), based on RSR values >1 for the other higher-forage
CH4 yield equations. For forage contents between 18 and 25% we rec-
ommend an all-data equation with RSR<1 and the highest CCC value
when evaluated with all data, which is the Global_no_DMI_C yield equa-
tion (Eq. 58). Given that all CH4 intensity equations were associated
with an RSR value >1 for the higher- and lower-forage subsets, we rec-
ommend the observed average values of 108 and 161 [g (kg ADG)−1]
for dietary forage contents of ≤18% and ≥25%, respectively. For dietary
contents between 18 and 25% or if forage content is unknown we rec-
ommend the all-data Global_C equation (Eq. 69; Table S5).

5. Conclusion

Our analysis is based on the large GLOBAL NETWORK dataset com-
prising data from several continents and a wide variety of forage con-
tents. As observed previously, DMI is the key factor for predicting
beef cattle enteric CH4 production. Non-linear models with DMI as the
only independent variable did not outperform their counterpart linear
models. However, linear models depending on DMI and dietary for-
age content or these two covariates plus BW commonly had an im-
proved predictive ability. Separate equations for lower-forage (≤18%)
and higher-forage (≥25%) data also improved predictive ability. Model
evaluation specific to European higher-forage, North American
higher-forage and Brazilian higher-forage diets compared with that
of intercontinental
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higher-forage diet models suggests that overall enteric CH4 production is
more accurately predicted by region-specific models, although in many
cases the best intercontinental and region-specific models may perform
similarly. The equations developed in the present study commonly had
higher precision and less prediction error with similar accuracy com-
pared to the extant equations that were evaluated. Evaluation of CH4
emission conversion factors indicated that region-specific and in partic-
ular dietary forage content-based Ym values are required for adequately
predicting beef cattle CH4 production in national or global inventories.
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