SUPPLEMENTARY MATERIAL: MIXTURE OF HIDDEN MARKOV MODELS FOR ACCELEROMETER DATA

By Marie Du Roy de Chaumaray, Matthieu Marbac, Fabien Navarro

- 1. Model identifiability. The proof of Theorem 1 is split in two parts:
- 1. Identifiability of the parameters of the specific distribution per state is obtained using the approach of Teicher (1963). Hence $\forall h = 1, ..., M$

$$\boldsymbol{\lambda}_{h} = \tilde{\boldsymbol{\lambda}}_{h}, \quad \sum_{k=1}^{K} \delta_{k} \pi_{kh} (1 - \varepsilon_{h}) = \sum_{k=1}^{K} \tilde{\delta}_{k} \tilde{\pi}_{kh} (1 - \tilde{\varepsilon}_{h}).$$

2. Identifiability of the transition matrices and of the ε is shown using properties of Vandermonde matrices. Hence,

$$\forall k = 1, \dots, K, \ \delta_k = \tilde{\delta}_k, \ \boldsymbol{A}_k = \tilde{\boldsymbol{A}}_k, \ \pi_k = \tilde{\pi}_k, \boldsymbol{\varepsilon} = \tilde{\boldsymbol{\varepsilon}}.$$

1.1. Identifiability of the parameters of the specific distribution per state. Considering the marginal distribution at time t = 0, we have

$$\sum_{k=1}^{K} \sum_{h=1}^{M} \delta_k \pi_{kh} g(y_{i(0)}; \boldsymbol{\lambda}_h, \varepsilon_h) = \sum_{k=1}^{K} \sum_{h=1}^{M} \tilde{\delta}_k \tilde{\pi}_{kh} g(y_{i(0)}; \tilde{\boldsymbol{\lambda}}_h, \tilde{\varepsilon}_h).$$

Note that $g(y_{i(0)}; \boldsymbol{\lambda}_h, \varepsilon_h) = (1 - \varepsilon_h)g_c(y_{i(0)}; \boldsymbol{\lambda}_h) + \varepsilon_h \mathbf{1}_{\{y_{i(0)}=0\}}$ is a pdf of a zero-inflated distribution, so it is a pdf of a bi-component mixture. We now use the same reasoning as Teicher (1963). We have

$$1 + \sum_{h=2}^{M} \frac{g(y_{i(0)}; \boldsymbol{\lambda}_{h}, \varepsilon_{h}) \sum_{k=1}^{K} \delta_{k} \pi_{kh}}{g(y_{i(0)}; \boldsymbol{\lambda}_{1}, \varepsilon_{1}) \sum_{k=1}^{K} \delta_{k} \pi_{k1}} = \frac{g(y_{i(0)}; \tilde{\boldsymbol{\lambda}}_{1}, \tilde{\varepsilon}_{1}) \sum_{k=1}^{K} \tilde{\delta}_{k} \tilde{\pi}_{k1}}{g(y_{i(0)}; \boldsymbol{\lambda}_{1}, \varepsilon_{1}) \sum_{k=1}^{K} \delta_{k} \pi_{k1}} + \sum_{h=2}^{M} \frac{g(y_{i(0)}; \tilde{\boldsymbol{\lambda}}_{h}, \tilde{\varepsilon}_{h}) \sum_{k=1}^{K} \tilde{\delta}_{k} \tilde{\pi}_{kh}}{g(y_{i(0)}; \boldsymbol{\lambda}_{1}, \varepsilon_{1}) \sum_{k=1}^{K} \delta_{k} \pi_{k1}} + \sum_{h=2}^{M} \frac{g(y_{i(0)}; \tilde{\boldsymbol{\lambda}}_{h}, \tilde{\varepsilon}_{h}) \sum_{k=1}^{K} \tilde{\delta}_{k} \tilde{\pi}_{kh}}{g(y_{i(0)}; \boldsymbol{\lambda}_{1}, \varepsilon_{1}) \sum_{k=1}^{K} \delta_{k} \pi_{k1}} + \sum_{h=2}^{M} \frac{g(y_{i(0)}; \tilde{\boldsymbol{\lambda}}_{h}, \tilde{\varepsilon}_{h}) \sum_{k=1}^{K} \tilde{\delta}_{k} \tilde{\pi}_{kh}}{g(y_{i(0)}; \boldsymbol{\lambda}_{1}, \varepsilon_{1}) \sum_{k=1}^{K} \delta_{k} \pi_{k1}} + \sum_{h=2}^{M} \frac{g(y_{i(0)}; \tilde{\boldsymbol{\lambda}}_{h}, \tilde{\varepsilon}_{h}) \sum_{k=1}^{K} \tilde{\delta}_{k} \pi_{kh}}{g(y_{i(0)}; \boldsymbol{\lambda}_{1}, \varepsilon_{1}) \sum_{k=1}^{K} \delta_{k} \pi_{k1}} + \sum_{h=2}^{M} \frac{g(y_{i(0)}; \tilde{\boldsymbol{\lambda}}_{h}, \tilde{\varepsilon}_{h}) \sum_{k=1}^{K} \tilde{\delta}_{k} \pi_{k1}}{g(y_{i(0)}; \boldsymbol{\lambda}_{1}, \varepsilon_{1}) \sum_{k=1}^{K} \delta_{k} \pi_{k1}}}$$

Considering $y_{i(0)} \to \rho$, by Assumption 2, we have

$$\boldsymbol{\lambda}_1 = \tilde{\boldsymbol{\lambda}}_1, \quad (1 - \varepsilon_1) \sum_{k=1}^K \delta_k \pi_{k1} = (1 - \tilde{\varepsilon}_1) \sum_{k=1}^K \tilde{\delta}_k \tilde{\pi}_{k1}.$$

Repeating the previous argument with h = 2, ..., M, we conclude that, for $h \in \{1, ..., M\}$,

$$\boldsymbol{\lambda}_{h} = \tilde{\boldsymbol{\lambda}}_{h}, \quad (1 - \varepsilon_{h}) \sum_{k=1}^{K} \delta_{k} \pi_{kh} = (1 - \tilde{\varepsilon}_{h}) \sum_{k=1}^{K} \tilde{\delta}_{k} \tilde{\pi}_{kh}.$$

1.2. Identifiability of the transition matrices. First, we introduce two technical lemmas of which proofs are discussed in the next subsection. Second, we show that $A_k[1,1] = \tilde{A}_k[1,1]$ then we extend the results to the whole transition matrices.

LEMMA 1. Let N_0 , N_1 , \tilde{N}_0 and \tilde{N}_1 be four definite positive matrices of size $K \times K$ such that for $u \in \{1, \ldots, K\}$ and $k \in \{1, \ldots, K\}$,

$$N_0[u,k] = a_k^{u-1}, \ N_1[u,k] = a_k^{K+u-1}, \ \tilde{N}_0[u,k] = \tilde{a}_k^{u-1}, \ \tilde{N}_1[u,k] = \tilde{a}_k^{K+u-1},$$

with $a_k > a_{k+1} > 0$, $\tilde{a}_k > \tilde{a}_{k+1} > 0$ and $a_1 \ge \tilde{a}_1$. If for any $\tilde{w} \in \mathbb{R}^K_+$ there exists $w \in \mathbb{R}^K_+$ $N_0w = \tilde{N}_0\tilde{w}$ and $N_1w = \tilde{N}_1\tilde{w}$ then for $k \in \{1, \ldots, K\}$ $a_k = \tilde{a}_k$ and $w = \tilde{w}$.

LEMMA 2. Let N_0 , N_0 be two definite positive matrices of size $K \times K$ such that for $u \in \{1, \ldots, K\}$ and $k \in \{1, \ldots, K\}$,

$$N_0[u,k] = a_k^{u-1}, \ N_1[u,k] = a_k^{K+u-1}$$

with $a_k > a_{k+1} > 0$, $\tilde{a}_k > \tilde{a}_{k+1} > 0$ and $a_1 \ge \tilde{a}_1$. Let $D_u = \text{diag}(a_1^{Ku}, \ldots, a_K^{Ku})$ and $\tilde{D}_u = \text{diag}(\tilde{a}_1^{Ku}, \ldots, \tilde{a}_K^{Ku})$. If there exist $\alpha \in]0, 1[$, $\tilde{\alpha} \in]0, 1[$, $w \in \mathbb{R}^K_+$ and $\tilde{w} \in \mathbb{R}^K_+$ such that for $u \in \{0, \ldots, K-1\}$, we have

$$\alpha N_0 D_u w = \tilde{\alpha} \tilde{N}_0 \tilde{D}_u \tilde{w},$$

then for $k \in \{1, \ldots, K\}$ $a_k = \tilde{a}_k$ and $w = \tilde{w}$.

We consider the marginal distribution of $(y_{i(0)}, \ldots, y_{i(t-1)})$ with $t = 1, \ldots, 2K$, where $y_{i(0)} = y_{i(t')}$ for each $t' = 1, \ldots, t-3$, $y_{i(t-2)} = y_{i(0)}^{\tau_1}$, $y_{i(t-1)} = y_{i(0)}^{\tau_2}$ and $y_{i(t)} = y_{i(0)}^{\tau_3}$. Therefore, taking $\tau_1 = \tau_2 = \tau_3 = 1$ and letting $y_{i(0)}$ tend to ρ (see Assumption 1), we obtain, for $t = 1, \ldots, 2K$, that

$$(1-\varepsilon_1)\sum_{k=1}^{K}\delta_k\pi_{k1} \left(\boldsymbol{A}_k[1,1](1-\varepsilon_1)\right)^{t-1} = (1-\tilde{\varepsilon}_1)\sum_{k=1}^{K}\tilde{\delta}_k\tilde{\pi}_{k1} \left(\tilde{\boldsymbol{A}}_k[1,1](1-\tilde{\varepsilon}_1)\right)^{t-1}.$$

Because, we consider 2K marginal distributions, we can use Lemma 2 by setting $\alpha = (1-\varepsilon)$, $\tilde{\alpha} = (1-\tilde{\varepsilon}), a_k = \mathbf{A}_k[1,1](1-\varepsilon_1), \tilde{a}_k = \tilde{\mathbf{A}}_k[1,1](1-\tilde{\varepsilon}_1), w_k = \delta_k \pi_{k1}$ and $w_k = \tilde{\delta}_k \tilde{\pi}_{k1}$. Therefore, we have $\varepsilon = \tilde{\varepsilon}, \mathbf{A}_k[1,1] = \tilde{\mathbf{A}}_k[1,1]$ and $\delta_k \pi_{k1} = \tilde{\delta}_k \tilde{\pi}_{k1}$. Using the previous approach, with $\tau_1 = \tau_2 = 1$ and $\tau_3 < 1$, with $h = 2, \ldots, M$, we have for $t = 1, \ldots, K$

$$(1 - \varepsilon_h)(1 - \varepsilon_1) \sum_{k=1}^{K} \delta_k \pi_{k1} \left(\mathbf{A}_k[1, 1](1 - \varepsilon_1) \right)^{t-2} \mathbf{A}_k[1, h] = (1 - \tilde{\varepsilon}_h)(1 - \varepsilon_1) \sum_{k=1}^{K} \delta_k \pi_{k1} \left(\mathbf{A}_k[1, 1](1 - \varepsilon_1) \right)^{t-2} \tilde{\mathbf{A}}_k[1, h],$$

and thus $A_k[1,h] = \tilde{A}_k[1,h]$ and $\varepsilon_h = \tilde{\varepsilon}_h$. Similarly, taking $\tau_2 < 1$ and $\tau_1 = \tau_3 = 1$, we have $A_k[h,1] = \tilde{A}_k[h,1]$. Finally, we have $A_k[h,h'] = \tilde{A}_k[h,h']$ by increasing h and h', by noting that with suitable choices of τ_1, τ_2 and τ_3 , we have for $t = 1, \ldots, K$

$$\sum_{k=1}^{K} \delta_k \pi_{k1} \left(\boldsymbol{A}_k[1,1](1-\varepsilon_1) \right)^{t-2} \boldsymbol{A}_k[1,h] \boldsymbol{A}_k[h,h'] \boldsymbol{A}_k[h',1] = \sum_{k=1}^{K} \tilde{\delta}_k \tilde{\pi}_{k1} \left(\boldsymbol{A}_k[1,1](1-\varepsilon_1) \right)^{t-2} \boldsymbol{A}_k[1,h] \tilde{\boldsymbol{A}}_k[h,h'] \boldsymbol{A}_k[h',1].$$

1.3. Proofs of the two technical lemmas.

PROOF OF LEMMA 1. Since $a_k \neq a_{k'}$ and $\tilde{a}_k \neq \tilde{a}_{k'}$, then N_0 , N_1 , \tilde{N}_0 and \tilde{N}_1 are Vandermonde matrices and thus are invertible. Therefore, we have $w = N_0^{-1} \tilde{N}_0 \tilde{w} = N_1^{-1} \tilde{N}_1 \tilde{w}$, and thus

$$(N_0^{-1}\tilde{N}_0 - N_1^{-1}\tilde{N}_1)\tilde{w} = 0,$$

or similarly for $u \in \{1, \ldots, K\}$,

$$\sum_{k=1}^{K} a_k^u w_k = \sum_{k=1}^{K} \tilde{a}_k^u \tilde{w}_k.$$

Since the previous equation holds for any \tilde{w} , we have $N_0^{-1}\tilde{N}_0 = N_1^{-1}\tilde{N}_1$. Moreover, we have $N_1 = N_0 D$ and $\tilde{N}_1 = \tilde{N}_0 \tilde{D}$ where $D = \text{diag}(a_1^K, \ldots, a_K^K)$ and $\tilde{D} = \text{diag}(\tilde{a}_1^K, \ldots, \tilde{a}_K^K)$. Denoting $R = N_0^{-1}\tilde{N}_0$, $DR = R\tilde{D}$ and then for $u \in \{1, \ldots, K\}$ and $k \in \{1, \ldots, K\}$

(1)
$$a_u^K R[u,k] = \tilde{a}_k^K R[u,k].$$

We now show that $D = \tilde{D}$ and, $w = \tilde{w}$, and hence $R = I_K$ and $\tilde{N}_0 = N_0$, where I_K is the identity matrix of size K. First we show that $a_1 = \tilde{a}_1$ and $w_1 = \tilde{w}_1$.

- If $R[1, j] \neq 0$, (1) implies that $a_1^K R[1, j] = \tilde{a}_j^K R[1, j]$ and thus $a_1 = \tilde{a}_j$. However, this is impossible because $a_1 \ge \tilde{a}_1 > a_j$ for $j \in \{2, \ldots, K\}$. Hence, we have R[1, j] = 0 for $j = 2, \ldots, K$.
- Noting that R is a product of two invertible matrices, R is invertible. Therefore, $R[1,1] \neq 0$ because R[1,j] = 0 for j = 2, ..., K. Hence, we have $a_1 = \tilde{a}_1$.
- Note that $R[1,1] = \sum_{k=1}^{K} (N_0^{-1})[1,k] \tilde{N}_0[k,1]$ and that $\tilde{N}_0[k,1] = \tilde{a}_1^k = a_1^k = N_0[k,1]$. Therefore, we have $R[1,1] = \sum_{k=1}^{K} (N_0^{-1})[1,k] N_0[k,1] = (N_0^{-1}N_0)[1,1] = 1$.
- For $j = 2, \ldots, K$, $a_1 > a_j$ so we have R[j, 1] = 0, because $a_1 = \tilde{a}_1$.
- Because $w = R\tilde{w}$, we have $w_1 = \tilde{w}_1$.

Equality of $a_k = \tilde{a}_k$ and $w_k = \tilde{w}_k$ can be shown recursively for k = 2, ..., K using the same reasoning.

2. Probabilities of misclassification.

2.1. Technical lemmas. This section presents some notations and three lemmas which are used for the proof of Theorem 2. The technical lemmas discuss the concentration of the frequency of the observation $y_{i(t)}$ in a region of interest W, give an upper bound of $p(\mathbf{y}_i \mid Z_{ik} = 1)$ and a concentration result of the ratio of $\frac{p(\tilde{\mathbf{x}}_{ik}, \mathbf{y}_i \mid Z_{ik} = 1)}{p(\tilde{\mathbf{x}}_{ik}, \mathbf{y}_i \mid Z_{ik} = 1)}$, where $\tilde{x}_{ik} = \operatorname{argmax}_{\mathbf{x}_i \in \mathcal{X}} p(\mathbf{x}_i, \mathbf{y}_i \mid Z_{ik} = 1)$ is the estimator of the latent states conditionally on the observation \mathbf{y}_i and on component k obtained by applying the maximum a posteriori rule with the true parameter $\boldsymbol{\theta}$. The proof of the lemmas uses two concentration results for hidden Markov chains given by Kontorovich and Weiss (2014) and by León and Perron (2004).

Preliminaries Let $\boldsymbol{v}_{ik(t)} = (v_{ik(t)h\ell}; h = 1, \dots, M; \ell = 1, \dots, M)$ with $v_{ik(t)h\ell} = x_{ik(t-1)h}x_{ik(t)\ell}$ and $\tilde{\boldsymbol{v}}_{ik(t)} = (\tilde{v}_{ik(t)h\ell}; h = 1, \dots, M; \ell = 1, \dots, M)$ with $\tilde{v}_{ik(t)h\ell} = \tilde{x}_{ik(t-1)h}\tilde{x}_{ik(t)\ell}$. In the following, $\mathbb{P}_0(\cdot) = \mathbb{P}(\cdot \mid Z_{ik_0} = 1)$ by considering the true parameters.

REMARK 1. For any k = 1, ..., g, $V_{ik(t)}$ is a finite, ergodic and reversible Markov chain with M^2 states and transition matrix P_k with general term defined for any $(h_1, h_2, h_3, h_4) \in M^4$ by

$$\boldsymbol{P}_{k}[(h_{1}-1)M+h_{2},(h_{3}-1)M+h_{4}] = \mathbb{P}(V_{ik(t)h\ell}=1) = \begin{cases} 0 & \text{if } h_{2} \neq h_{3} \\ \boldsymbol{A}_{k}[h_{2},h_{4}] & \text{otherwise} \end{cases}$$

Moreover, the non-zero eigenvalues of P_k are the non-zero eigenvalues of A_k and the eigenvectors of P_k are obtained from the eigenvectors of A_k .

THEOREM 1 (Kontorovich and Weiss (2014)). Let $U_{(1)}, U_{(2)}, \ldots$ be a stationary \mathbb{N} -valued (G, η) -geometrically ergodic Markov or hidden Markov chain, and consider the occupation frequency

$$\hat{\rho}(E) = \frac{1}{T} \sum_{t=1}^{T} \mathbf{1}_{\{U_{(t)} \in E\}}, \quad E \subset \mathbb{N}.$$

When $\sum_{u \in \mathbb{N}} \sqrt{\rho_u} < \infty$ with $\rho_u = \mathbb{P}(U_{(1)} = u)$, then for any $\varepsilon > 0$

$$\mathbb{P}\left(\sup_{E \subset \mathbb{N}} \mid \rho(E) - \hat{\rho}(E) \mid > \varepsilon + \gamma_T(G, \eta) \sum_{y \in \mathbb{N}} \sqrt{\rho_y}\right) \le e^{-\frac{T}{2G^2}(1-\eta)^2 \varepsilon^2},$$

where

$$\gamma_T(G,\eta) = \frac{1}{2}\sqrt{\frac{1+2G\eta}{T(1-\eta)}}.$$

THEOREM 2 (León and Perron (2004)). For all pairs (V, f), such that $V = (V_{(1)}, \ldots, V_{(T)})$ is a finite, ergodic and reversible Markov chain in stationary state with the second-largest eigenvalue λ and f is a function taking values in [0, 1] such that $\mathbb{E}[f(V_{(t)})] < \infty$, the following bounds, with $\lambda_0 = \max(0, \lambda)$, hold for all s > 0 such that $\mathbb{E}[f(V_{(t)})] + s < 1$ and all time T

$$\mathbb{P}\left(\sum_{t=1}^{T} f(V_{(t)}) \ge (\mathbb{E}[f(V_{(1)})] + s)T \mid Z_{ik_0} = 1\right) \le \exp\left(-2\frac{1-\lambda_0}{1+\lambda_0}Ts^2\right).$$

Concentration of the frequency of the observations in W Let $W \subset \mathbb{R}^+$ be the subset of \mathbb{R}^+ where the estimator of $x_{i(t)}$ obtained by the maximum a posteriori rule is sensitive to $x_{i(t-1)}$ and $x_{i(t)}$ conditionally on $y_{i(t)}$ and component k. We define

$$W = \{ u \in \mathbb{R}^+ : \operatorname{card}(\cup_{k=1}^g E_k(u)) \ge 2 \},\$$

where

$$E_k(u) = \{h_2: \exists (h_1, h_3), h_2 = \operatorname{argmax} e_k(u; h_1, h_2, h_3)\}$$

and

$$e_k(u; h_1, h_2, h_3) = \mathbf{A}_k[h_1, h_2]\mathbf{A}_k[h_2, h_3]g(u; \boldsymbol{\lambda}_{h_2})$$

LEMMA 3. Let $\rho_{k_0} = \mathbb{P}_0(Y_{i(2)} \in W)$ and $\hat{\rho}_{k_0} = \sum_{t=1}^T \mathbf{1}_{\{y_{i(t)} \in W\}}$. For any $\delta_1 > \frac{1}{\sqrt{2T}}$,

$$\mathbb{P}_0(\hat{\rho}_{k_0} < \rho_{k_0} - \delta_1) \le e^{-Tc_1},$$

 $\delta_1 = \varepsilon + \frac{1}{\sqrt{2T}}$ and $c_1 = \frac{1}{2}(\delta_1 - \frac{1}{\sqrt{2T}})^2 > 0$. Moreover, $\hat{\rho}_{k_0}$ is a consistent estimate of ρ_{k_0} because the marginal distribution of $Y_{i(t)}$ is the same for any t, and thus $\rho_{k_0} = \mathbb{P}_0(Y_{i(t)} \in W)$ for any t.

PROOF OF LEMMA 3. We have,

$$\mathbb{P}\left(\mid \rho_{k_0} - \hat{\rho}_{k_0} \mid > \varepsilon + \frac{1}{\sqrt{2T}}\right) \leq \mathbb{P}\left(\mid \rho_{k_0} - \hat{\rho}_{k_0} \mid > \varepsilon + \frac{1}{2\sqrt{T}}(\sqrt{\rho_{k_0}} + \sqrt{1 - \rho_{k_0}})\right).$$

Let $U_{(t)} = \mathbf{1}_{\{y_{i(t)} \in W\}}$. Then, for any $k = 1, \ldots, g, U_{(1)}, \ldots, U_{(T)}$ is a stationary $\{0, 1\}$ -valued (1, 0)-geometrically ergodic hidden Markov chain conditionally on component k. Hence, by Theorem 1,

$$\mathbb{P}\left(\mid \rho_{k_0} - \hat{\rho}_{k_0} \mid > \varepsilon + \frac{1}{2\sqrt{T}}(\sqrt{\rho_{k_0}} + \sqrt{1 - \rho_{k_0}})\right) \le e^{-\frac{T}{2}\varepsilon^2}.$$

We can conclude that

$$\mathbb{P}\left(\hat{\rho}_{k_0} < \rho_{k_0} - \delta_1\right) \le e^{-Tc_1},$$

$$\delta_1 = \varepsilon + \frac{1}{\sqrt{2T}} \text{ and } c_1 = \frac{1}{2}\left(\delta_1 - \frac{1}{\sqrt{2T}}\right)^2.$$

Upper-bound of the conditional probability of y_i given $Z_{ik} = 1$ Let γ and $\bar{\gamma}$ be upper-bounds of the ratio $\frac{p(\tilde{x}_{i(t-1)}, x_{i(t)}, \tilde{x}_{i(t+1)}, y_{i(t)} | Z_{ik} = 1)}{p(\tilde{x}_{i(t-1)}, \tilde{x}_{i(t)}, \tilde{x}_{i(t+1)}, y_{i(t)} | Z_{ik} = 1)}$ when $y_{i(t)} \in W$ and $y_{i(t)} \notin W$ respectively. Thus, $\gamma = \max_k \max_{h_1, h_2, h_3, h_4} \frac{A_k[h_1, h_2]}{A_k[h_3, h_4]}$ and $\bar{\gamma}$ permit to upper bound the ratio between the likelihood computed for any $(\boldsymbol{x}_i, \boldsymbol{y}_i)$ given $Z_{ik} = 1$ and the likelihood computed with $(\tilde{\boldsymbol{x}}_{ik}, \boldsymbol{y}_i)$ given $Z_{ik} = 1$. We have, if $y_{i(t)} \in W$,

 $\frac{p(\tilde{x}_{i(t-1)}, x_{i(t)}, \tilde{x}_{i(t+1)}, y_{i(t)} \mid Z_{ik} = 1)}{p(\tilde{x}_{i(t-1)}, \tilde{x}_{i(t)}, \tilde{x}_{i(t+1)}, y_{i(t)} \mid Z_{ik} = 1)} \leq \max_{u \in W} \max_{h_2 \in E_k(u), h_{2'} \in E_k(u), h_2 \neq h_{2'}} \frac{\max_{(h_1, h_3)} e_k(u; h_1, h_2, h_3)}{\min_{(h_{1'}, h_{3'}) \in \mathbf{e}_k(u; h_{2'})} e_k(u; h_{1'}, h_{2'}, h_{3'})} \leq \gamma,$ where $\mathbf{e}_k(u; h_2) = \{(h_1, h_3) : h_2 = \operatorname{argmax} e_k(u; h_1, h_2, h_3)\}$. Moreover, we have, if $y_{i(t)} \notin W$,

$$\frac{p(\tilde{x}_{i(t-1)}, x_{i(t)}, \tilde{x}_{i(t+1)}, y_{i(t)} \mid Z_{ik} = 1)}{p(\tilde{x}_{i(t-1)}, \tilde{x}_{i(t)}, \tilde{x}_{i(t+1)}, y_{i(t)} \mid Z_{ik} = 1)} \le \max_{u \notin W} \frac{\max_{h_2} \max_{(h_1, h_3) \notin \mathbf{e}_k(u; h_2)} e_k(u; h_1, h_2, h_3)}{\max_{h_2 \in E_k(u)} \min_{(h_1', h_{3'}) \in \mathbf{e}_k(u; h_{2'})} e_k(u; h_{1'}, h_{2'}, h_{3'}))} = \bar{\gamma}.$$

Note that $\gamma \geq 1$ and $\bar{\gamma} < 1$.

LEMMA 4. We have, for any $k = 1, \ldots, g$,

$$\log p(\boldsymbol{y}_i \mid Z_{ik} = 1) \le \log p(\tilde{\boldsymbol{x}}_{ik}, \boldsymbol{y}_i \mid Z_{ik} = 1) + T \log(\tilde{\gamma} + \bar{\gamma}) + T \hat{\rho}_{k_0} c_2 + \log \tilde{\gamma} + \log \left(2M\gamma \max_{h,\ell} \frac{\pi_{kh}}{\pi_{k\ell}} \right)$$
where $c_0 = 1 + \gamma$ and $\tilde{c}_i = \max(2, \gamma)$

where $c_2 = 1 + \frac{\gamma}{1+\bar{\gamma}}$ and $\tilde{\gamma} = \max(2,\gamma)$.

PROOF OF LEMMA 4. By definition, we have

$$p(\boldsymbol{y}_i \mid Z_{ik} = 1) = p(\tilde{\boldsymbol{x}}_{ik}, \boldsymbol{y}_i \mid Z_{ik} = 1) \sum_{\boldsymbol{x} \in \mathcal{X}} \frac{p(\boldsymbol{x}, \boldsymbol{y}_i \mid Z_{ik} = 1)}{p(\tilde{\boldsymbol{x}}_{ik}, \boldsymbol{y}_i \mid Z_{ik} = 1)}$$

Let $B_p(\tilde{x}_{ik}) = \{ x : || x - x_{ik} ||_0 = p \}$, then

$$\sum_{\boldsymbol{x}\in\mathcal{X}} \frac{p(\boldsymbol{x},\boldsymbol{y}_i \mid Z_{ik}=1)}{p(\tilde{\boldsymbol{x}}_{ik},\boldsymbol{y}_i \mid Z_{ik}=1)} = \sum_{p=0}^{T+1} \sum_{\boldsymbol{x}\in B_p(\tilde{\boldsymbol{x}}_{ik})} \frac{p(\boldsymbol{x},\boldsymbol{y}_i \mid Z_{ik}=1)}{p(\tilde{\boldsymbol{x}}_{ik},\boldsymbol{y}_i \mid Z_{ik}=1)}.$$

Remark that

$$\frac{p(\bm{x}_{i(0)}, \bm{y}_{i(0)} \mid Z_{ik} = 1, \bm{x}_{i(1)}, \bm{y}_{i(1)})}{p(\tilde{\bm{x}}_{i(0)}, \bm{y}_{i(0)} \mid Z_{ik} = 1, \tilde{\bm{x}}_{i(1)}, \bm{y}_{i(1)})} < \gamma \max_{h, \ell} \frac{\pi_{kh}}{\pi_{k\ell}}.$$

Moreover, we observe $T_W = T \hat{\rho}_{k_0}$ elements of the sequence $y_{i(1)}, \ldots, y_{i(T)}$ which belongs to

W. We have

$$\begin{split} \sum_{\boldsymbol{x}\in\mathcal{X}} \frac{p(\boldsymbol{x},\boldsymbol{y}_i \mid Z_{ik}=1)}{p(\tilde{\boldsymbol{x}}_{ik},\boldsymbol{y}_i \mid Z_{ik}=1)} &\leq \left(M\gamma \max_{h,\ell} \frac{\pi_{kh}}{\pi_{k\ell}}\right) \sum_{p=0}^T \sum_{r=0}^p \binom{T_W}{\min(r,T_W)} \binom{T-T_W}{\min(u,T-T_W)} \gamma^r \bar{\gamma}^u \\ &= \left(M\gamma \max_{h,\ell} \frac{\pi_{kh}}{\pi_{k\ell}}\right) \left(\sum_{r=0}^{T_W} \binom{T_W}{r} \gamma^r \sum_{u=0}^{T-r} \binom{T-T_W}{u} \bar{\gamma}^u \right. \\ &+ \sum_{r=1+T_W}^T \sum_{u=0}^{T-r} \binom{T-T_W}{\min(u,T-T_W)} \gamma^r \bar{\gamma}^u \right). \end{split}$$

We have

$$\sum_{r=0}^{T_W} {T_W \choose r} \gamma^r \sum_{u=0}^{T-r} {T-T_W \choose u} \bar{\gamma}^u = (1+\bar{\gamma})^T \left(1+\frac{\gamma}{1+\bar{\gamma}}\right)^{T_W},$$

and

$$\sum_{r=1+T_W}^T \sum_{u=0}^{T-r} \binom{T-T_W}{\min(u,T-T_W)} \gamma^r \bar{\gamma}^u \le (\tilde{\gamma}+\bar{\gamma})^T \tilde{\gamma} \left(\frac{\tilde{\gamma}}{\bar{\gamma}+\tilde{\gamma}}\right)^{T_W},$$

where $\tilde{\gamma} = \max(2, \gamma)$. Noting that $1 + \bar{\gamma} < \tilde{\gamma} + \bar{\gamma}$ and $1 + \frac{\gamma}{1 + \bar{\gamma}} > \frac{\tilde{\gamma}}{\bar{\gamma} + \bar{\gamma}}$, we have

$$\log p(\boldsymbol{y}_i \mid Z_{ik} = 1) \leq \log p(\tilde{\boldsymbol{x}}_{ik}, \boldsymbol{y}_i \mid Z_{ik} = 1) + T \log(\tilde{\gamma} + \bar{\gamma}) + T \hat{\rho}_{k_0} c_2 + \log \tilde{\gamma} + \log \left(2M\gamma \max_{h,\ell} \frac{\pi_{kh}}{\pi_{k\ell}} \right)$$

where $c_2 = 1 + \frac{\gamma}{1 + \bar{\gamma}}$. Note that $\gamma + 1 > c_2 > 1$.

Concentration of the ratio of complete-data likelihood

LEMMA 5. For any $k \neq k_0$ and for any δ_3 such that $-\zeta < \delta_3 < u_{kk_0}$, we have

$$\mathbb{P}_0\left(\frac{1}{T}\sum_{t=1}^T\sum_{h=1}^M\sum_{\ell=1}^M v_{i(t)h\ell}\log\left(\frac{A_k[h,\ell]}{A_{k_0}[h,\ell]}\right) > \delta_3\right) \le \exp\left(-Tc_3\right),$$

where $c_3 = 2 \frac{1 - \bar{\nu}_2(\mathbf{A}_{k_0})}{1 + \bar{\nu}_2(\mathbf{A}_{k_0})} s^2 > 0$ and $s = \frac{\delta_3}{\omega_{kk_0}} + \frac{1}{\omega_{kk_0}} \sum_{h=1}^M \sum_{\ell=1}^M \pi_{k_0 h} A_{k_0}[h, \ell] \log\left(\frac{A_{k_0}[h, \ell]}{A_k[h, \ell]}\right).$

PROOF OF LEMMA 5. Let $f(\cdot) \in [0, 1]$ defined by

$$f(\boldsymbol{v}_{i(t)}) = \frac{1}{\omega_{kk_0}} \left(\sum_{h=1}^{M} \sum_{\ell=1}^{M} v_{i(t)h\ell} \log \left(\frac{A_k[h,\ell]}{A_{k_0}[h,\ell]} \right) + u_{k_0k} \right),$$

where $\omega_{kk_0} = u_{kk_0} + u_{k_0k}$, $u_{kk_0} = \max_{(h,\ell)} \log \left(\frac{A_k[h,\ell]}{A_{k_0}[h,\ell]} \right)$. Denoting $\mathbb{E}_0[\cdot] = \mathbb{E}[\cdot \mid Z_{ik_0} = 1]$ the conditional expectation computed with the true parameters, we have, for $t = 1, \ldots, T$,

$$\mathbb{E}_{0}\left[f(\boldsymbol{V}_{i(t)})\right] = \frac{1}{\omega_{kk_{0}}} \sum_{h=1}^{M} \sum_{\ell=1}^{M} \pi_{k_{0}h} A_{k_{0}}[h,\ell] \left(\log\left(\frac{A_{k}[h,\ell]}{A_{k_{0}}[h,\ell]}\right) + u_{k_{0}k}\right).$$

Therefore, we have

$$\mathbb{P}_{0}\left(\sum_{t=1}^{T}\sum_{h=1}^{M}\sum_{\ell=1}^{M}v_{i(t)h\ell}\log\left(\frac{A_{k}[h,\ell]}{A_{k_{0}}[h,\ell]}\right) > \delta_{2}\right) = \mathbb{P}_{0}\left(\sum_{t=1}^{T}f(\boldsymbol{v}_{i(t)}) > \frac{\delta_{2}+Tu_{k_{0}k}}{\omega_{kk_{0}}}\right)$$
$$= \mathbb{P}_{0}\left(\sum_{t=1}^{T}f(\boldsymbol{v}_{i(t)}) > T(\mathbb{E}[f(\boldsymbol{V}_{i(1)})]+s)\right),$$

where $s = \frac{\delta_2}{T\omega_{kk_0}} + \frac{1}{\omega_{kk_0}} \sum_{h=1}^{M} \sum_{\ell=1}^{M} \pi_{k_0 h} A_{k_0}[h, \ell] \log\left(\frac{A_{k_0}[h, \ell]}{A_k[h, \ell]}\right).$

Note that $\omega_{kk_0} > 0$ and that, by Assumption 3, $\sum_{h=1}^{M} \sum_{\ell=1}^{M} \pi_{k_0 h} A_{k_0}[h, \ell] \log \left(\frac{A_{k_0}[h, \ell]}{A_k[h, \ell]}\right) > \zeta > 0$ because it is a weighted sum of M Kullback-Leibler divergences. Thus, if $-T\zeta < \delta_2$ then s > 0. Moreover, if $\delta_2 < Tu_{kk_0}$, then $\mathbb{E}[f(\mathbf{V}_{i(1)})] + s < 1$. Assumption 1 and Remark 1 imply that $\bar{\nu}_2(\mathbf{A}_{k_0})$ is the maximum between zero and the second-largest eigenvalue of reversible Markov chain of $\mathbf{V}_{i(t)}$. Therefore, using Theorem 2, we have for any δ_3 such that $-\zeta < \delta_3 < u_{kk_0}$,

$$\mathbb{P}_{0}\left(\frac{1}{T}\sum_{t=1}^{T}\sum_{h=1}^{M}\sum_{\ell=1}^{M}v_{i(t)h\ell}\log\left(\frac{A_{k}[h,\ell]}{A_{k_{0}}[h,\ell]}\right) > \delta_{3}\right) \leq \exp\left(-Tc_{3}\right),$$

where $c_{3} = 2\frac{1-\bar{\nu}_{2}(A_{k_{0}})}{1+\bar{\nu}_{2}(A_{k_{0}})}s^{2}$ and $s = \frac{\delta_{3}}{\omega_{kk_{0}}} + \frac{1}{\omega_{kk_{0}}}\sum_{h=1}^{M}\sum_{\ell=1}^{M}\pi_{k_{0}h}A_{k_{0}}[h,\ell]\log\left(\frac{A_{k_{0}}[h,\ell]}{A_{k}[h,\ell]}\right).$

2.2. Proof of Theorem 2. Noting that $\mathbb{P}(Z_{ik} = 1 \mid \boldsymbol{y}_i) \propto \delta_k p(\boldsymbol{y}_i \mid Z_{ik} = 1)$ and using Lemma 4, we have

$$\mathbb{P}_0\left(\frac{\mathbb{P}(Z_{ik}=1 \mid \boldsymbol{y}_i)}{\mathbb{P}(Z_{ik_0}=1 \mid \boldsymbol{y}_i)} > a\right) \le \mathbb{P}_0\left(\log \frac{p(\tilde{\boldsymbol{x}}_{ik}, \boldsymbol{y}_i \mid Z_{ik}=1)}{p(\tilde{\boldsymbol{x}}_{ik_0}, \boldsymbol{y}_i \mid Z_{ik_0}=1)} > -\log \frac{\delta_k}{a\delta_{k_0}} - \log\left(2M\tilde{\gamma}\gamma \max_{h,\ell} \frac{\pi_{kh}}{\pi_{k\ell}}\right) - T\log(\tilde{\gamma} + \bar{\gamma}) - T\hat{\rho}_{k_0}c_2)$$

Moreover,

$$\log \frac{p(\tilde{\boldsymbol{x}}_{ik}, \boldsymbol{y}_i \mid Z_{ik} = 1)}{p(\tilde{\boldsymbol{x}}_{ik_0}, \boldsymbol{y}_i \mid Z_{ik_0} = 1)} = \sum_{t=1}^T \left(d_{k1(t)} + d_{k2(t)} \right) + \sum_{h=1}^M \tilde{x}_{ik(1)h} \log \pi_{kh} - \tilde{x}_{ik_0(1)h} \log \pi_{k0h} + d_{k2(t)} \right)$$

where

$$d_{k1(t)} = \sum_{h=1}^{M} \sum_{\ell=1}^{M} \left(\tilde{v}_{ik(t)h\ell} - \tilde{v}_{ik_0(t)h\ell} \right) \log \left(\boldsymbol{A}_{k_0}[h,\ell] g_{\ell}(y_{i(t)};\boldsymbol{\lambda}_{\ell},\varepsilon_{\ell}) \right),$$

and

$$d_{k2(t)} = \sum_{h=1}^{M} \sum_{\ell=1}^{M} \tilde{v}_{ik(t)h\ell} \log \frac{A_k[h,\ell]}{A_{k_0}[h,\ell]}.$$

Therefore, we have

$$\mathbb{P}_{0}\left(\frac{\mathbb{P}(Z_{ik}=1 \mid \boldsymbol{y}_{i})}{\mathbb{P}(Z_{ik_{0}}=1 \mid \boldsymbol{y}_{i})} > a\right) \leq \mathbb{P}_{0}\left(\frac{1}{T}\sum_{t=1}^{T}\left(d_{k1(t)}+d_{k2(t)}\right) > -\frac{c_{4}}{T} - \log(\tilde{\gamma}+\bar{\gamma}) - \hat{\rho}_{k_{0}}c_{2}\right),$$

with $c_4 = \log \frac{\delta_k}{a\delta_{k_0}} + \log \left(2M\tilde{\gamma}\gamma \max_{h,\ell} \frac{\pi_{kh}}{\pi_{k\ell}} \right) + \max_{k,k_0,h,\ell} \log \frac{\pi_{kh}}{\pi_{k_0\ell}}$. By definition of W, we have $\tilde{v}_{ik(t)h\ell} = \tilde{v}_{ik_0(t)h\ell}$ if $y_{i(t)} \notin W$. Moreover, because \tilde{v}_{ik_0} is the maximum *a posteriori* rule, if $y_{i(t)} \in W$, then $d_{k_1(t)} < \gamma$. Therefore, we have

$$\mathbb{P}_{0}\left(\frac{\mathbb{P}(Z_{ik}=1 \mid \boldsymbol{y}_{i})}{\mathbb{P}(Z_{ik_{0}}=1 \mid \boldsymbol{y}_{i})} > a\right) \leq \mathbb{P}_{0}\left(\frac{1}{T}\sum_{t=1}^{T} d_{k2(t)} > -\frac{c_{4}}{T} - (\gamma + c_{2})\hat{\rho}_{k_{0}} - \log(\tilde{\gamma} + \bar{\gamma})\right).$$

Hence, we have,

$$\mathbb{P}_{0}\left(\frac{\mathbb{P}(Z_{ik}=1 \mid \boldsymbol{y}_{i})}{\mathbb{P}(Z_{ik_{0}}=1 \mid \boldsymbol{y}_{i})} > a\right) \leq \mathbb{P}_{0}\left(\hat{\rho}_{k_{0}} > \rho_{k_{0}} + \delta_{1}\right) + \mathbb{P}_{0}\left(\frac{1}{T}\sum_{t=1}^{T}d_{k_{2}}(t) > -\frac{c_{4}}{T} - \log(\tilde{\gamma} + \bar{\gamma}) - (\gamma + c_{2})(\rho_{k_{0}} + \delta_{1})\right)$$

Using Lemma 3, if $\delta_1 > \frac{1}{\sqrt{2T}}$, the first term of the right side of the previous equation can be upper bounded by e^{-Tc_1} with $c_1 = \frac{1}{2}(\delta_1 - \frac{1}{\sqrt{2T}})^2$.

Using Lemma 5, the second term of the right-hand side of the previous equation can be upper bounded by e^{-Tc_3} with $c_3 = 2\frac{1-\bar{\nu}_2(A_{k_0})}{1+\bar{\nu}_2(A_{k_0})}s^2$, where $s = \frac{\delta_3}{\omega_{kk_0}} + \frac{1}{\omega_{kk_0}}\sum_{h=1}^M \sum_{\ell=1}^M \pi_{k_0h}A_{k_0}[h,\ell]\log\left(\frac{A_{k_0}[h,\ell]}{A_k[h,\ell]}\right)$ and $\delta_3 = -\frac{c_4}{T} - \log(\tilde{\gamma} + \bar{\gamma}) - (\gamma + c_2)(\rho_{k_0} + \delta_1)$, if δ_3 is such that $-\zeta < \delta_3 < u_{kk_0}$. Thus, we have the following condition on δ_1

$$\frac{\zeta - \frac{c_4}{T} - \log(\tilde{\gamma} + \bar{\gamma})}{\gamma + c_2} - \rho_{k_0} > \delta_1 > -\frac{u_{kk_0} + \frac{c_4}{T} + \log(\tilde{\gamma} + \bar{\gamma})}{\gamma + c_2} - \rho_{k_0}$$

Noting that $\gamma + c_2 < 1 + 2\gamma$, the previous upper bound can be satisfied under the following assumption

ASSUMPTION 1. It holds that

$$\frac{\zeta - c_4 - \log(\tilde{\gamma} + \bar{\gamma})}{1 + 2\gamma} - \rho_{k_0} - \frac{1}{\sqrt{2}} > 0,$$

with $c_4 = \log \frac{\delta_k}{a\delta_{k_0}} + \log \left(2M\tilde{\gamma}\gamma \max_{h,\ell} \frac{\pi_{kh}}{\pi_{k\ell}} \right) + \max_{k,k_0,h,\ell} \log \frac{\pi_{kh}}{\pi_{k_0\ell}}.$

For any *a* such that Assumption 1 holds and for any δ_1 with $\frac{1}{\sqrt{2T}} < \delta_1 < \frac{\zeta - c_4 - \log(\tilde{\gamma} + \bar{\gamma})}{\gamma + c_2} - \rho_{k_0}$, we have

$$\mathbb{P}_0\left(\hat{\rho}_{k_0} > \rho_{k_0} + \delta_1\right) \le \mathcal{O}(e^{-Tc_1}),$$

and

$$\mathbb{P}_0\left(\frac{1}{T}\sum_{t=1}^T d_{k2}(t) > \delta_3\right) \le \mathcal{O}(e^{-Tc_3}),$$

with $\delta_3 = -\frac{c_4}{T} - \log(\tilde{\gamma} + \bar{\gamma}) - (\gamma + c_2)(\rho_{k_0} + \delta_1)$. Therefore, there exists c > 0 such that

$$\mathbb{P}_0\left(\frac{\mathbb{P}(Z_{ik}=1 \mid \boldsymbol{y}_i)}{\mathbb{P}(Z_{ik_0}=1 \mid \boldsymbol{y}_i)} > a\right) \le \mathcal{O}(e^{-Tc}).$$

If the misclassification error is studied, we should consider a = 1. Then, a sufficient condition to have the exponential decreasing of the probability of misclassifying an observation is obtained on the basis of Assumption 1 with a = 1.

3. Details about the conditional distribution. Forward formula We define

$$\alpha_{ikhs(t)}(\boldsymbol{\theta}) = \mathbb{P}(X_{is(t)} = h \mid Z_{ik} = 1; \boldsymbol{\theta}) p(y_{is(0)}, \dots, y_{is(t)} \mid X_{is(t)} = h, Z_{ik} = 1; \boldsymbol{\theta}),$$

which measures the probability of the partial sequence $y_{is(0)}, \ldots, y_{is(t)}$ and ending up in state h at time t under component k. For any (i, k, h, s), we can define $\alpha_{ikhs(t)}$ recursively, as follows,

$$\alpha_{ikhs()}(\boldsymbol{\theta}) = \pi_{kh} \, p(y_{is()}; \boldsymbol{\lambda}_h)$$
$$\forall t \in \{0, \dots, T_{is} - 1\} \quad \alpha_{ik\ell s(t+1)}(\boldsymbol{\theta}) = \left(\sum_{h=1}^M A_k[h, \ell] \alpha_{ikhs(t)}(\boldsymbol{\theta})\right) p(y_{is(t+1)}; \boldsymbol{\lambda}_h).$$

Considering independence between the S_i sequences \boldsymbol{y}_{is} , the pdf of \boldsymbol{y}_i under component k is

$$p(\boldsymbol{y}_i \mid Z_{ik} = 1; \boldsymbol{\theta}) = \prod_{s=1}^{S_i} \sum_{h=1}^{M} \alpha_{ikhs(T_{is})}(\boldsymbol{\theta}).$$

Therefore,

$$p(\boldsymbol{y}_i; \boldsymbol{\theta}) = \sum_{k=1}^{K} \delta_k \left(\prod_{s=1}^{S_i} \sum_{h=1}^{M} \alpha_{ikhs(T_{is})}(\boldsymbol{\theta}) \right).$$

Backward formula We define

$$\beta_{ikhs(t)}(\boldsymbol{\theta}) = p(y_{is(t+1)}, \dots, y_{is(T_{is})} \mid X_{is(t)} = h, Z_{ik} = 1; \boldsymbol{\theta}),$$

10

which measures the probability of the ending partial sequence $y_{is(t+1)}, \ldots, y_{is(T_{is})}$ given a start in state h at time t under component k. We can define $\beta_{ikhs(t)}(\boldsymbol{\theta})$ recursively, for any (i, k, h, s), as

$$\beta_{ikhs(T_{is})}(\boldsymbol{\theta}) = 1$$

$$\forall t \in \{0, \dots, T_{is} - 1\} \quad \beta_{ikhs(t)}(\boldsymbol{\theta}) = \sum_{\ell=1}^{M} A_k[h, \ell] p(y_{i(t+1)}; \boldsymbol{\lambda}_{\ell}) \beta_{ik\ell s(t+1)}(\boldsymbol{\theta}).$$

Considering independence between the S_i sequences \boldsymbol{y}_{is} , the pdf of \boldsymbol{y}_i under component k is

$$p(\boldsymbol{y}_i \mid Z_{ik} = 1; \boldsymbol{\theta}) = \prod_{s=1}^{S_i} \sum_{h=1}^{M} \pi_{kh} \beta_{ikhs(0)}(\boldsymbol{\theta}) p(y_{i(0)}; \boldsymbol{\lambda}_h).$$
$$p(\boldsymbol{y}_i; \boldsymbol{\theta}) = \sum_{k=1}^{K} \delta_k \left(\prod_{s=1}^{S_i} \sum_{h=1}^{M} \pi_{kh} \beta_{ikhs(0)}(\boldsymbol{\theta}) p(y_{i(0)}; \boldsymbol{\lambda}_h) \right).$$

4. Additional simulation results.

4.1. Additional tables for the analysis of simulated data.

TABLE 1

Convergence of the estimators with 1000 replicates: ARI between estimated and true partition, ARI between estimated and true latent states and MSE between the MLE and the true parameters

		Adjusted R		Mean square error					
n	T	partition	states	$oldsymbol{A}_k$	ε_h	a_h	b_h	δ_k	
Case hard $(e = 0.75 \text{ and } a_2 = 3)$									
10	100	0.812	0.350	0.097	0.002	0.285	0.085	0.057	
10	500	1.000	0.385	0.031	0.000	0.077	0.024	0.052	
100	100	0.870	0.377	0.032	0.000	0.087	0.028	0.007	
100	500	1.000	0.391	0.018	0.000	0.045	0.017	0.005	
		Case m	nedium-easy	y (e = 0.7)	75 and a	$_2 = 5)$			
10	100	0.996	0.661	0.018	0.001	0.253	0.031	0.052	
10	500	0.999	0.669	0.004	0.000	0.050	0.006	0.052	
100	100	0.998	0.669	0.002	0.000	0.027	0.003	0.005	
100	500	1.000	0.671	0.000	0.000	0.005	0.001	0.005	
		Ca	ise easy (e	$= 0.90 \mathrm{ar}$	$\operatorname{id} a_2 = \$$	5)			
10	100	1.000	0.832	0.006	0.000	0.159	0.017	0.048	
10	500	1.000	0.839	0.001	0.000	0.030	0.003	0.046	
100	100	1.000	0.836	0.001	0.000	0.015	0.002	0.005	
100	500	1.000	0.839	0.000	0.000	0.003	0.000	0.005	

TABLE 2

Convergence of the estimators obtained on 1000 replicates with and without missing data when data are sampled from case hard: ARI between estimated and true partition, ARI between estimated and true latent states and MSE between the MLE and the true parameters

			Adjusted Rand index		Mean square error				
n	T	missingness	partition	states	$oldsymbol{A}_k$	ε_h	a_h	b_h	δ_k
10	100	no missingness	0.812	0.350	0.097	0.002	0.285	0.085	0.057
		MCAR-1	0.753	0.342	0.103	0.002	0.360	0.092	0.061
		MCAR-2	0.690	0.333	0.120	0.003	0.320	0.091	0.068
		MNAR	0.542	0.303	0.152	0.004	0.456	0.109	0.080
10	500	no missingness	1.000	0.385	0.031	0.000	0.077	0.024	0.052
		MCAR-1	1.000	0.386	0.029	0.000	0.072	0.024	0.052
		MCAR-2	0.999	0.385	0.032	0.000	0.074	0.024	0.052
		MNAR	0.991	0.347	0.042	0.003	0.177	0.076	0.052
100	100	no missingness	0.870	0.377	0.032	0.000	0.087	0.028	0.007
		MCAR-1	0.837	0.373	0.033	0.000	0.091	0.030	0.008
		MCAR-2	0.801	0.369	0.035	0.000	0.099	0.032	0.008
		MNAR	0.664	0.337	0.038	0.003	0.099	0.083	0.011
100	500	no missingness	1.000	0.391	0.018	0.000	0.045	0.017	0.005
		MCAR-1	1.000	0.391	0.018	0.000	0.050	0.017	0.005
		MCAR-2	1.000	0.391	0.018	0.000	0.044	0.017	0.005
		MNAR	0.996	0.355	0.023	0.003	0.109	0.073	0.005

TABLE 3

Convergence of the estimators obtained on 1000 replicates with and without missing data when data are sampled from case medium-easy: ARI between estimated and true partition, ARI between estimated and true latent states and MSE between the MLE and the true parameters

			Adjusted Rand index			Mean square error			
n	T	missingness	partition	states	$oldsymbol{A}_k$	ε_h	a_h	b_h	δ_k
10	100	no missingness	0.996	0.661	0.018	0.001	0.253	0.031	0.052
		MCAR-1	0.993	0.659	0.020	0.001	0.276	0.034	0.052
		MCAR-2	0.986	0.657	0.023	0.001	0.308	0.038	0.051
		MNAR	0.966	0.621	0.052	0.004	0.561	0.100	0.052
10	500	no missingness	0.999	0.669	0.004	0.000	0.050	0.006	0.052
		MCAR-1	0.999	0.669	0.004	0.000	0.051	0.006	0.052
		MCAR-2	0.999	0.668	0.004	0.000	0.052	0.007	0.052
		MNAR	1.000	0.636	0.021	0.003	0.217	0.085	0.052
100	100	no missingness	0.998	0.669	0.002	0.000	0.027	0.003	0.005
		MCAR-1	0.996	0.668	0.002	0.000	0.030	0.003	0.005
		MCAR-2	0.993	0.667	0.002	0.000	0.033	0.004	0.005
		MNAR	0.978	0.641	0.013	0.003	0.160	0.074	0.005
100	500	no missingness	1.000	0.671	0.000	0.000	0.005	0.001	0.005
		MCAR-1	1.000	0.671	0.000	0.000	0.005	0.001	0.005
		MCAR-2	1.000	0.671	0.000	0.000	0.005	0.001	0.005
		MNAR	1.000	0.644	0.011	0.003	0.140	0.076	0.005

TABLE 4
Convergence of the estimators obtained on 1000 replicates with and without missing data when data are
sampled from case easy: ARI between estimated and true partition, ARI between estimated and true latent
states and MSE between the MLE and the true parameters

			Adjusted F	Mean square error					
n T	Г	missingness	partition	states	$oldsymbol{A}_k$	ε_h	a_h	b_h	δ_k
10 1	100	no missingness	1.000	0.832	0.006	0.000	0.159	0.017	0.048
		MCAR-1	1.000	0.829	0.007	0.000	0.185	0.019	0.048
		MCAR-2	1.000	0.826	0.008	0.001	0.207	0.022	0.048
		MNAR	1.000	0.771	0.017	0.003	0.315	0.042	0.048
10 5	500	no missingness	1.000	0.839	0.001	0.000	0.030	0.003	0.046
		MCAR-1	1.000	0.838	0.001	0.000	0.031	0.003	0.046
		MCAR-2	1.000	0.837	0.001	0.000	0.031	0.003	0.046
		MNAR	1.000	0.781	0.007	0.003	0.119	0.030	0.046
100 1	100	no missingness	1.000	0.836	0.001	0.000	0.015	0.002	0.005
		MCAR-1	1.000	0.833	0.001	0.000	0.018	0.002	0.005
		MCAR-2	1.000	0.831	0.001	0.000	0.019	0.002	0.005
		MNAR	1.000	0.779	0.006	0.003	0.084	0.026	0.005
100 5	500	no missingness	1.000	0.839	0.000	0.000	0.003	0.000	0.005
		MCAR-1	1.000	0.838	0.000	0.000	0.003	0.000	0.005
		MCAR-2	1.000	0.838	0.000	0.000	0.003	0.000	0.005
		MNAR	1.000	0.783	0.005	0.003	0.072	0.025	0.005

4.2. Additional figures for the analysis of the data from Huang et al. (2018).

FIG 1. State estimation for the three subjects: (top) accelerometer data where color indicates the expected value of $Y_{i(t)}$ conditionally the most likely state and on the most likely component; (bottom) probability of each state at each time.

• sleeping • low • moderate • intensive

FIG 3. Examples of observation assigned into the five classes with the probabilities of the states.

FIG 2. QQ-plots of subject 20. Top: from left to right, state 1 to 3. Bottom: Top: from left to right, state 1 to 4.

4.3. Additional figures for the analysis of the PAT data.

		0	5				
	Class <i>active</i>						
	sleeping	low-level	moderate-level	intensive-level			
sleeping	0.87	0.12	0.01	0.00			
low-level	0.17	0.73	0.10	0.00			
moderate-level	0.04	0.30	0.66	0.01			
intensive-level	0.08	0.08	0.18	0.66			
		С	lass sedentary				
	sleeping	low-level	moderate-level	intensive-level			
sleeping	0.79	0.16	0.05	0.00			
low-level	0.17	0.66	0.16	0.01			
moderate-level	0.05	0.14	0.79	0.03			
intensive-level	0.01	0.02	0.15	0.82			

		TA	ABLE	5		
Transition	matrix	for	the	two	remaining	classes

References.

Huang, Q., Cohen, D., Komarzynski, S., Li, X.-M., Innominato, P., Lévi, F., and Finkenstädt, B. (2018). Hidden markov models for monitoring circadian rhythmicity in telemetric activity data. J. Royal Soc. Interface, 15(139):20170885.

Kontorovich, A. and Weiss, R. (2014). Uniform Chernoff and Dvoretzky-Kiefer-Wolfowitz-type inequalities for Markov chains and related processes. J. Appl. Probab. Stat., 51(4):1100–1113.

León, C. A. and Perron, F. (2004). Optimal Hoeffding bounds for discrete reversible Markov chains. Ann. Appl. Probab., 14(2):958–970.

Teicher, H. (1963). Identifiability of finite mixtures. Ann. Math. Stat., pages 1265-1269.