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Marie du Roy de Chaumaray∗, Matthieu Marbac†, Fabien Navarro‡

June 18, 2019

Abstract

This work is motivated by the analysis of accelerometer data. The analysis of such data consists
in extracting statistics which characterize the physical activity of a subject (e.g., the mean time
spent at different activity levels and the probability of the transition between two levels). There-
fore, we introduce a finite mixture model of hidden Markov chain to analyze accelerometer data
by considering heterogeneity into the population. This approach does not specify activity levels
in advance but estimates them from the data. In addition, it allows for the heterogeneity of the
population to be taken into account and defines subpopulations having a homogeneous behavior
regarding the physical activity. The main theoretical result is that, under mild assumptions, the
probability of misclassifying an observation decreases at an exponential rate with its length. More-
over, we prove the model identifiability and we show how the model can handle missing values.
Our proposition is illustrated using real data.

Keywords: Accelerometer data; Hidden Markov model; Longitudinal model; Missing data; Mixture
models

1 Introduction

Inadequate sleep and physical inactivity affect physical and mental well-being while often exacerbating
health problems. They are currently considered major risk factors for several health conditions (see for
instance Kimm et al. (2005); Taheri et al. (2004); Lee et al. (2012); Grandner et al. (2013); McTiernan
(2008)). Therefore, appropriate assessment of activity and sleep periods is essential in disciplines such
as medicine and epidemiology. The use of accelerometers to evaluate physical activity—by measuring
the acceleration of the part of the body to which they are attached—is a classic method that has
become widespread in public health research. Indeed, the analysis of actigraphy data has been the
subject of extensive studies over the past three decades.

Pioneer approaches have focused on automatic detection of the sleep and wake-up periods (Cole
et al., 1992; Sadeh et al., 1994; Pollak et al., 2001; Van Hees et al., 2015). More recent developments
are interested in the classification of different levels of activity (see Yang and Hsu (2010) for a review).
These methods provide summary statistics like the mean time spent at different activity levels. In
epidemiologic studies, the times spent by activity levels are often used as covariates in predictive models
(see for instance the works of Noel et al. (2010); Palta et al. (2015); Innerd et al. (2018) where the
links between physical activity and obesity are investigated). These statistics can be computed using
deterministic cutoff levels (Freedson et al., 1998). However, with such an approach, the dependency
in time is neglected and the cutoff levels are pre-specified and not estimated from the data.

Accelerometer data are characterized by a time dependency between the different measures. Thus,
they can be analyzed by methods developed for functional data or by Hidden Markov Models (HMM).
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Methods for functional data need the observed data to be converted into functional data of time
(Morris et al., 2006; Xiao et al., 2014; Gruen et al., 2017). For instance, Morris et al. (2006) use
wavelet-basis for analyzing accelerometer profiles. The use of a function basis reduces the dimension
of the data, and therefore the computing time. However, these methods do not define levels of activity
and thus cannot directly provide the time spent at different activity levels.

If a discrete latent variable is considered to model time dependence, HMMs are appropriate for
adjusting sequence data (Scott et al., 2005; Altman, 2007; Gassiat et al., 2016). Titsias et al. (2016)
expand the amount of information which can be obtained from HMM including a procedure to find
maximum a posteriori (MAP) of the latent sequences and to compute posterior probabilities of the
latent states. Thus, HMM are used on activity data for monitoring circadian rythmicity (Huang et al.,
2018b) or directly for estimating the sequence of activity levels from accelerometer data (Witowski
et al., 2014). The approach of Witowski et al. (2014) assumes the homogeneity of the population
and does not consider observations with missing values. However, heterogeneity in physical activity
behaviors is often present (see for instance Geraci (2018)). In the following, we consider a population
to be homogeneous if the average time spent per activity level and the probabilities of the transition
between levels are similar for each individual of this population.

Clustering enables the heterogeneity of the population to be addressed by grouping observations
into a few homogeneous classes. Finite mixture models (McLachlan and Peel, 2000; McNicholas, 2016)
allow to cluster different types of data like: continuous (Banfield and Raftery, 1993), integer (Karlis
and Meligkotsidou, 2007), categorical (Goodman, 1974), mixed (Hunt and Jorgensen, 2011; Kosmidis
and Karlis, 2015), network (Hoff et al., 2002; Hunter et al., 2008; Matias et al., 2018) and sequence
data (Wong and Li, 2000). Thus, recent methods use clustering for accelerometer data analysis. For
instance, Wallace et al. (2018) use a specific finite mixture to identify novel sleep phenotypes, Huang
et al. (2018a) perform a matrix-variate-based clustering on accelerometer data while Lim et al. (2019)
use a functional data clustering.

In practice, the data collected may include missing intervals due to non-compliance by participants
(e.g., if the accelerometer is removed), making statistical analysis more challenging. Geraci and
Farcomeni (2016) propose to identify different profiles of physical activity behaviors using a principal
component analysis which allows missing values. Moreover, when the acceleration is measured each
second, then many observations are zero. Thus, the use of zero-inflated distribution is quite common
for modeling accelerometer data (Ae Lee and Gill, 2018; Bai et al., 2018).

In this paper, we present a finite mixture of HMM for analyzing accelerometer data. This model
considers two latent variables: a categorical variables indicating the class membership of each individ-
ual and a sequence of categorical variable indicating the activity level of the individual at each time
where its acceleration is measured. At time t, the acceleration is independent of the class membership
conditionally on the state and follows a zero-inflated distribution. Thus, the definition of the activity
levels are equal among the mixture components. This is a crucial point for using the summary statis-
tics (e.g., time spent at different activity levels, probabilities of transition between levels) in a future
statistical study. Model identifiability is proved. Moreover, we show that, under mild assumptions,
the probability of misclassifying an observation decreases at an exponential rate. Finally, we present
a computationally efficient approach for dealing with missing values. This approach avoids the com-
putation of large powers of the transition matrices in the algorithm used for parameter inference and
thus reduces computation time.

This paper is organized as follows. Section 2 introduces the mixture of HMM. Section 3 presents the
model properties (model identifiability, exponential decreasing of the probabilities of misclassification
and a result for dealing with the non-wear periods). Section 4 discusses the inference and Section 5
illustrates the model properties on both simulated and real data. Section 6 illustrates the approach
by analyzing the accelerometer data collected from 133 individuals by the NYC Department of Health
and Mental Hygiene. Section 7 discusses some future developments. Proofs and technical lemmas are
postponed in Appendix.
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2 Mixture of hidden Markov models

In this section, we present the proposed model and the application context for which it has been
defined.

2.1 The model

Observed data y = (y>1 , . . . ,y
>
n ) are composed of n i.i.d sequences yi = (yi(0), . . . , yi(T )). The sequence

yi corresponds to the measures of the accelerometer data at times t ∈ {0, 1, . . . , T} for observation
i, with yi(t) ∈ R+. The diversity between the n observations can be considered by grouping the
observations into K homogeneous classes. This is achieved by clustering that assesses a partition
z = (z1, . . . ,zn) among the observations y, where zi = (zi1, . . . , ziK), zik = 1 if observation i belongs
to class k and zik = 0 otherwise. Thus, each sequence yi is assumed to independently arise from a
mixture of K parametric distributions defined by the probability distribution function (pdf)

p(yi;θ) =

K∑
k=1

δk p(yi;πk,Ak,λ, ε), (1)

where θ = {λ, ε} ∪ {δk,πk,Ak; k = 1, . . . ,K} groups the model parameters, δk = P(Zik = 1) is
the proportion of components k with δk > 0 and

∑K
k=1 δk = 1, and p(·;πk,Ak,λ, ε) is the pdf of

component k parametrized (i.e., the pdf of yi given Zik = 1) by (πk,Ak,λ, ε) defined below.
Under component k, yi follows a hidden Markov model where the hidden state sequence xi =

(xi(0), . . . ,xi(T )) ∈ X takes M values for each observation xi(t) = (xi(t)1, . . . , xi(t)M ) where xi(t)h = 1 if
observation i is at state h at time t and xi(t)h = 0 otherwise. The model assumes that the distribution
of the hidden state sequence depends on the cluster membership, and that yi(t) is drawn from a specific
parametric distribution whose parameters depend on the state at time t but not on the component
membership (i.e. Xi 6⊥ Zi and Yi(t) ⊥ Zi | Xi(t)). The latter assumption is a crucial point. Indeed,
one objective is to have summary statistics of yi like the mean time spent at different intensity levels.
In this model, each intensity level is defined by the distribution of yi(t) given a latent state. Therefore,
it would be not useful to have different definitions of the intensity levels according to the cluster
membership. The pdf of components k is

p(yi;πk,Ak,λ, ε) =
∑
xi∈X

p(xi;πk,Ak) p(yi | xi;λ, ε). (2)

The Markov assumption implies that

p(xi;πk,Ak) =
∏̀
h=1

π
xi(0)h
kh

T∏
t=1

M∏
h=1

M∏
`=1

(Ak[h, `])
xi(t−1)hxi(t)` ,

where πk = (πk1, . . . , πkM ) defines the initial probabilities so that πkh = P(Xi(1)h = 1 | Zik = 1) and
Ak is the transition matrix so that Ak[h, `] = P(Xi(t)` = 1 | Xi(t−1)h = 1). Finally, we have

p(yi | xi;λ, ε) =

T∏
t=0

M∏
h=1

g(yi(t);λh, εh)xi(t)h ,

where g(·;λh, εh) is the pdf of a zero-inflated distribution defined by

g(yi(t);λh, εh) = (1− εh)gc(yi(t);λh) + εh1{yi(t)=0},

where gc(·;λh) is the density of a distribution defined on a positive space and parametrized by λh.
The choice of considering zero-inflated distributions arises from the application. Indeed, as the time
lapse between two measures of the accelerometer is small, many yi(t) are zero. Different distributions
can be chosen for gc(·;λh). Model properties and inference are discussed for any gc(·;λh). Because the
model properties are obtained for a general distribution gc, the discussion of its choice is postponed
in Section 6.
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2.2 Analysis of accelerometer data

Figure 1 presents an example of accelerometer data measured on one subject during a week. We
observe that missingness occurs (the subject removes the accelerometer when he sleeps) and that
missing values appear by sequence. The proposed model is designed to manage missing data and
activity levels are not specified in advance. It provides an estimate of the latent state at each time
and the probability of each state at each time (see the following sections for more details).
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Figure 1: Example of accelerometer data.

3 Model properties

In this section, we present the properties of the mixture of parametric HMM. It starts with a discussion
of three assumptions. Then, model identifiability is proved. It is shown that the probability of making
an error in the partition estimation exponentially decreases with T , when the model parameters are
known. Finally, the analysis of missing data is discussed.

3.1 Assumptions

Assumption 1. For each component k, the Markov chain is irreducible. Moreover, we assume that
the sequence is observed at its stationary distribution ( i.e., πk is the stationary distribution so π>kAk =
π>k ). Therefore, there exists 0 ≤ ν < 1 such that

∀k ∈ {1, . . . ,K}, ν2(Ak) ≤ ν,

where ν2(Ak) is the second-largest eigenvalue of Ak. Finally, we denote by ν̄2(Ak) = max(0, ν2(Ak)).

Assumption 2. The hidden states define different distributions for the observed sequence. Therefore,
for h ∈ {1, . . . ,M}, h′ ∈ {1, . . . ,M} \ {h}, we have λh 6= λh′. Moreover, the parametric family of
distributions defining gc(·;λ1), . . . , gc(·;λM ) permits to consider an ordering such that for a fix value
ρ ∈ R+ \ {0}, we have

∀h ∈ {1, . . . ,M − 1}, lim
yi(1)→ρ

gc(yi(1);λh+1)

gc(yi(1);λh)
= 0.

Assumption 3. The transition probabilities are different over the mixture components and are not
zero. Therefore, for k ∈ {1, . . . ,K}, k′ ∈ {1, . . . ,K} \ {k}, we have ∀(h, `), Ak[h, `] 6= Ak′ [h, `].
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Moreover, there exists ζ > 0 such that

∀k ∈ {1, . . . ,K}, ∀k′ ∈ {1, . . . ,K} \ {k},
M∑
h=1

M∑
`=1

πkh log
Ak[h, `]

Ak′ [h, `]
> ζ.

Finally, without loss of generality, we assume that Ak[1, 1] > Ak+1[1, 1].

Assumption 1 considers that the state at time 1 is drawn from the stationary distribution of the
component that the observation belongs to. To obtain the model identifiability we do not need the
assumption that the stationary distribution is different over the mixture components. As a result, two
components having the same stationary distribution but different transition matrices can be consid-
ered. Assumption 2 and Assumption 3 are required to obtain the model identifiability. Assumption 3
can be interpreted as the Kullback-Leibler divergence between the distribution of the states under
component k and their distribution under component k′. This constraint is required for model iden-
tifiability because it is related to the definition of the classes. Consequently, the matrices of the
transition probability must be different among components.

3.2 Identifiability

Model identifiability is crucial for interpreting the estimators of the latent variables and of the param-
eters. It has been studied for some mixture models (Teicher, 1963, 1967; Allman et al., 2009; Celisse
et al., 2012) and HMM (Gassiat et al., 2016), but not for the mixture of HMM. Generic identifiability
(up to switching of the components and of the states) of the model defined in (1) implies that

∀yi, p(yi;θ) = p(yi; θ̃)⇒ θ = θ̃.

The following theorem states this property.

Theorem 1. If Assumptions 1, 2 and 3 hold, then the model defined in (1) is generically identifiable
(up to switching of the components and of the states) if T > 2K.

Proof of Theorem 1 is given in Appendix A. The model defined by the marginal distribution
of a single yi(t) is not identifiable. Indeed, the marginal distribution of yi(t) is a mixture of zero-
inflated distributions and such mixture is not identifiable (i.e., different class proportions and inflation
proportions can define the same distribution). It is therefore this dependency over time that makes
the proposed mixture generically identifiable. Note that such statement has been made by Gassiat
et al. (2016) when they discuss the case where the emission distribution for an HMM follows a mixture
model.

3.3 Probabilities of misclassification

In this section, we examine the probability that an observation will be misclassified when the model
parameters are known. Thus, we consider the ratio between the probability that observation i belongs
to class k given yi and the probability that this observation belongs to the true class, and we quantify
the probability of it being greater than some positive constant a. Let θ0 be the true model parameter
and P0 = P(· | Zik0 = 1, θ0) denote the true conditional distribution (true label of observation i and
parameters are known).

Theorem 2. Assume that Assumptions 1 and 3 hold. If a > 0 is such that Assumption 4 (defined in
Appendix B) holds, then for every k 6= k0

P0

[
P(Zik = 1 | yi)
P(Zik0 = 1 | yi)

> a

]
≤ O(e−cT ),

where c > 0 is a positive constant
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Therefore, by considering a = 1, Theorem 2 shows that the probability of misclassifying an ob-
servation yi, using the maximum a posteriori rule, tends to zero when T increases, if the model
parameters are known. Proof of Theorem 2 and a sufficient condition that allows to consider a = 1
(value of interest when the partition is given by the MAP rule) are given in Appendix B. It should
be noted that it is not so common to have an exponential rate of convergence for the ratio of the
posterior probability of classification. Similar results are obtained for network clustering using the
stochastic block model (Celisse et al., 2012) or for co-clustering (Brault and Mariadassou, 2015). For
these two models, the marginal distribution of a single variable provides information about the class
membership. For the proposed model, this is the dependency between the different observed variables
which is the crucial point for recovering the true class membership.

3.4 Dealing with missing values

Due to the markovian character of the states, missing values can be handled by iterating the transition
matrices. In our particular context, missing values appear when the accelerometer is not worn. Thus,
we will not observe isolated missing values but rather wide ranges of missing values. Let d be the
number of successive missing values, we thus have to compute the matrix Ad+1

k to obtain the distri-
bution of the state at time t+ d knowing the state at time t− 1. These powers of transition matrices
should be computed many times during the algorithm used for inference (see Section 4). Moreover,
after d + 1 iterations with d large enough, the transition matrix can be considered sufficiently close
to stationarity (e.g., for any (h, `), Ad+1

k [h, `] ' πk`), which has actually been chosen as the initial
distribution. Therefore, for numerical reasons, we will avoid computing the powers of the transition
matrices and we will make the following approximation. An observation yi with Si observed sequences
split with missing value sequences of size at least d are modeled as Si independent observed sequences
with no missing values, all belonging to the same component k. Namely, for each individual i, the
pdf p(yi;πk,Ak,λ, ε) of component k is approximated by the product of the pdf of the Si observed
sequences yi1,yi2, . . . ,yiSi

:

p(yi;πk,Ak,λ, ε) '
Si∏
s=1

p(yis;πk,Ak,λ, ε),

where, for each s, yis is an observed sequence of length Tis + 1: yis = (yis(0), . . . , yis(Tis)) and
p(yis;πk,Ak,λ, ε) is defined as in (2). We note that the observation yi can thus be rewritten as
follows

yi = (yi1(0), . . . , yi1(Ti1), yi2(0), . . . , yi2(Ti2), . . . , yiSi(0), . . . , yiSi(TiSi
)),

with yi2(0) = yi(Ti1+di1+1) where the di1 values yi(Ti1+1), . . . yi(Ti1+di1) correspond to the first sequence
of missing values, and more generally, for each s = 2, . . . , Si, yis(0) = yi(

∑s−1
j=1(Tij+dij+1)), with dij being

the number of missing values between the observed sequences yisj and yisj+1
.

Once the estimation of the parameters has been done, we make sure that this assumption was
justified by verifying that the width of the smallest range dmin = min {di1, . . . , di Si−1} of missing
values is sufficiently large to be greater than the mixing time of the obtained transition matrix. To
do so, we use an upper bound for the mixing time given by Levin and Peres (2017, Theorem 12.4, p.
155). For each component k, we denote by ν∗k the second maximal absolute eigenvalue of Ak. For any
positive η, if for each k

dmin ≥
1

1− ν∗k
log

1

ηminh πkh
,

then for any integer D ≥ dmin, the maximum distance in total variation satisfies

max
h
‖ADk [h, ·]− πk‖TV ≤ η.

4 Maximum likelihood inference

This section presents the methodology used to estimate the model parameters.
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4.1 Inference

We proposed to estimate the model parameters by maximizing the log-likelihood function where
missing values are managed as in Section 3.4 and we recall that the log-likelihood is also approximated
for numerical reasons, to avoid computing large powers of the transition matrices. Therefore, we want
to find θ̂ which maximizes the following approximated log-likelihood function

`K(θ;y) =
n∑
i=1

log

(
K∑
k=1

δk

Si∏
s=1

p(yis;πk,Ak,λ, ε)

)
.

This maximization is achieved via an EM algorithm (Dempster, A.P. and Laird, N.M. and Rubin,
D.B., 1977) which considers the complete-data log-likelihood defined by

`K(θ;y, z) =
n∑
i=1

K∑
k=1

zik log δk +
n∑
i=1

K∑
k=1

zik

(
Si∑
s=1

log p(yis;πk,Ak,λ, ε)

)
.

4.2 Conditional probabilities

Let αikhs(t)(θ) be the probability of the partial sequence yis(0), . . . , yis(t) and ending up in state h at
time t under component k. Moreover, let βikhs(t)(θ) be the probability of the ending partial sequence
yis(t+1), . . . , yis(Tis) given a start in state h at time t under component k. These probabilities can be
easily obtained by the forward/backward algorithm (see Appendix C). We deduce that the probability
γikhs(t)(θ) of being in state h at time t ∈ {0, . . . , Tis} for yi under component k is

γikhs(t)(θ) = P(Xis(t) = h | yis, Zik = 1;θ) =
αikhs(t)(θ)βikhs(t)(θ)∑M
`=1 αik`s(t)(θ)βik`s(t)(θ)

.

The probability ξikh`s(t)(θ) of being in state ` at time t ∈ Ωi and in state h at time t−1 for observation
yi under component k is

ξikh`s(t)(θ) = P(Xis(t) = `,Xis(t−1) = h | yis, Zik = 1;θ)

=
αikhs(t)(θ)Ak[h, `]g(yis(t);λ`, ε`)βik`s(t)(θ)∑M

h′=1

∑M
`′=1 αikh′s(t)(θ)Ak[h′, `′]g(yis(t);λ`′ , ε`′)βik`′s(t)(θ)

.

The probability τik that one observation arises from component k is

τik(θ) = P(Zik = 1 | yi,θ) =

∏Si
s=1

∑M
h=1 αikhs(Tis)(θ)∑K

k′=1

∏Si
s=1

∑M
h=1 αik′hs(Tis)(θ)

.

The probability ηihs(t) that observation i is at state h at time t of sequence s is

ηihs(t)(θ) = P(Xis(t) = h | yi,θ) =

K∑
k=1

τik(θ)γikhs(t)(θ).

4.3 EM algorithm

The EM algorithm is an iterative algorithm randomly initialized at the model parameter θ[0]. It
alternates between two steps: the Expectation step (E-step) consisting in computing the expectation
of the complete-data likelihood under the current parameters, and the maximization step (M-step)
consisting in maximizing this expectation over the model parameters. Iteration [r] of the algorithm is
defined by
E-step Conditional probability computation

τik(θ
[r−1]), γikhs(t)(θ

[r−1]), ηihs(t)(θ
[r−1]) and ξikh`s(t)(θ

[r−1]).
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M-step Parameter updating

δ
[r]
k =

nk(θ
[r−1])

n
, π

[r]
kh =

nkh(0)(θ
[r−1])

nk(θ
[r−1])

, Ak[h, `]
[r] =

nkh`(θ
[r−1])

nkh(θ[r−1])
, ε

[r]
h =

wh(θ[r−1])

nkh(θ[r−1])
,

λ
[r]
h = argmax

λh

n∑
i=1

Si∑
s=1

Tis∑
t=0

ηihs(t)(θ
[r−1])gc(yis(t);λh),

where

nk(θ) =
n∑
i=1

τik(θ), nkh(θ) =
n∑
i=1

Si∑
s=1

Tis∑
t=0

τik(θ)γikhs(t), nkh(0)(θ) =
n∑
i=1

Si∑
s=1

τik(θ)γikhs(0)(θ),

nkh`(θ) =
n∑
i=1

Si∑
s=1

Tis∑
t=1

τik(θ)ξikh`s(t)(θ) and wh(θ) =
n∑
i=1

Si∑
s=1

Tis∑
t=0

ηihs(t)(θ)1{yis(t)=0}.

5 Numerical illustrations

This section illustrates the model properties on simulated data as well as on a subset of the real data
studied by Huang et al. (2018b). First, we specify the design of the simulations and then we illustrate
the evolution of the probability of misclassification (given by Theorem 2) and the convergence of
estimators. We then study the robustness of the proposed method in the presence of missing data.
Finally, we examine its performance on a real data set.

5.1 Simulated data

Simulation design Simulated data are sampled from a bi-component mixture of HMM with two
states (i.e., K = M = 2) and equal proportions (i.e., δ1 = δ2 = 1/2). The distribution of Yi(t)
conditionally on the state h is a zero-inflated gamma distribution denoted by Ga(ah, bh). We have

ε1 = ε2 = 0.1, a1 = 1, b1 = b2 = 1, A1 =

[
e 1− e

1− e e

]
and A2 =

[
1− e e
e 1− e

]
.

The parameter a2 > 1 controls the separation of the distribution of Yi(t) given the state and the
parameter e controls the separation of the distribution of X given the class (when e increases, the
constant c in Theorem 2 increases). We consider four cases (hard: e = 0.75 and a2 = 3; medium-1:
e = 0.90 and a2 = 3; medium-2: e = 0.75 and a2 = 5; easy: e = 0.90 and a2 = 5).

Probabilities of misclassification For each of the four cases, the probability of misclassification
is computed on 1000 observations for T = 1, . . . , 100. Figure 2(a) shows the behavior of log P(Zik=1|yi)

P(Zik0
=1|yi)

when k0 is the true class and k the alternative. This quantity linearly decreases with T . Figure 2(b)
presents the empirical probabilities of misclassification. As expected and predicted by our theoretical
findings (Theorem 2), the probability of misclassification decreases at an exponential rate with T .

Convergence of the estimators For each case, 1000 samples composed of n sequences of length
T are generated. Parameters are estimated by maximum likelihood. To investigate the accuracy of the
estimation procedure, we computed the mean square error between the model parameters and their
estimators. Moreover, we compute the adjusted Rand index (Hubert and Arabie (1985)) between the
true partition and the partition given by the MAP rule, and between the true state sequences and
the estimated state sequences given by the MAP rule (obtained with the Viterbi algorithm (Viterbi,
1967)). Table 1 shows the results obtained with two values of n and two values of T , considering the
case medium-1. It can be seen that the latent variables and the model parameters are well estimated.
Indeed, the MLE converge to the true parameters as T or n increases, except for the proportion in
each component δk, which needs n to be sufficiently large to have observed enough individuals in each
component. We notice that the partition obtained by our estimation procedure corresponds to the
true partition (for n and T large enough) even if we are not under the true parameters but under
the MLE, which is not an immediate consequence of Theorem 2. On the contrary, we do not find the
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(a) Median and 90%-confidence region of

log P(Zik=1|yi)

P(Zik0
=1|yi)

..

(b) Probability of misclassification.

Figure 2: Results obtained on 1000 observations for the hard (orange), medium-1 (green), medium-2
(blue) and easy (purple) cases.

true states sequences a.s. , as the number of states to be estimated is also growing with n and T .
Results obtained for the three other cases are similar and are presented in Supplementary Material
Section D.1.

Adjusted Rand index Mean square error
n T partition states Ak εh ah bh δk
10 100 0.994 0.652 0.024 0.001 0.277 0.032 0.054
10 500 0.999 0.659 0.005 0.000 0.054 0.006 0.049
100 100 0.998 0.660 0.002 0.000 0.025 0.003 0.005
100 500 1.000 0.660 0.000 0.000 0.005 0.001 0.005

Table 1: Maximum likelihood estimators convergence when data are sample from case medium-1.

Impact of the missing values To investigate the robustness of the proposed method with
missingness, we add s sequences of q consecutive missing values to each observation. The location of
the missing sequence is randomly sampled. Table 2 compares the results obtained with and without
missingness, considering case medium-1. It shows that estimators are robust to missingness. Results
obtained for the other three cases are similar and are reported in Supplementary Material Section D.1.

5.2 Using the approach on classical accelerometer data

We consider the accelerometer data measured on three subjects available from Huang et al. (2018b).
The accelerometer measures the activity every five minutes for one week. Note that the first subject
has 2% of missing values. The purpose of this section is to illustrate the differences between the
method of Huang et al. (2018b) and the method proposed in this paper.

Huang et al. (2018b) consider one HMM per subject with three latent states. This model is used for
monitoring the circadian rhythmicity, subject by subject. Because they fit one HMM per observation,
the definition of the activity level is different for each observation (see Huang et al. (2018b, Figure 4)).
This is not an issue for their study because the analysis is done subject by subject. However, the
mean time spent by activity levels cannot be compared among the subjects. The method proposed
here makes this comparison possible. Figure 3 depicts the activity data of the three subjects, the
expected value of Yi(t) conditionally to the most likely state and on the most likely component and
the probability of each state. Based on the QQ-plot (see Supplementary Material Section D.2), we
consider M = 4 activity levels. These levels can be easily characterized with the model parameters
presented in Table 3. Moreover, the transition matrices also make sense. For instance, class 1 (subjects
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Adjusted Rand index Mean square error
n T s q partition states Ak εh ah bh δk

0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 10 0.993 0.996 1.107 1.119 1.101 1.166 1.005

10 100 2 10 0.990 0.995 1.222 1.251 1.159 1.313 1.002
1 20 0.987 0.993 1.281 1.288 1.250 1.340 0.990
2 20 0.967 0.986 1.587 1.657 1.551 1.727 0.994
0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 10 1.000 1.000 1.025 1.015 1.022 1.015 1.002

10 500 2 10 1.000 1.000 1.023 1.027 1.024 1.036 0.996
1 20 1.000 1.000 1.010 1.032 1.036 1.048 1.006
2 20 1.000 1.000 1.060 1.074 1.054 1.084 1.003
0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 10 0.998 0.998 1.148 1.089 1.166 1.169 0.997

100 100 2 10 0.996 0.997 1.277 1.203 1.286 1.233 1.002
1 20 0.996 0.997 1.288 1.250 1.298 1.280 0.998
2 20 0.983 0.994 1.632 1.561 1.638 1.585 1.003
0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 10 1.000 1.000 1.026 1.050 1.032 0.992 1.000

100 500 2 10 1.000 1.000 1.045 1.083 1.038 0.989 1.000
1 20 1.000 1.000 1.037 1.071 1.008 0.942 1.000
2 20 1.000 1.000 1.090 1.127 1.104 1.008 1.000

Table 2: Ratio between statistics obtained with and without missing data when data are sampled
from case medium-1.

9 and 20) has an almost tri-diagonal transition matrix (by considering an order between the states
given through the activity levels per state) and class-2 (subject 2) is composed of an individual with
low-overall activity

Â1 =


0.86 0.14 0.00 0.00
0.12 0.81 0.06 0.01
0.00 0.07 0.79 0.14
0.00 0.00 0.13 0.87

 .

State name εh ah bh mean sd
intensive-level 0.00 98.94 0.65 152.76 15.36
moderate-level 0.00 11.09 0.11 99.34 29.84
low-level 0.00 2.32 0.11 20.98 13.79
sleeping 0.22 1.48 0.72 2.06 1.70

Table 3: Parameters and mean time per states for the three subjects.

6 Analysis of the NYC accelerometer data

Data We consider the 133 individuals aged at least of 65 years who responded to the NYC Department
of Health and Mental Hygiene study in 2010-2011.1 Accelerometers were worn for one week and
measured the activity minute by minute. The accelerometers were removed during sleep, hence the
data contains 44% of missing values that appear in sequence. The analysis is conducted using four
activity levels. The number of components is considered to be between one and six, and it has been
selected with the BIC (Schwarz, 1978). For each number of components, 5000 random initializations of

1New York City Department of Health and Mental Hygiene. Physical Activity and Transit Survey 2010-2011; public
use dataset accessed on May 10, 2019.
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Figure 3: State estimation for the three subjects: (top) accelerometer data where color indicates
the expected value of Yi(t) conditionally to the most likely state and to the most likely component;
(bottom) probability of each state at each time.

the EM algorithm are performed. The analysis needs about one day of computation on a 32-Intel(R)
Xeon(R) CPU E5-4627 v4 @ 2.60GHz.
Model selection Data are analyzed considering four latent states (e.g., four activity levels). It is not
easy to use information criteria for selecting the number of states in HMM (see the discussion in the
conclusion). In addition, accelerometer data are generally analyzed with four activity levels. To select
the number of components, we use two information criteria which are generally used in clustering: the
BIC (Schwarz, 1978) and the ICL (Biernacki et al., 2000). Here, the ICL is defined according to the
integrated complete-data likelihood computed on (y, ẑ) where ẑ is the partition given by the MAP
rule with the MLE. These information criteria are defined as follows and their values (according to
the number of clusters) are given in Table 4.

BIC(K) = `K(θ;y)− νK
2

log(
n∑
i=1

Si∑
s=1

Tis + 1),

and

ICL(K) = BIC(K) +

n∑
i=1

K∑
k=1

ẑik log τik(θ̂),

where νK = (K − 1) + K(M + M2) + 3M is the number of parameters with K components and M
states. In practice, ICL(K) is close to BIC(K), because the entropy

∑n
i=1

∑K
k=1 ẑik log τik(θ̂) ≈ 0.

This is a consequence of Theorem 2 (see also numerical experiments in Section 5). On the NYC data,
both criteria select five classes.

K 1 2 3 4 5 6 7
BIC -2953933 -2952313 -2951809 -2951705 -2951308 -2951364 -2951696
ICL -2953933 -2952313 -2951810 -2951707 -2951309 -2951364 -2951697

Table 4: Information criteria obtained on the NYC accelerometer data with four activity levels.

Description of the activity levels The parameters of the zero-inflated gamma distributions are
presented in Table 5. The four distributions are ordered by the value of their means. The sleeping
state is characterized by a large probability of observing zero (i.e., εh is close to one). However, εh is
not zero for the other states but the more active the state is, the smaller εh is.
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Name of the activity level εh ah bh mean
sleeping 0.988 7.470 7.470 0.012
low-level 0.260 0.974 0.020 36.926
moderate-level 0.025 1.408 0.004 329.249
intensive-level 0.007 2.672 0.002 1696.935

Table 5: Parameters describing the four activity levels for the NYC accelerometer data.

Description of the classes Classes can be described using their proportions and their associated
parameters presented in Table 5. The data are composed of a majority class (δ1 = 0.518). Three
other classes are composed of more sedentary individuals (e.g, their marginal probabilities of being
in states 1 and 2 are higher). Finally, there is a small class (δ5 = 0.045) which contains the most
active subjects (e.g., πk4 = 0.143). Figure 4 presents one observation which characterizes each class
and the probabilities of the activity levels. Finally, the transition matrices presented in Table 6 are
almost tri-diagonal. This could be expected because it seems relevant to obtain a low probability of
jumping between the sleeping state and the intensive state. Additionally, the approximation made for
efficiently handling the missingness (see Section 3.4) turns out to be relevant. The minimal range of
missing values is indeed equal to dmin = 60 which leads to a distance in total variation between the
dmin-power of the transition matrices and the stationary distribution being less than 5.10−4 for any
component.

Class active
sleeping low-level moderate-level intensive-level

sleeping 0.87 0.12 0.01 0.00
low-level 0.17 0.73 0.10 0.00
moderate-level 0.04 0.30 0.66 0.01
intensive-level 0.08 0.08 0.18 0.66

Class sedentary
sleeping low-level moderate-level intensive-level

sleeping 0.79 0.16 0.05 0.00
low-level 0.17 0.66 0.16 0.01
moderate-level 0.05 0.14 0.79 0.03
intensive-level 0.01 0.02 0.15 0.82

Class moderate
sleeping low-level moderate-level intensive-level

sleeping 0.76 0.21 0.03 0.00
low-level 0.16 0.73 0.11 0.00
moderate-level 0.03 0.20 0.73 0.04
intensive-level 0.01 0.04 0.16 0.80

Class very sedentary
sleeping low-level moderate-level intensive-level

sleeping 0.85 0.08 0.06 0.00
low-level 0.20 0.67 0.13 0.01
moderate-level 0.10 0.11 0.76 0.03
intensive-level 0.01 0.04 0.14 0.82

Class very active
sleeping low-level moderate-level intensive-level

sleeping 0.80 0.14 0.05 0.01
low-level 0.08 0.74 0.17 0.01
moderate-level 0.03 0.18 0.69 0.10
intensive-level 0.01 0.05 0.21 0.74

Table 6: Transition matrix for the five classes.
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Figure 4: Examples of observation assigned into the five classes with the probabilities of the states.
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7 Conclusion

A specific mixture of HMM has been introduced to analyze accelerometer data. It avoids the tradi-
tional cut-off point method for analyzing such data. Furthermore, this model can take into account
the heterogeneity within the population. Properties (identifiability, probability of misclassifying an
observation) have been proved. Applications on real data are promising.

In the application, the number of activity levels was not estimated but fixed at a common value
for accelerometer data. Estimating the number of states for a mixture of HMM is an interesting but
complex topic. Indeed, the use of BIC is criticized (see Cappé et al. (2005, Chapter 15)). Thus, pseudo-
likelihood based criteria could be used (Gassiat, 2002; Csiszr and Talata, 2006) but the fact that the
marginal distribution of one Yi(t) is not identifiable limits this approach. A more promising approach
could be to use cross-validated likelihood (Celeux and Durand, 2008) but it would be computationally
intensive because accelerometer data provide a large amount of observations.

A Model identifiability

The proof of Theorem 1 is split in two parts:

1. Identifiability of the parameters of the specific distribution per state is obtained using the ap-
proach of Teicher (1963). Hence ∀h = 1, . . . ,M

λh = λ̃h and
K∑
k=1

δkπkh(1− εh) =
K∑
k=1

δ̃kπ̃kh(1− ε̃h).

2. Identifiability of the transition matrices and of the ε is shown using properties of Vandermonde
matrices. Hence,

∀k = 1, . . . ,K, δk = δ̃k, Ak = Ãk, πk = π̃k, and ε = ε̃.

A.1 Identifiability of the parameters of the specific distribution per state

Considering the marginal distribution at time t = 0, we have

K∑
k=1

M∑
h=1

δkπkhg(yi(0);λh, εh) =

K∑
k=1

M∑
h=1

δ̃kπ̃khg(yi(0); λ̃h, ε̃h).

Note that g(yi(0);λh, εh) = (1 − εh)gc(yi(0);λh) + εh1{yi(0)=0} is a pdf of a zero-inflated distribution,

so it is a pdf of a bi-component mixture. We now use the same reasoning as Teicher (1963). We have

1 +

M∑
h=2

g(yi(0);λh, εh)
∑K

k=1 δkπkh

g(yi(0);λ1, ε1)
∑K

k=1 δkπk1

=
g(yi(0); λ̃1, ε̃1)

∑K
k=1 δ̃kπ̃k1

g(yi(0);λ1, ε1)
∑K

k=1 δkπk1

+

M∑
h=2

g(yi(0); λ̃h, ε̃h)
∑K

k=1 δ̃kπ̃kh

g(yi(0);λ1, ε1)
∑K

k=1 δkπk1

.

Considering yi(0) → ρ, by Assumption 2, we have

λ1 = λ̃1 and (1− ε1)
K∑
k=1

δkπk1 = (1− ε̃1)
K∑
k=1

δ̃kπ̃k1.

Repeating the previous argument with h = 2, . . . ,M , we conclude that, for h ∈ {1, . . . ,M},

λh = λ̃h and (1− εh)

K∑
k=1

δkπkh = (1− ε̃h)

K∑
k=1

δ̃kπ̃kh.
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A.2 Identifiability of the transition matrices

First, we introduce two technical lemmas of which proofs are discussed in the next subsection. Second,
we show that Ak[1, 1] = Ãk[1, 1] then we extend the results to the whole transition matrices.

Lemma 1. Let N0, N1, Ñ0 and Ñ1 be four definite positive matrices of size K × K such that for
u ∈ {1, . . . ,K} and k ∈ {1, . . . ,K},

N0[u, k] = au−1
k , N1[u, k] = aK+u−1

k , Ñ0[u, k] = ãu−1
k , Ñ1[u, k] = ãK+u−1

k ,

with ak > ak+1 > 0, ãk > ãk+1 > 0 and a1 ≥ ã1. If for any w̃ ∈ RK+ there exists w ∈ RK+ N0w = Ñ0w̃

and N1w = Ñ1w̃ then for k ∈ {1, . . . ,K} ak = ãk and w = w̃.

Lemma 2. Let N0, Ñ0 be two definite positive matrices of size K ×K such that for u ∈ {1, . . . ,K}
and k ∈ {1, . . . ,K},

N0[u, k] = au−1
k , N1[u, k] = aK+u−1

k ,

with ak > ak+1 > 0, ãk > ãk+1 > 0 and a1 ≥ ã1. Let Du = diag(aKu1 , . . . , aKuK ) and D̃u =
diag(ãKu1 , . . . , ãKuK ). If there exist α ∈]0, 1[, α̃ ∈]0, 1[, w ∈ RK+ and w̃ ∈ RK+ such that for u ∈
{0, . . . ,K − 1}, we have

αN0Duw = α̃Ñ0D̃uw̃,

then for k ∈ {1, . . . ,K} ak = ãk and w = w̃.

We consider the marginal distribution of (yi(0), . . . , yi(t−1)) with t = 1, . . . , 2K, where yi(0) = yi(t′)
for each t′ = 1, . . . , t − 3, yi(t−2) = yτ1i(0) , yi(t−1) = yτ2i(0) and yi(t) = yτ3i(0). Therefore, taking τ1 = τ2 =

τ3 = 1 and letting yi(0) tend to ρ (see Assumption A), we obtain, for t = 1, . . . , 2K, that

(1− ε1)
K∑
k=1

δkπk1 (Ak[1, 1](1− ε1))t−1 = (1− ε̃1)
K∑
k=1

δ̃kπ̃k1

(
Ãk[1, 1](1− ε̃1)

)t−1
.

Because, we consider 2K marginal distributions, we can use Lemma 2 by setting α = (1−ε), α̃ = (1−ε̃),
ak = Ak[1, 1](1 − ε1), ãk = Ãk[1, 1](1 − ε̃1), wk = δkπk1 and wk = δ̃kπ̃k1. Therefore, we have ε = ε̃,
Ak[1, 1] = Ãk[1, 1] and δkπk1 = δ̃kπ̃k1. Using the previous approach, with τ1 = τ2 = 1 and τ3 < 1,
with h = 2, . . . ,M , we have for t = 1, . . . ,K

(1− εh)(1− ε1)

K∑
k=1

δkπk1 (Ak[1, 1](1− ε1))t−2Ak[1, h] =

(1− ε̃h)(1− ε1)
K∑
k=1

δkπk1 (Ak[1, 1](1− ε1))t−2 Ãk[1, h],

and thus Ak[1, h] = Ãk[1, h] and εh = ε̃h. Similarly, taking τ2 < 1 and τ1 = τ3 = 1, we have
Ak[h, 1] = Ãk[h, 1]. Finally, we have Ak[h, h

′] = Ãk[h, h
′] by increasing h and h′, by noting that with

suitable choices of τ1, τ2 and τ3, we have for t = 1, . . . ,K

K∑
k=1

δkπk1 (Ak[1, 1](1− ε1))t−2Ak[1, h]Ak[h, h
′]Ak[h

′, 1] =

K∑
k=1

δ̃kπ̃k1 (Ak[1, 1](1− ε1))t−2Ak[1, h]Ãk[h, h
′]Ak[h

′, 1].

A.3 Proofs of the two technical lemmas

Proof of Lemma 1. Since ak 6= ak′ and ãk 6= ãk′ , then N0, N1, Ñ0 and Ñ1 are Vandermonde matrices
and thus are invertible. Therefore, we have w = N−1

0 Ñ0w̃ = N−1
1 Ñ1w̃, and thus

(N−1
0 Ñ0 −N−1

1 Ñ1)w̃ = 0,
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or similarly for u ∈ {1, . . . ,K},
K∑
k=1

aukwk =

K∑
k=1

ãukw̃k.

Since the previous equation holds for any w̃, we have N−1
0 Ñ0 = N−1

1 Ñ1. Moreover, we have N1 = N0D
and Ñ1 = Ñ0D̃ where D = diag(aK1 , . . . , a

K
K) and D̃ = diag(ãK1 , . . . , ã

K
K). Denoting R = N−1

0 Ñ0,
DR = RD̃ and then for u ∈ {1, . . . ,K} and k ∈ {1, . . . ,K}

aKu R[u, k] = ãKk R[u, k]. (3)

We now show that D = D̃ and, w = w̃, and hence R = IK and Ñ0 = N0, where IK is the identity
matrix of size K. First we show that a1 = ã1 and w1 = w̃1.

• If R[1, j] 6= 0, (3) implies that aK1 R[1, j] = ãKj R[1, j] and thus a1 = ãj . However, this is
impossible because a1 ≥ ã1 > aj for j ∈ {2, . . . ,K}. Hence, we have R[1, j] = 0 for j = 2, . . .K.

• Noting that R is a product of two invertible matrices, R is invertible. Therefore, R[1, 1] 6= 0
because R[1, j] = 0 for j = 2, . . .K. Hence, we have a1 = ã1.

• Note that R[1, 1] =
∑K

k=1(N−1
0 )[1, k]Ñ0[k, 1] and that Ñ0[k, 1] = ãk1 = ak1 = N0[k, 1]. Therefore,

we have R[1, 1] =
∑K

k=1(N−1
0 )[1, k]N0[k, 1] = (N−1

0 N0)[1, 1] = 1.

• For j = 2, . . .K, a1 > aj so we have R[j, 1] = 0, because a1 = ã1.

• Because w = Rw̃, we have w1 = w̃1.

Equality of ak = ãk and wk = w̃k can be shown recursively for k = 2, . . . ,K using the same reasoning.

B Probabilities of misclassification

B.1 Technical lemmas

This section presents some notations and three lemmas which are used for the proof of Theorem 2.
The technical lemmas discuss the concentration of the frequency of the observation yi(t) in a region
of interest W , give an upper bound of p(yi | Zik = 1) and a concentration result of the ratio of
p(x̃ik,yi|Zik=1)
p(x̃ik0

,yi|Zik0
=1) , where x̃ik = argmaxxi∈X p(xi,yi | Zik = 1) is the estimator of the latent states con-

ditionally on the observation yi and on component k obtained by applying the maximum a posteriori
rule with the true parameter θ. The proof of the lemmas uses two concentration results for hidden
Markov chains given by Kontorovich and Weiss (2014) and by León and Perron (2004).

Preliminaries Let vik(t) = (vik(t)h`;h = 1, . . . ,M ; ` = 1, . . . ,M) with vik(t)h` = xik(t−1)hxik(t)`

and ṽik(t) = (ṽik(t)h`;h = 1, . . . ,M ; ` = 1, . . . ,M) with ṽik(t)h` = x̃ik(t−1)hx̃ik(t)`. In the following,
P0 (·) = P (· | Zik0 = 1) by considering the true parameters.

Remark 1. For any k = 1, . . . , g, V ik(t) is a finite, ergodic and reversible Markov chain with M2

states and transition matrix P k with general term defined for any (h1, h2, h3, h4) ∈M4 by

P k[(h1 − 1)M + h2, (h3 − 1)M + h4] = P(Vik(t)h` = 1) =

{
0 if h2 6= h3

Ak[h2, h4] otherwise
.

Moreover, the non-zero eigenvalues of P k are the non-zero eigenvalues of Ak and the eigenvectors of
P k are obtained from the eigenvectors of Ak.

Theorem 3 (Kontorovich and Weiss (2014)). Let U(1), U(2), . . . be a stationary N-valued (G, η)-
geometrically ergodic Markov or hidden Markov chain, and consider the occupation frequency

ρ̂(E) =
1

T

T∑
t=1

1{U(t)∈E}, E ⊂ N.
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When
∑

u∈N
√
ρu <∞ with ρu = P(U(1) = u), then for any ε > 0

P

supE⊂N | ρ(E)− ρ̂(E) |> ε+ γT (G, η)
∑
y∈N

√
ρy

 ≤ e− T
2G2 (1−η)2ε2 ,

where

γT (G, η) =
1

2

√
1 + 2Gη

T (1− η)
.

Theorem 4 (León and Perron (2004)). For all pairs (V, f), such that V = (V(1), . . . , V(T )) is a finite,
ergodic and reversible Markov chain in stationary state with the second-largest eigenvalue λ and f is
a function taking values in [0, 1] such that E[f(V(t))] <∞, the following bounds, with λ0 = max(0, λ),
hold for all s > 0 such that E[f(V(t))] + s < 1 and all time T

P

(
T∑
t=1

f(V(t)) ≥ (E[f(V(1))] + s)T | Zik0 = 1

)
≤ exp

(
−2

1− λ0

1 + λ0
Ts2

)
.

Concentration of the frequency of the observations in W Let W ⊂ R+ be the subset of
R+ where the estimator of xi(t) obtained by the maximum a posteriori rule is sensitive to xi(t−1) and
xi(t) conditionally on yi(t) and component k. Thus, we define

W = {u ∈ R+ : card(∪gk=1Ek(u)) ≥ 2},

where

Ek(u) = {h2 : ∃(h1, h3), h2 = argmax ek(u;h1, h2, h3)},

and

ek(u;h1, h2, h3) = Ak[h1, h2]Ak[h2, h3]g(u;λh2).

Lemma 3. Let ρk0 = P0(Yi(2) ∈W ) and ρ̂k0 =
∑T

t=1 1{yi(t)∈W}. For any δ1 >
1√
2T

,

P0(ρ̂k0 < ρk0 − δ1) ≤ e−Tc1 ,

δ1 = ε + 1√
2T

and c1 = 1
2(δ1 − 1√

2T
)2 > 0. Moreover, ρ̂k0 is a consistent estimate of ρk0 because the

marginal distribution of Yi(t) is the same for any t, and thus ρk0 = P0(Yi(t) ∈W ) for any t.

Proof of Lemma 3. We have,

P
(
| ρk0 − ρ̂k0 |> ε+

1√
2T

)
≤ P

(
| ρk0 − ρ̂k0 |> ε+

1

2
√
T

(
√
ρk0 +

√
1− ρk0)

)
.

Let U(t) = 1{yi(t)∈W}. Then, for any k = 1, . . . , g, U(1), . . . , U(T ) is a stationary {0, 1}-valued (1, 0)-
geometrically ergodic hidden Markov chain conditionally on component k. Hence, by Theorem 3,

P
(
| ρk0 − ρ̂k0 |> ε+

1

2
√
T

(
√
ρk0 +

√
1− ρk0)

)
≤ e−

T
2
ε2 .

We can conclude that

P (ρ̂k0 < ρk0 − δ1) ≤ e−Tc1 ,

δ1 = ε+ 1√
2T

and c1 = 1
2(δ1 − 1√

2T
)2.

Upper-bound of the conditional probability of yi given Zik = 1 Let γ and γ̄ be upper-

bounds of the ratio
p(x̃i(t−1),xi(t),x̃i(t+1),yi(t)|Zik=1)

p(x̃i(t−1),x̃i(t),x̃i(t+1),yi(t)|Zik=1) when yi(t) ∈W and yi(t) /∈W respectively. Thus, γ =

maxk maxh1,h2,h3,h4
Ak[h1,h2]
Ak[h3,h4] and γ̄ permit to upper bound the ratio between the likelihood computed
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for any (xi,yi) given Zik = 1 and the likelihood computed with (x̃ik,yi) given Zik = 1. We have, if
yi(t) ∈W ,

p(x̃i(t−1), xi(t), x̃i(t+1), yi(t) | Zik = 1)

p(x̃i(t−1), x̃i(t), x̃i(t+1), yi(t) | Zik = 1)
≤ max

u∈W
max

h2∈Ek(u),h2′∈Ek(u),h2 6=h2′

max(h1,h3) ek(u;h1, h2, h3)

min(h1′ ,h3′ )∈ek(u;h2′ )
ek(u;h1′ , h2′ , h3′)

≤ γ,

where ek(u;h2) = {(h1, h3) : h2 = argmax ek(u;h1, h2, h3)}. Moreover, we have, if yi(t) 6∈W ,

p(x̃i(t−1), xi(t), x̃i(t+1), yi(t) | Zik = 1)

p(x̃i(t−1), x̃i(t), x̃i(t+1), yi(t) | Zik = 1)
≤ max

u/∈W

maxh2 max(h1,h3)/∈ek(u;h2) ek(u;h1, h2, h3)

maxh2∈Ek(u) min(h1′ ,h3′ )∈ek(u;h2′ )
ek(u;h1′ , h2′ , h3′))

= γ̄.

Note that γ ≥ 1 and γ̄ < 1.

Lemma 4. We have, for any k = 1, . . . , g,

log p(yi | Zik = 1) ≤ log p(x̃ik,yi | Zik = 1) + T log(γ̃ + γ̄) + T ρ̂k0c2 + log γ̃ + log

(
2Mγmax

h,`

πkh
πk`

)
,

where c2 = 1 + γ
1+γ̄ and γ̃ = max(2, γ).

Proof of Lemma 4. By definition, we have

p(yi | Zik = 1) = p(x̃ik,yi | Zik = 1)
∑
x∈X

p(x,yi | Zik = 1)

p(x̃ik,yi | Zik = 1)
.

Let Bp(x̃ik) = {x : || x− xik ||0= p}, then

∑
x∈X

p(x,yi | Zik = 1)

p(x̃ik,yi | Zik = 1)
=

T+1∑
p=0

∑
x∈Bp(x̃ik)

p(x,yi | Zik = 1)

p(x̃ik,yi | Zik = 1)
.

Remark that
p(xi(0),yi(0) | Zik = 1,xi(1),yi(1))

p(x̃i(0),yi(0) | Zik = 1, x̃i(1),yi(1))
< γmax

h,`

πkh
πk`

.

Moreover, we observe TW = T ρ̂k0 elements of the sequence yi(1), . . . , yi(T ) which belongs to W . Thus,
we have∑

x∈X

p(x,yi | Zik = 1)

p(x̃ik,yi | Zik = 1)
≤
(
Mγmax

h,`

πkh
πk`

) T∑
p=0

p∑
r=0

(
TW

min(r, TW )

)(
T − TW

min(u, T − TW )

)
γrγ̄u

=

(
Mγmax

h,`

πkh
πk`

)(TW∑
r=0

(
TW
r

)
γr

T−r∑
u=0

(
T − TW

u

)
γ̄u

+
T∑

r=1+TW

T−r∑
u=0

(
T − TW

min(u, T − TW )

)
γrγ̄u

 .

We have
TW∑
r=0

(
TW
r

)
γr

T−r∑
u=0

(
T − TW

u

)
γ̄u = (1 + γ̄)T

(
1 +

γ

1 + γ̄

)TW
,

and
T∑

r=1+TW

T−r∑
u=0

(
T − TW

min(u, T − TW )

)
γrγ̄u ≤ (γ̃ + γ̄)T γ̃

(
γ̃

γ̄ + γ̃

)TW
,

where γ̃ = max(2, γ). Noting that 1 + γ̄ < γ̃ + γ̄ and 1 + γ
1+γ̄ >

γ̃
γ̄+γ̃ , we have

log p(yi | Zik = 1) ≤ log p(x̃ik,yi | Zik = 1) + T log(γ̃ + γ̄) + T ρ̂k0c2 + log γ̃ + log

(
2Mγmax

h,`

πkh
πk`

)
,

where c2 = 1 + γ
1+γ̄ . Note that γ + 1 > c2 > 1.
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Concentration of the ratio of complete-data likelihood

Lemma 5. For any k 6= k0 and for any δ3 such that −ζ < δ3 < ukk0, we have

P0

(
1

T

T∑
t=1

M∑
h=1

M∑
`=1

vi(t)h` log

(
Ak[h, `]

Ak0 [h, `]

)
> δ3

)
≤ exp (−Tc3) ,

where c3 = 2
1−ν̄2(Ak0

)

1+ν̄2(Ak0
)s

2 > 0 and s = δ3
ωkk0

+ 1
ωkk0

∑M
h=1

∑M
`=1 πk0hAk0 [h, `] log

(
Ak0

[h,`]

Ak[h,`]

)
.

Proof of Lemma 5. Let f(·) ∈ [0, 1] defined by

f(vi(t)) =
1

ωkk0

(
M∑
h=1

M∑
`=1

vi(t)h` log

(
Ak[h, `]

Ak0 [h, `]

)
+ uk0k

)
,

where ωkk0 = ukk0 + uk0k, ukk0 = max(h,`) log
(
Ak[h,`]
Ak0

[h,`]

)
. Denoting E0[·] = E[· | Zik0 = 1] the

conditional expectation computed with the true parameters, we have, for t = 1, . . . , T ,

E0

[
f(V i(t))

]
=

1

ωkk0

M∑
h=1

M∑
`=1

πk0hAk0 [h, `]

(
log

(
Ak[h, `]

Ak0 [h, `]

)
+ uk0k

)
.

Therefore, we have

P0

(
T∑
t=1

M∑
h=1

M∑
`=1

vi(t)h` log

(
Ak[h, `]

Ak0 [h, `]

)
> δ2

)
= P0

(
T∑
t=1

f(vi(t)) >
δ2 + Tuk0k

ωkk0

)

= P0

(
T∑
t=1

f(vi(t)) > T (E[f(V i(1))] + s)

)
,

where s = δ2
Tωkk0

+ 1
ωkk0

∑M
h=1

∑M
`=1 πk0hAk0 [h, `] log

(
Ak0

[h,`]

Ak[h,`]

)
.

Note that ωkk0 > 0 and that, by Assumption 3,
∑M

h=1

∑M
`=1 πk0hAk0 [h, `] log

(
Ak0

[h,`]

Ak[h,`]

)
> ζ > 0

because it is a weighted sum of M Kullback-Leibler divergences. Thus, if −Tζ < δ2 then s > 0.
Moreover, if δ2 < Tukk0 , then E[f(V i(1))] + s < 1. Assumption 1 and Remark 1 imply that ν̄2(Ak0)
is the maximum between zero and the second-largest eigenvalue of reversible Markov chain of V i(t).
Therefore, using Theorem 4, we have for any δ3 such that −ζ < δ3 < ukk0 ,

P0

(
1

T

T∑
t=1

M∑
h=1

M∑
`=1

vi(t)h` log

(
Ak[h, `]

Ak0 [h, `]

)
> δ3

)
≤ exp (−Tc3) ,

where c3 = 2
1−ν̄2(Ak0

)

1+ν̄2(Ak0
)s

2 and s = δ3
ωkk0

+ 1
ωkk0

∑M
h=1

∑M
`=1 πk0hAk0 [h, `] log

(
Ak0

[h,`]

Ak[h,`]

)
.

B.2 Proof of Theorem 2

Noting that P(Zik = 1 | yi) ∝ δkp(yi | Zik = 1) and using Lemma 4, we have

P0

(
P(Zik = 1 | yi)
P(Zik0 = 1 | yi)

> a

)
≤ P0

(
log

p(x̃ik,yi | Zik = 1)

p(x̃ik0 ,yi | Zik0 = 1)
> − log

δk
aδk0

− log

(
2Mγ̃γmax

h,`

πkh
πk`

)
−T log(γ̃ + γ̄)− T ρ̂k0c2) .

Moreover,

log
p(x̃ik,yi | Zik = 1)

p(x̃ik0 ,yi | Zik0 = 1)
=

T∑
t=1

(
dk1(t) + dk2(t)

)
+

M∑
h=1

x̃ik(1)h log πkh − x̃ik0(1)h log πk0h,
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where

dk1(t) =

M∑
h=1

M∑
`=1

(ṽik(t)h` − ṽik0(t)h`) log
(
Ak0 [h, `]g`(yi(t);λ`, ε`)

)
,

and

dk2(t) =
M∑
h=1

M∑
`=1

ṽik(t)h` log
Ak[h, `]

Ak0 [h, `]
.

Therefore, we have

P0

(
P(Zik = 1 | yi)
P(Zik0 = 1 | yi)

> a

)
≤ P0

(
1

T

T∑
t=1

(
dk1(t) + dk2(t)

)
> −c4

T
− log(γ̃ + γ̄)− ρ̂k0c2

)
,

with c4 = log δk
aδk0

+log
(

2Mγ̃γmaxh,`
πkh
πk`

)
+maxk,k0,h,` log πkh

πk0`
. By definition of W , we have ṽik(t)h` =

ṽik0(t)h` if yi(t) /∈ W . Moreover, because ṽik0 is the maximum a posteriori rule, if yi(t) ∈ W , then
dk1(t) < γ. Therefore, we have

P0

(
P(Zik = 1 | yi)
P(Zik0 = 1 | yi)

> a

)
≤ P0

(
1

T

T∑
t=1

dk2(t) > −
c4

T
− (γ + c2)ρ̂k0 − log(γ̃ + γ̄)

)
.

Hence, we have,

P0

(
P(Zik = 1 | yi)
P(Zik0 = 1 | yi)

> a

)
≤ P0 (ρ̂k0 > ρk0 + δ1) + P0

(
1

T

T∑
t=1

dk2(t) > −c4

T
− log(γ̃ + γ̄)

−(γ + c2)(ρk0 + δ1)) .

Using Lemma 3, if δ1 >
1√
2T

, the first term of the right side of the previous equation can be upper

bounded by e−Tc1 with c1 = 1
2(δ1 − 1√

2T
)2.

Using Lemma 5, the second term of the right side of the previous equation can be upper bounded

by e−Tc3 with c3 = 2
1−ν̄2(Ak0

)

1+ν̄2(Ak0
)s

2, where s = δ3
ωkk0

+ 1
ωkk0

∑M
h=1

∑M
`=1 πk0hAk0 [h, `] log

(
Ak0

[h,`]

Ak[h,`]

)
and

δ3 = − c4
T − log(γ̃ + γ̄) − (γ + c2)(ρk0 + δ1), if δ3 is such that −ζ < δ3 < ukk0 . Thus, we have the

following condition on δ1

ζ − c4
T − log(γ̃ + γ̄)

γ + c2
− ρk0 > δ1 > −

ukk0 + c4
T + log(γ̃ + γ̄)

γ + c2
− ρk0 .

Noting that γ+c2 < 1+2γ, the previous upper bound can be satisfied under the following assumption

Assumption 4. It holds that

ζ − c4 − log(γ̃ + γ̄)

1 + 2γ
− ρk0 −

1√
2
> 0,

with c4 = log δk
aδk0

+ log
(

2Mγ̃γmaxh,`
πkh
πk`

)
+ maxk,k0,h,` log πkh

πk0`
.

Thus, for any a such that Assumption 4 holds and for any δ1 with 1√
2T

< δ1 <
ζ−c4−log(γ̃+γ̄)

γ+c2
− ρk0 ,

we have
P0 (ρ̂k0 > ρk0 + δ1) ≤ O(e−Tc1),

and

P0

(
1

T

T∑
t=1

dk2(t) > δ3)

)
≤ O(e−Tc3),

with δ3 = − c4
T − log(γ̃ + γ̄)− (γ + c2)(ρk0 + δ1). Therefore, there exists c > 0 such that

P0

(
P(Zik = 1 | yi)
P(Zik0 = 1 | yi)

> a

)
≤ O(e−Tc).

If the misclassification error is studied, we should consider a = 1. Then, a sufficient condition to have
the exponential decreasing of the probability of misclassifying an observation is obtained on the basis
of Assumption 4 with a = 1.
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C Details about the conditional distribution

Forward formula We define

αikhs(t)(θ) = P(Xis(t) = h | Zik = 1;θ) p(yis(0), . . . , yis(t) | Xis(t) = h, Zik = 1;θ),

which measures the probability of the partial sequence yis(0), . . . , yis(t) and ending up in state h at
time t under component k. For any (i, k, h, s), we can define αikhs(t) recursively, as follows,

αikhs()(θ) = πkh p(yis();λh)

∀t ∈ {0, . . . , Tis − 1} αik`s(t+1)(θ) =

(
M∑
h=1

Ak[h, `]αikhs(t)(θ)

)
p(yis(t+1);λh).

Considering independence between the Si sequences yis, the pdf of yi under component k is

p(yi | Zik = 1;θ) =

Si∏
s=1

M∑
h=1

αikhs(Tis)(θ).

Therefore,

p(yi;θ) =

K∑
k=1

δk

(
Si∏
s=1

M∑
h=1

αikhs(Tis)(θ)

)
.

Backward formula We define

βikhs(t)(θ) = p(yis(t+1), . . . , yis(Tis) | Xis(t) = h, Zik = 1;θ),

which measures the probability of the ending partial sequence yis(t+1), . . . , yis(Tis) given a start in state
h at time t under component k. We can define βikhs(t)(θ) recursively, for any (i, k, h, s), as

βikhs(Tis)(θ) = 1

∀t ∈ {0, . . . , Tis − 1} βikhs(t)(θ) =
M∑
`=1

Ak[h, `]p(yi(t+1);λ`)βik`s(t+1)(θ).

Considering independence between the Si sequences yis, the pdf of yi under component k is

p(yi | Zik = 1;θ) =

Si∏
s=1

M∑
h=1

πkhβikhs(0)(θ)p(yi(0);λh).

p(yi;θ) =

K∑
k=1

δk

(
Si∏
s=1

M∑
h=1

πkhβikhs(0)(θ)p(yi(0);λh)

)
.
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Case hard (e = 0.75 and a2 = 3)
Adjusted Rand index Mean square error

n T partition states Ak εh ah bh δk
10 100 0.805 0.329 0.092 0.002 0.263 0.064 0.061
10 500 0.998 0.359 0.031 0.000 0.070 0.022 0.050
100 100 0.872 0.348 0.030 0.000 0.082 0.027 0.006
100 500 1.000 0.359 0.019 0.000 0.044 0.018 0.005

Case medium-2 (e = 0.75 and a2 = 5)
Adjusted Rand index Mean square error

n T partition states Ak εh ah bh δk
10 100 0.992 0.605 0.025 0.001 0.086 0.025 0.050
10 500 1.000 0.614 0.010 0.000 0.018 0.005 0.054
100 100 0.997 0.612 0.004 0.000 0.011 0.003 0.005
100 500 1.000 0.615 0.002 0.000 0.005 0.001 0.005

Case easy (e = 0.90 and a2 = 5)
Adjusted Rand index Mean square error

n T partition states Ak εh ah bh δk
10 100 1.000 0.827 0.009 0.000 0.159 0.016 0.048
10 500 0.999 0.831 0.011 0.000 0.030 0.003 0.048
100 100 1.000 0.829 0.001 0.000 0.017 0.002 0.005
100 500 1.000 0.831 0.000 0.000 0.003 0.000 0.005

Table 7: Convergence of the maximum likelihood estimator when data are sample in the other three
cases considered.

Adjusted Rand index Mean square error
n T s q partition states Ak εh ah bh δk

0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 10 0.927 0.977 1.153 1.315 1.307 1.229 1.059

10 100 2 10 0.865 0.955 1.342 1.411 1.355 1.346 1.142
1 20 0.845 0.954 1.308 1.703 1.230 1.312 1.129
2 20 0.705 0.906 1.813 2.565 2.462 2.336 1.389
0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 10 1.001 1.001 1.003 1.120 1.041 0.959 1.009

10 500 2 10 1.001 0.997 1.039 1.074 1.031 1.025 1.006
1 20 1.002 0.997 1.071 1.152 1.006 1.036 1.014
2 20 1.002 0.999 1.005 1.064 1.006 1.001 1.014
0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 10 0.963 0.989 1.123 1.177 1.063 1.088 1.123

100 100 2 10 0.919 0.977 1.159 1.308 1.179 1.194 1.158
1 20 0.915 0.975 1.196 1.299 1.178 1.204 1.219
2 20 0.813 0.953 1.280 1.647 1.439 1.330 1.514
0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 10 1.000 0.999 0.990 1.091 0.918 1.014 1.000

100 500 2 10 1.000 1.002 0.942 0.987 1.027 0.948 1.000
1 20 1.000 1.002 0.938 1.095 1.072 0.966 1.000
2 20 1.000 1.001 0.912 1.042 0.996 0.967 0.999

Table 8: Ratio between the statistics obtained with missingness and without missingness when data
are sample from case hard.



26 M. du Roy De Chaumaray, M. Marbac and F. Navarro

Adjusted Rand index Mean square error
n T s q partition states Ak εh ah bh δk

0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 10 0.997 0.987 1.074 1.103 1.133 1.144 1.004

10 100 2 10 0.992 0.978 1.298 1.289 1.325 1.303 1.011
1 20 0.986 0.982 1.320 1.286 1.333 1.320 1.006
2 20 0.964 0.958 1.870 1.727 1.759 1.783 1.005
0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 10 1.000 0.999 1.053 1.020 1.062 0.987 1.000

10 500 2 10 0.999 0.997 1.199 1.026 1.101 1.011 0.996
1 20 1.000 0.999 0.963 1.052 1.080 1.043 1.000
2 20 1.000 0.997 1.047 1.065 1.170 1.052 1.000
0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 10 0.997 0.992 1.084 1.160 1.058 1.040 0.995

100 100 2 10 0.993 0.984 1.184 1.323 1.215 1.205 0.997
1 20 0.993 0.989 1.187 1.316 1.277 1.191 0.995
2 20 0.974 0.974 1.478 1.723 1.492 1.479 1.003
0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 10 1.000 0.999 0.970 1.069 0.969 1.061 1.000

100 500 2 10 1.000 0.998 0.995 1.050 1.011 1.074 1.000
1 20 1.000 0.999 1.016 1.054 0.972 1.081 1.000
2 20 1.000 0.997 1.016 1.116 0.956 1.045 1.000

Table 9: Ratio between the statistics obtained with missingness and without missingness when data
are sample from case medium-2.

Adjusted Rand index Mean square error
n T s q partition states Ak εh ah bh δk

0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 10 1.000 0.998 1.104 1.120 1.150 1.128 1.000

10 100 2 10 1.000 0.995 1.227 1.254 1.277 1.243 0.999
1 20 1.000 0.996 1.238 1.233 1.253 1.273 1.000
2 20 1.000 0.991 1.682 1.557 1.572 1.573 1.000
0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 10 0.999 1.000 0.986 1.028 1.015 1.024 0.997

10 500 2 10 0.999 0.999 0.986 1.045 1.035 1.041 0.992
1 20 0.999 0.999 0.977 1.037 1.022 1.032 0.999
2 20 0.999 0.999 0.983 1.065 1.064 1.068 0.999
0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 10 1.000 0.997 1.119 1.125 1.127 1.118 1.000

100 100 2 10 1.000 0.994 1.280 1.263 1.248 1.237 1.000
1 20 1.000 0.996 1.246 1.279 1.260 1.242 1.000
2 20 1.000 0.991 1.593 1.608 1.560 1.524 1.000
0 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 10 1.000 0.999 1.033 1.027 1.033 1.035 1.000

100 500 2 10 1.000 0.999 1.055 1.046 1.060 1.070 1.000
1 20 1.000 0.999 1.053 1.047 1.052 1.030 1.000
2 20 1.000 0.999 1.108 1.088 1.102 1.096 1.000

Table 10: Ratio between the statistics obtained with missingness and without missingness when data
are sample from case easy.

D Supplementary material

D.1 Supplementary tables for the analysis of simulated data

D.2 Supplementary figures for the analysis of the accelerometer data of Huang
et al. (2018b)



Mixture of hidden Markov models for accelerometer data 27

0

50

100

150

200

18 06 18 06 18 06 18 06
time

ac
ti
v
it
y

Subject 9

0

50

100

150

200

06 18 06 18 06 18 06 18
time

a
ct
iv
it
y

Subject 16

0

50

100

150

200

06 18 06 18 06 18 06 18
time

a
ct
iv
it
y

Subject 20

0.00

0.25

0.50

0.75

1.00

18 6 18 6 18 6 18 6
time

P
ro
b
ab

il
it
y

0.00

0.25

0.50

0.75

1.00

6 18 6 18 6 18 6 18
time

P
ro
b
a
b
il
it
y

0.00

0.25

0.50

0.75

1.00

18 6 18 6 18 6 18 6 18
time

P
ro
b
a
b
il
it
y

intensive moderate low

Figure 5: State estimation for the three subjects: (top) accelerometer data where color indicates the
expected value of Yi(t) conditionally the most likely state and on the most likely component; (bottom)
probability of each state at each time.

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5
theoretical

sa
m
p
le

0

30

60

90

0 30 60 90
theoretical

sa
m
p
le

100

200

50 100 150 200 250
theoretical

sa
m
p
le

0

5

10

0 5 10
theoretical

sa
m
p
le

0

25

50

75

0 20 40 60 80
theoretical

sa
m
p
le

50

100

150

200

50 100 150 200
theoretical

sa
m
p
le

125

150

175

200

125 150 175 200
theoretical

sa
m
p
le

Figure 6: QQ-plots of subject 20. Top: from left to right, state 1 to 3. Bottom: Top: from left to
right, state 1 to 4.
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