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MIXTURE OF HIDDEN MARKOV MODELS
FOR ACCELEROMETER DATA

By Du Roy DE CHAUMARAY MARIE, MARBAC MATTHIEU, NAVARRO FABIEN
CREST, ENSAI

Motivated by the analysis of accelerometer data taken across a
population of individuals, we introduce a specific finite mixture of
hidden Markov models with particular characteristics that adapt well
to the specific nature of this type of longitudinal data. Our model al-
lows for the computation of statistics that characterize the physical
activity of a subject (e.g., the mean time spent at different activ-
ity levels and the probability of the transition between two activity
levels) without specifying the activity levels in advance but by es-
timating them from the data. In addition, this approach allows the
heterogeneity of the population to be taken into account and subpop-
ulations with homogeneous physical activity behavior to be defined.
We prove that, under mild assumptions, this model implies that the
probability of misclassifying a subject decreases at an exponential de-
cay with the length of its measurement sequence. Model identifiability
is also investigated. We also report a comprehensive suite of numer-
ical simulations to support our theoretical findings. The method is
motivated by and applied to the Physical Activity and Transit study.

1. Introduction. Inadequate sleep and physical inactivity affect physical and mental
well-being while often exacerbating health problems. They are currently considered major
risk factors for several health conditions (see, for instance Kimm et al. (2005); Taheri et al.
(2004); Lee et al. (2012); Grandner et al. (2013); McTiernan (2008)). Therefore, appropriate
assessment of activity and sleep periods is essential in disciplines such as medicine and
epidemiology. The use of accelerometers to evaluate physical activity—by measuring the
acceleration of the part of the body to which they are attached—is a classic method that
has become widespread in public health research. Indeed, since the introduction in 2003
of the first objective assessment of physical activity using accelerometers, as part of the
National Health and Nutrition Examination Survey (NHANES), the analysis of actigraphy
data has been the subject of extensive studies over the past two decades. Recently, the
New York City (NYC) Department of Health and Mental Hygiene conducted the 2010-
2011 Physical Activity and Transit (PAT) Survey!, a random survey of adult New Yorkers
that tracked levels of sedentary behavior and physical activity at work, at home, and

Keywords and phrases: Accelerometer data; Hidden Markov model; Longitudinal data; Missing data;
Mixture models
INYC Department of Health and Mental Hygiene. Physical Activity and Transit Survey 2010-
2011; public use datasets accessed on May 10, 2019. The data are freely accessible on this page:
https://wwwl.nyc.gov/site/doh/data/data-sets/physical-activity-and-transit-survey-public-use-data.page
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2 M. DU ROY DE CHAUMARAY ET AL

for leisure. A subset of interviewees was also invited to participate in a follow-up study
to measure objectively their activity level using an accelerometer. One of the objectives
of this study is to describe measured physical activity levels and to compare estimates
of adherence to recommended physical activity levels, as assessed by accelerometer, with
those from self-reports. In contrast to NHANES accelerometer data, PAT data still seem
relatively unexplored in the statistical literature.

This paper is motivated by the analysis of the accelerometer data worn by 133 individuals
over 65 years of age who responded to the PAT survey. Our objective is to propose a
model adapted to the specificities of these data and study its properties (positive and
time-dependent measures, occurrence of missingness, heterogeneous population, need to
estimate activity levels whose the definition is the same for all the individuals). In order
to motivate the development of a new model, we present an overview of the literature on
accelerometer data analysis.

Previous studies for analyzing accelerometer data have focused on automatic detection
of the sleep and wake-up periods (Cole et al., 1992; Sadeh et al., 1994; Pollak et al., 2001;
Van Hees et al., 2015). More recent developments are interested in the classification of
different levels of activity (see Yang and Hsu (2010) for a review). These methods provide
summary statistics like the mean time spent at different activity levels. In epidemiological
studies, time spent by activity level is often used as a covariate in predictive models. (see,
for instance, the works of Noel et al. (2010); Palta et al. (2015); Innerd et al. (2018) where
the links between physical activity and obesity are investigated). These statistics can be
computed using deterministic cutoff levels (Freedson et al., 1998). However, with such an
approach, the dependency in time is neglected and the cutoff levels are pre-specified and
not estimated from the data.

Accelerometer data are characterized by a time dependency between the different mea-
sures. They can be analyzed by methods developed for functional data or by Hidden Markov
Models (HMM). Methods for functional data need the observed data to be converted into
a function of time (Morris et al., 2006; Xiao et al., 2014; Gruen et al., 2017). For instance,
Morris et al. (2006) use wavelet basis for analyzing accelerometer profiles. The use of a basis
function reduces the dimension of the data, and therefore the computing time. However,
these methods do not define levels of activity and thus cannot directly provide the time
spent at different activity levels.

When considering a discrete latent variable to model time dependence, HMM are appro-
priate for adjusting sequence data (Scott et al., 2005; Altman, 2007; Gassiat et al., 2016).
Titsias et al. (2016) expand the amount of information which can be obtained from HMM
including a procedure to find maximum a posteriori (MAP) of the latent sequences and
to compute posterior probabilities of the latent states. HMM are used on activity data
for monitoring circadian rythmicity (Huang et al., 2018b) or directly for estimating the
sequence of activity levels from accelerometer data (Witowski et al., 2014). For simulated
data, Witowski et al. (2014) established the superiority of different HMM models, in terms
of classification error, over traditional methods based on a priori fixed thresholds. While
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the simplicity of implementing threshold-based methods is an obvious advantage, they have
some significant disadvantages compared to the HMM methods, particularly for real data.
Indeed, the variation in counts and the resulting dispersion is large, leading to consid-
erable misclassification of counts recorded in erroneous activity ranges. The approach of
Witowski et al. (2014) assumes homogeneity of the population and does not consider miss-
ingness within the observations. However, heterogeneity in physical activity behaviors is
often present (see, for instance, Geraci (2018)) and the use of more than one HMM allows
it to be taken into account (see, e.g., Van de Pol and Langeheine (1990)). Clustering en-
ables the heterogeneity of the population to be addressed by grouping observations into a
few homogeneous classes. Finite mixture models (McLachlan and Peel, 2004; McNicholas,
2016) permit to cluster different types of data like: continuous (Banfield and Raftery, 1993),
integer (Karlis and Meligkotsidou, 2007), categorical (Goodman, 1974), mixed (Hunt and
Jorgensen, 2011; Kosmidis and Karlis, 2015), network (Hoff et al., 2002; Hunter et al., 2008;
Matias et al., 2018) and sequence data (Wong and Li, 2000). Recent methods use cluster-
ing for accelerometer data analysis. For instance, Wallace et al. (2018) use a specific finite
mixture to identify novel sleep phenotypes, Huang et al. (2018a) perform a matrix-variate-
based clustering on accelerometer data while Lim et al. (2019) use a clustering technique
designed for functional data. Mixed Hidden Markov Models (MHMM) are a combination of
HMM and Generalized Linear Mixed Models (Van de Pol and Langeheine, 1990; Bartolucci
et al., 2012). These models consider one (or more) random effect(s) coming from either a
continuous distribution (Altman, 2007) or a discrete distribution (Bartolucci et al., 2011;
Maruotti, 2011). Note that a MHMM with a single discrete random effect distribution,
having a finite number of states, is a finite mixture of HMM. Such a model allows one to
estimate a partition among the population and to consider the population heterogeneity.
The impact of the random effect can be on the measurement model or on the latent model.

This paper focuses on the analysis of PAT data with a two-fold objective: obtain sum-
mary statistics about physical activity of the subjects without pre-specifying cutoff levels
and obtain a partition which groups subjects into homogeneous classes. We define a class
as homogeneous if its subjects have similar average times spent in the different activity
levels and similar transition probabilities between activity levels. To achieve this goal, we
introduce a specific finite mixture of HMM for analyzing accelerometer data. This model
considers two latent variables: a categorical variable indicating each subject’s class mem-
bership and a sequence of categorical variables indicating the subject’s level of activity
each time its acceleration is measured. At time ¢, the measure is independent of the class
membership conditionally on the activity level (i.e., the latent state) and follows a zero-
inflated distribution—a distribution that allows for frequent zero-valued observations. The
activity level defines the parameter of this distribution. The use of zero-inflated distribu-
tion is quite common for modeling accelerometer data (Ae Lee and Gill, 2018; Bai et al.,
2018), as the acceleration is measured every second, many observations are zero. Note that
the definitions of the activity levels are equal among the mixture components. This is an
important point for the use of the summary statistics (e.g., time spent at different activity
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levels, probabilities of transition between levels) in a future statistical study. The model
we consider is thus a specific MHMM with a finite-states random effect that only impacts
the distribution of latent physical activity levels. MHMM with a finite-states random effect
have few developments in the literature (Bartolucci et al., 2011; Maruotti, 2011), espe-
cially when the random effects only impact the latent model (and not the measurement
model). We propose to theoretically study the model properties by showing that the prob-
ability of misclassifying an observation decreases at an exponential rate. In addition, since
the distribution given the latent state is itself a bi-component mixture (due to the use of
zero-inflated distributions), we investigate sufficient conditions for model identifiability.

In practice, the data collected often include missing intervals due to non-compliance by
participants (e.g., if the accelerometer is removed). Geraci and Farcomeni (2016) propose
to identify different profiles of physical activity behaviors using a principal component
analysis that allows for missing values. The PAT data contain three types of missing values
corresponding to periods when the accelerometer is removed, making statistical analysis
more challenging. First, missingness occurs at the beginning and at the end of the measure
sequences due to the installation and the removing of the accelerometer. Second, subjects
are asked to remove the accelerometer when they sleep at night. Third, missing values
appear during the day (e.g., due to a shower period, nap, ...). We remove missing values
which occur at the begin and at the end of the sequence. For missingness caused by night
sleep, we consider that the different sequences describing different days of observations of
a subject are independent and that the starting point (e.g., first observed measure of the
accelerometer of the day) is drawn from the stationary distribution. For missing values
measured during the day, the model and the estimation algorithm can handle these data.
Moreover, we propose an approximation of the distribution that avoids the computation of
large powers of the transition matrices in the algorithm used for parameter inference and
thus reduces computation time. Theoretical guarantees and numerical experiments show
the relevance of our proposition.

The R package MHMM which implements the method introduced in this paper is avail-
able on CRAN (Du Roy de Chaumaray et al., 2020a). It permits to analyze other ac-
celerometer data and thus it is complementary to existing packages for MHMM. Indeed,
it takes into account the specificities of accelerometer data (the class membership only
impacts the transition matrices, the emission distributions are zero-inflated gamma (ZIG)
distributions). Among the R packages implementing MHMM methods, one can cite the R
package LMest (Bartolucci et al., 2017) which focuses on univariate longitudinal categorical
data, the R package seqHMM (Helske and Helske, 2019) whose main purpose is to analyse
multivariate/multichannel categorical data and the R package mHMMbayes (Aarts, 2019)
which focuses on multivariate longitudinal categorical data.

This paper is organized as follows. Section 2 presents the PAT data and the context
of the study. Section 3 introduces our specific mixture of HMM and its justification in
the context of accelerometer data analysis. Section 4 presents the model properties (model
identifiability, exponential decay of the probabilities of misclassification and a result for
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dealing with the non-wear periods). Section 5 discusses the maximum likelihood inference
and Section 6 illustrates the model properties on both simulated and real data. Section 7
illustrates the approach by analyzing a subset of the PAT accelerometer data. Section 8
discusses some future developments. Proofs and technical lemmas are postponed in sup-
plementary material Du Roy de Chaumaray et al. (2020b).

2. PAT data description. We consider a subset of the data from the PAT survey,
the subjects who participated in the follow-up study to measure objectively their activity
level using an accelerometer. A detailed methodological description of the study and an
analysis of the data is provided in Immerwahr et al. (2012). Note that the protocols for
accelerometer data for the PAT survey and NHANES were identical. One of the objectives
of the PAT study is to investigate the relationships between self-reported physical activity
and physical activity measured by the accelerometer in order to provide best practice
recommendations for the use of self-reported data Wyker et al. (2013). Indeed, self-reported
data may be subject to overreporting. This is particularly the case among less active
people, due in particular to a social desirability bias or the cognitive challenge associated
with estimating the frequency and duration of daily physical activity (see, e.g., Slootmaker
et al. (2009); Dyrstad et al. (2014); Lim et al. (2015)). The results of Wyker et al. (2013)
show that males tend to underreport their physical activity, while females and older adults
(65 years and older) overreported (see also Troiano et al. (2008) for a detailed study of
the differences between self-reported physical activity and accelerometer measurements in
NHANES 2003-2004). Consequently, the study of data measured by accelerometer for these
specific populations makes it possible to determine methods for correcting estimates from
self-reported data, such as stratification by gender and/or age when comparing groups.

In this work, we are particularly interested in the age category above 65 years old
(n = 133). We present some characteristics related to PAT data and refer to Immerwahr
et al. (2012) for a full description?. Accelerometers were worn for one week (beginning
on Thursday and ending on Wednesday) and measured the activity minute-by-minute.
The trajectory associated with each subject is therefore of length 10080. In addition, a
participant’s day spans from 3am-3am (and not a calendar day) in order to record late
night activities and transit and contains missing data sequences of variable length at the
beginning and end of the measurement period (these missing data sequences were excluded
from the analysis). This length varies from one subject to another, and the mean and
minimum trajectory length for the population under consideration (after excluding those
missing at the edges) are 9474 and 5199 respectively (with a total number of observations
equal to 1259981). The model of the accelerometer used is Actigraph GT3X, it is worn on
the hips (which results in the fact that certain activities, such as lifting weights or biking,
cannot be measured). In addition, participants were also asked to remove it when sleeping,

2Raw accelerometer data, covariates allowing the selection of the subset of the population, as well as
a detailed dictionary are freely accessible here: https://wwwl.nyc.gov/site/doh/data/data-sets/physical-
activity-and-transit-survey-public-use-data.page
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Fia 1. Accelerometer data of subject Patcid:1200255 of the PAT study measured for one week (with a
zoom on the afternoon of day 3): observed values (in gray), missing values during a daytime period (in
blue), missing values during a period of night sleep (in red) and missing values at the start and end of
the measurement period (in black). The dashed horizontal lines represent the four levels of physical activity
based on the classification established by the US Department of Health and Human Services (2008).

swimming or bathing, hence the data contains approximately 44% of missing values that
appear mainly in sequence, appearing at night but also during the day. Figure 1 gives an
example of accelerometer data measured on one subject (i.e., patcid:1200255) for one week
where the three types of missing data can be seen. The four levels of physical activity based
on the classification established by the US Department of Health and Human Services
(2008) in the Physical Activity Guidelines for Americans (PAGA) report is also shown
in the Figure 1. Specifically, the PAT protocol for accelerometer data has established a
classification according to PAGA, characterizing each minute of activity. Activity minutes
with less than 100 activity counts were classified as Sedentary, minutes with 100-2019
counts were classified as Light, the class Moderate corresponds to 2020-5998 counts/minute
and Vigorous 5999 and above counts/minute. A comparison between our method and this
traditional threshold-based approach is provided in Section 7.3.

3. Mixture of hidden Markov models for accelerometer data. In this section
we present the proposed model and the application context for which it has been defined.

3.1. The data. Observed data y = (y{,...,y, ) are composed of n independent and
identically distributed sequences y,;. Each sequence y; = (yi(o), ceey yi(T)) which contains
the values measured by the accelerometer at times ¢ € {0,1,...,T} for subject i, with
Yir) € R*. Throughout the paper, index i is related to the label of the subject and index
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(t) is related to the time of measurement.

The model considers M different activity levels (which are unobserved). These levels
impact the distribution of the observed sequences of accelerometer data. The sequence of
the hidden states @x; indicates the activity level of subject ¢ at the different times. Thus,
x; = (Ti(0), - - - » Ti(7)) € X and the activity level (among the M possible levels) of subject
i at time ¢ is defined by the binary vector ;i = (zi)1,- - -, Tigym) where xyqy, = 1 if
subject ¢ is at state h at time ¢ and z;(;), = 0 otherwise.

The heterogeneity (in the sense of different physical activity behaviors) between the
n subjects can be addressed by grouping subjects into K homogeneous classes. This is

achieved by clustering that assesses a partition z = (z1,...,2,) among the n subjects
based on their accelerometer measurements. Thus the vector z; = (zi1,. .., zix) indicates
the class membership of subject i, as z;; = 1 if observation ¢ belongs to class k£ and

zit. = 0 otherwise. Throughout the paper, index k refers to the label of a class grouping
homogeneous subjects.

Each subject i is described by three random variables: one unobserved categorical vari-
able z; (defining the membership of the class of homogeneous physical activity behaviors
for subject i), one unobserved categorical longitudinal data x; (a univariate categorical
discrete-time time series which defines the activity level of subject i at each time) and one
observed positive longitudinal data y, (a univariate positive discrete-time time series which
contains the values of the accelerometer measured on subject i at each time).

Class
membership

Activity

Latent Jovels

Accelerometer
Observed
measurements

F1a 2. Generative model of the specific mizture model of HMM used for the accelerometer data: an arrow
between two variables indicates dependency and an absence of arrow indicates conditional independence.

3.2. Generative model. The model described below considers that the observations are
independent between the subjects and identically distributed. It is defined by the following
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generative model and summarized by Figure 2 (note that this figure is similar to Figure 6.2
of Bartolucci et al. (2012)):

1. sample class membership z; from a multinomial distribution;

2. sample the sequence of activity levels x; from a Markov model whose transition
matrix depends on class membership;

3. sample the accelerometer measurement sequence given the activity levels (each Y
follows a ZIG distribution whose parameters are defined only by ;) ).

3.3. Finite mizture model for heterogeneity. The sequence of accelerometer measures
obtained on each subject is assumed to independently arise from a mixture of K parametric
distributions, so that the probability distribution function (pdf) of the sequence y; is

K

k=1

where 8 = {A, e} U {0, 7k, Ap;k = 1,..., K} groups the model parameters, 0 is the
proportion of components k with d, > 0, Eszl 0 = 1, and p(+; 7k, Ak, A, €) is the pdf of
component k parametrized by (7, Ak, A, €) defined below. Thus, Jj, is the marginal prob-
ability that a subject belongs to class k (i.e., 0y = P(Z; = 1)). Moreover, p(-; 7y, Ak, A, €)
defines the distribution of a sequence of values measured by the accelerometer on a subject
belonging to class k (i.e., p(+; g, Ak, A, €) is the pdf of y, given Z;, = 1).

3.4. Hidden Markov model for activity levels. The model assumes that the distribution
of the hidden state sequence depends on the class membership, and that the distribution
of activity measurements depends on the state at time ¢ but not on the component mem-
bership given the state (i.e., X; £ Z;, Yiu) £ X and Yy L Z; | Xy). It is crucial
that the distribution of Y;;) given X () is independent of Z;. Indeed, each activity level is
defined by the distribution of Y;) given the state. Therefore, to extract summary statistics
on the whole population (as the average time spent by level of activity) the definition of
the activity levels (and the distribution of y;) given the state) must be the same among
the mixture components.

The pdf of y, for components k (i.e., given Z;, = 1) is

(2) P(Yii Ty A, Ay €) = > plai; mr, Ag) p(y; | s A, €).
x,€EX
The Markov assumption implies that

T M M

p<wz’§ T, Ak H ﬂkl(o)h H H H Ak h, g Ti(t—D)hTi(n)e

t=1h=1/¢=1
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where mp = (71, ..., T ) defines the initial probabilities so that mp, = P(X;qy, = 1 |
Zir = 1), Ay is the transition matrix so that Ag[h, ] = P(X;je = 1| Xjp—yp = 1, Zix =
1). Finally, we have

T M

p(y’t | Ti; Aa E) = H H g(yz(t)7 A}“ 5]_L)mz'(t)h7
t=0h=1

where g(-; Ap,ep) is the pdf of a zero-inflated distribution defined by

9(Wit); Ans€n) = (L = en)ge(Yi(y; An) + enlyy,, =0}

where g.(-; Ap,) is the density of a distribution defined on a positive space and parametrized
by Ap. The choice of considering zero-inflated distributions is motivated by the large number
of zeros in the accelerometer data (see Figure 1). For the application in Section 7, we use
a gamma distribution for g.(-; Ap). However, model properties and inference are discussed
for a large family of densities g.(-; Ap).

4. Model properties. In this section, we present the properties of the mixture of
parametric HMM. We start with a discussion of three assumptions. Then, model identi-
fiability is proved. It is shown that the probability of making an error in the partition
estimation exponentially decreases with T, when the model parameters are known. Finally,
the analysis of missing data is discussed.

4.1. Assumptions.

ASSUMPTION 1. For each component k, the Markov chain is irreducible. Moreover, we
assume that the sequence is observed at its stationary distribution (i.e., 7y is the stationary
distribution so F;Ak = 71';) Therefore, there exists 0 < v < 1 such that

Vk € {15'--)K}7 VQ(Ak) <v,

where vo(Ay) is the second-largest eigenvalue of Ay. Finally, we denote by va(Ag) =
max (0, v2(Ag)).

ASSUMPTION 2. The hidden states define different distributions for the observed se-
quence. Therefore, for h € {1,..., M}, W € {1,..., M}\{h}, we have A, # Ap,. Moreover,
the parametric family of distributions defining ge(; A1), ..., ge(-; Aar) permits to consider
an ordering such that for a fized value p € RT \ {0}, we have

c(Yi(1); A
Vhe{l,...,M—1}, lim 9elWi); Ant1)

=0.
vin=r ge(i(1); An)
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ASSUMPTION 3. The transition probabilities are different over the mizture components
and are not zero. Therefore, for k € {1,..., K}, ¥ € {1,..., K} \ {k}, we have V(h,{),
Ap[h, ] # Ay [h,l]. Moreover, there exists ¢ > 0 such that

L& Aglh, 4]
VkE{l,...,K},Vk/e{l,...,K}\{kLZzﬂkhlogm>g
h=1 (=1 )

Finally, without loss of generality, we assume that Ag[l,1] > Ags1[1,1].

Assumption 1 states that the state at time 1 is drawn from the stationary distribution of
the component that the observation belongs to. To obtain the model identifiability we do
not need the assumption that the stationary distribution is different over the mixture com-
ponents. As a result, two components having the same stationary distribution but different
transition matrices can be considered. Assumption 2 and Assumption 3 are required to
obtain the model identifiability. Assumption 3 can be interpreted as the Kullback-Leibler
divergence between the distribution of the states under component k and their distribution
under component &’. This constraint is required for model identifiability because it is re-
lated to the definition of the classes. Consequently, the matrices of the transition probability
must be different among components.

4.2. Identifiability. Model identifiability is crucial for interpreting the estimators of
the latent variables and of the parameters. It has been studied for some mixture models
(Teicher, 1963, 1967; Allman et al., 2009; Celisse et al., 2012) and HMM (Gassiat et al.,
2016), but not for the mixture of HMM. Generic identifiability (up to switching of the
components and of the states) of the model defined in (1) implies that

Vy;, p(y;;0) = p(y;; é) =60=0.
The following theorem states this property.

THEOREM 1. If Assumptions 1, 2 and 8 hold, then the model defined in (1) is generi-
cally identifiable (up to switching of the components and of the states) if T > 2K.

Proof of Theorem 1 is given in supplementary material Du Roy de Chaumaray et al.
(2020b, Section 1). The model defined by the marginal distribution of an accelerometer
measure at a single time ¢ is not identifiable. Indeed, the marginal distribution of y; is
a mixture of zero-inflated distributions and such mixture is not identifiable (i.e., different
class proportions and inflation proportions can define the same distribution). It is therefore
this dependency over time that makes the proposed mixture generically identifiable. Note
that such statement has been made by Gassiat et al. (2016) when they discuss the case
where the emission distribution for an HMM follows a mixture model.
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4.3. Probabilities of misclassification. In this section, we examine the probability that
an observation will be misclassified when the model parameters are known. We consider the
ratio between the probability that subject ¢ belongs to class k given y, and the probability
that this subject belongs to its true class, and we quantify the probability of it being greater
than some positive constant a. Let 6y be the true model parameter and Py = P(- | Zjy, =
1,60) denote the true conditional distribution (true label of subject i and parameters are
known).

THEOREM 2. Assume that Assumptions 1 and 3 hold. If a > 0 is such that Assump-

tion 1 (defined in supplementary material Du Roy de Chaumaray et al. (20200, Section 2))
holds, then for every k # ko

P(sz =1 ‘ yz) al < O(ech)
P(Ziky =1 y;) - 7

where ¢ > 0 is a positive constant

Py

Moreover, the exponential bounds of Theorem 2 allows to use the Borel-Cantelli’s lemma
to obtain the almost sure convergence.

COROLLARY 1. Assume that Assumptions 1 and 3 hold. If y; is generated from com-
ponent ko (i.e., Zix, = 1), then for every k # ko
P(sz =1 ’ yl) a.s.

&5 0 P(Za. =1ly) 5% 1 and P(Z=1vy,) 5% 0.
P(Z’Lk0:1|yl) T—+00 ’ ( iko ’yl) Tt oo an ( ik ‘yz) S

Therefore, by considering a = 1, Theorem 2 and Corollary 1 show that the probability
of misclassifying the subject ¢ based on the observation y,, using the mazimum a posteriori
rule, tends to zero when T increases, if the model parameters are known. Proof of Theorem 2
and a sufficient condition that allows to consider a = 1 (value of interest when the partition
is given by the MAP rule) are given in supplementary material Du Roy de Chaumaray et al.
(2020b, Section 2). It should be noted that it is not so common to have an exponential
rate of convergence for the ratio of the posterior probability of classification. Similar results
are obtained for network clustering using the stochastic block model (Celisse et al., 2012)
or for co-clustering (Brault and Mariadassou, 2015). For these two models, the marginal
distribution of a single variable provides information about the class membership. For the
proposed model, this is the dependency between the different observed variables which is
the crucial point for recovering the true class membership.

4.4. Dealing with missing values. Due to the markovian character of the states, missing
values can be handled by iterating the transition matrices. In our particular context, missing
values appear when the accelerometer is not worn (see Section 2 for explanations of the
reasons of missingness). We will not observe isolated missing values but rather wide ranges
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of missing values. Let d be the number of successive missing values, we thus have to compute
the matrix AZH to obtain the distribution of the state at time ¢ + d knowing the state at
time ¢ — 1. These powers of transition matrices should be computed many times during the
algorithm used for inference (see Section 5). Moreover, after d + 1 iterations with d large
enough, the transition matrix can be considered sufficiently close to stationarity (e.g., for
any (h,?), Azﬂ[h,f] ~ mke), which has actually been chosen as the initial distribution.
Therefore, for numerical reasons, we will avoid computing the powers of the transition
matrices and we will make the following approximation. An observation y,; with S; observed
sequences split with missing value sequences of size at least d are modeled as .S; independent
observed sequences with no missing values, all belonging to the same component k. Namely,
for each individual 4, the pdf p(y,;; 7k, Ak, A,€) of component k is approximated by the
product of the pdf of the S; observed sequences y;1, Y9, - - -, Y;s;:

Si
p(yw Tk, Ak7 )‘7 6) = Hp(yzsv Tk, Ak7 )‘7 6)7
s=1
where, for each s, y,, is an observed sequence of length Tis + 1: Y;s = (Yis(0)s - - - » Yis(T3,))

and p(y,s; Tk, Ak, A, €) is defined as in (2). We note that the observation y, can thus be
rewritten as follows

Yi = (yil(O)a s Yil(Tir) s Yi2(0)s - - 5 Yi2(Tia)s -+ -5 YiS;(0)s - -+ yiSi(Tisi))a

with Yio0) = Yi(11+d;,+1) Where the dj1 values Y1, 41), - - Yi(Ty, +d;1) correspond to the
first sequence of missing values, and more generally, for each s = 2,...,5;, yi50) =
Yi 1 (Tij+dig+1)) with d;; being the number of missing values between the observed se-
quences Y and Yis;ir-

Once the estimation of the parameters has been done, we make sure that this assumption
was justified by verifying that the width of the smallest range dy,in = min{d;1,...,dis;—1}
of missing values is sufficiently large to be greater than the mixing time of the obtained
transition matrix. To do so, we use an upper bound for the mixing time given by Levin and
Peres (2017, Theorem 12.4, p. 155). For each component k, we denote by v} the second
maximal absolute eigenvalue of Aj. For any positive 7, if for each k

1 1

min — * lOg . )
I —vy nming Tgp

d

then for any integer D > d,,;, the maximum distance in total variation satisfies

max | AP, | — iy < 1.

5. Maximum likelihood inference. This section presents the methodology used to
estimate the model parameters.
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5.1. Inference. We proposed to estimate the model parameters by maximizing the log-
likelihood function where missing values are managed as in Section 4.4 and we recall that
the log-likelihood is also approximated for numerical reasons, to avoid computing large
powers of the transition matrices. We want to find 6 which maximizes the following ap-
proximated log-likelihood function

n K Si
0;y) = > log (Z ok [ [ p(yisi wrs Ars A, 6)> :
i=1 k=1 s=1

This maximization is achieved via an EM algorithm (Dempster, A.P. and Laird, N.M. and
Rubin, D.B., 1977) which considers the complete-data log-likelihood defined by

0 Y,z Zzzzk log(sk +Zzzzk (ZIOgP yzsvﬂ-kaAlmA E)) :

i=1 k=1 i=1 k=1

5.2. Conditional probabilities. Let a;ppg(1)(0) be the probability of the partial sequence
Yis(0)s - - - » Yis(r) that ends up in state h at time ¢ under component k. Moreover, let Bipp (1) (9)
be the probability of the ending partial sequence Y5141y - - - » Yis(7;,) glven a start in state
h at time ¢ under component k. These probabilities can be easily obtained by the for-
ward /backward algorithm (see supplementary material Du Roy de Chaumaray et al. (2020b,
Section 3)). We deduce that the probability v;uns)(0) of being in state h at time t €
{0,...,T;s} for y; under component k is

zkhs(t( )5ikhs (0)
ZE 1azk€s ( )/szés t)( )

The probability &) (0) of being in state £ at time ¢ € ; and in state h at time t — 1
for observation y, under component k is

§ikh€s(t) (0) = IP>(‘szs(t) =4, Xis(t—l) =h ’ Yiss Zik = 15 0)
_ Qikns(t) (0) Arlh, €1 g(Yis(ry; Ao €0) Bikes(r) (0)
Sy S0 Qs (0) AN g (Yis(ey: Mers €e) Biners o) (0)
The probability 7;; that one observation arises from component k is
| | R Dy Qighs(T;.)(0)
Egzl Hf;1 Zthl O‘ik/hs(Tis)(e)

The probability 7;,s;) that observation i is at state h at time ¢ of sequence s is

Yikhs(t) (0) = P(Xis(t) =h|Y;s, Zit =1;,0) =

Tik(0) =P(Zy, =1]y,;,0) =

Nihs(t) (0) = ]P)(Xls(t) =h | yi7 ZTzk 72khs 0)
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5.3. EM algorithm. The EM algorithm is an iterative algorithm randomly initialized at
the model parameter 0!, It alternates between two steps: the Expectation step (E-step)
consisting in computing the expectation of the complete-data likelihood under the current
parameters, and the maximization step (M-step) consisting in maximizing this expectation
over the model parameters. Iteration [r] of the algorithm is defined by
E-step Conditional probability computation, updating of

7t (07 ), Yitns(y (07 ), Dins(ey (071, and Eippescry (07 ).
M-step Parameter updating

S _ ng (01 I _ Men(oy (07 1) Aulh, ) = nene (67 1) e = wy (61
S = o Akl T = e ey =
n ni (01 ngn (07 ) ngp(67)
n Sz Tzs
and )\% = argmax Zths o~ gc(yzs(t) Ah),
i=1 s=1 t=0
where
n n S@ Tzs n SZ
0) => 7ir(0), nen(0 D> k(O iknsy: man)(0) = Y > 7in(0)ikns(0) (6).
i=1 i=1 s=1 t=0 i=1 s=1
n Sz T’LS n Sz T’LS
nghe(0) = Z ik ( fzkhes(t (0) and wp(0) = Z Mins(t) {yis(t):()}'
i=1 s=1 t=1 i=1 s=1 t=0

6. Numerical illustrations. This section aims to highlight the main properties of the
model on numerical experiments. First, simulated data are used to illustrate the exponential
decay of the probabilities of misclassification (given by Theorem 2), the convergence of
estimators and the robustness of the approach to missingness. Second, our approach is
applied to the data from the PAT study. All the experiments are conducted with the R
package MHMM available on CRAN.

6.1. Simulated data.

Simulation design. All the simulations are performed according to the same model. This
model is a bi-components mixture of HMM with two states (i.e., K = M = 2) and equal
proportions (i.e., 01 = dz = 1/2). The distribution of Y conditionally on the state h is a
Z1G distribution. We have
81:&‘2:0.1,CL1=1,b1=b2:1,A1:[ € 1—€:| andAgz{l_e € :|
1—e e e 1—e

The parameter az > 1 controls the separation of the distribution of Yj) given the state.
The parameter e controls the separation of the distribution of X given the class (when e
increases, the constant ¢ in Theorem 2 increases). We consider four cases: hard (e = 0.75
and ag = 3), hard-medium (e = 0.90 and as = 3), medium-easy (e = 0.75 and as = 5) and
easy (e =0.90 and ag = 5).
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logarithm of the probability of misclassification
probabiiity of misclassification

50 75 160 ¢ 2 50 7 10
T T

(a) Median (in solid lines) and 90%-confidence (b) Probability of misclassification.

P(Zi=1ly;)

region (gray areas) of log el
ikg = i

F1G 3. Results obtained on 1000 observations for the hard (orange), hard-medium (green), medium-easy
(blue) and easy (purple) cases.

1llustrating the exponential rate of the probabilities of misclassification. Theorem 2 states
that the probabilities of misclassification decrease at an exponential rate with 7. To illus-
trate this property, 1000 sequences are generated for 7' = 1,...,100 and the four cases.
For each sequence y;, we compute log(P(Z;; = 1 | y;)/P(Zix, = 1| y;)) when ko is the true
class, k the alternative and the true model parameters are used. Figure 3(a) shows the
behavior of log(P(Z;, = 1| y;)/P(Zik, = 1| y;)) (the median of this log ratio is plotted in
plain and a 90% confidence interval is plotted in gray). Note that this log ratio of probabil-
ities linearly decreases with T" which illustrates the exponential decay of the probabilities
of misclassification. Moreover, Figure 3(b) presents the empirical probabilities of misclas-
sification and thus also illustrates Theorem 2. As expected, this shows that the decay of
the probabilities of misclassification is faster as the overlaps between class decreases.

1llustrating the convergence of the estimators. We illustrate the convergence of the esti-
mators (partition, latent states and parameters) when the model parameters are estimated
by maximum likelihood (see Section 5). We compute the mean square error (MSE) between
the model parameters and their estimators. Moreover, we compute the adjusted Rand index
(ARI; Hubert and Arabie (1985)) between the true partition and the partition given by the
maximum a posteriori probability (MAP) rule, and between the true state sequences and
the estimated state sequences given by the MAP rule (obtained with the Viterbi algorithm
(Viterbi, 1967)). Table 1 shows the results obtained with two different sample sizes n and
two different lengths of sequences T, considering the case hard-medium. It can be seen that
the partition and the model parameters are well estimated. Indeed, the MLE converge to
the true parameters as T' or n increases, except for the proportion of each component dj.
The convergence of the estimator of the proportions depends mainly on the sample size
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n. We notice that the partition obtained by our estimation procedure corresponds to the
true partition (for n and T large enough) even if we are not under the true parameters but
under the MLE, which is not an immediate consequence of Theorem 2. On the contrary,
we do not find the true state sequences a.s., as the number of states to be estimated is
also growing with n and T'. This result was expected because the number of latent states
increases with 7" and n while the number of parameters and the dimension of the partition
does not increase with 7. Results obtained for the three other cases are similar and are
presented in the supplementary material Du Roy de Chaumaray et al. (2020b, Section 4.1).

TABLE 1
Convergence of estimators when 1000 replicates are drawn from case hard-medium: ARI between estimated
and true partition, ARI between estimated and true latent states and MSE between the MLE and the true

parameters
ARI (latent variables) MSE (model parameters)
n T partition states Ap €h an b Ok
10 100 0.995 0.621 0.021 0.001 0.088 0.024 0.047
10 500 1.000 0.632 0.007 0.000 0.020 0.005 0.048
100 100 0.996 0.630 0.004 0.000 0.011 0.003 0.005
100 500 1.000 0.634 0.003 0.000 0.005 0.002 0.005

Hllustrating the robustness to missingness. We now investigate the robustness of the pro-
posed method with missingness. We compare the accuracy of the estimators (ARI for the
latent variables and MSE for the parameters) obtained on samples without missingness to
the accuracy of the estimators obtained when missingness is added to the samples. Three
situations of missingness are considered: missing completely at random-1 (MCAR-1) (i.e.,
one sequence of 10 missing values is added to each sequence y,;, the location of the se-
quence follows a uniform distribution), MCAR-2 (i.e., two sequences of 20 missing values
are added for each sequence y;, the location of the sequences follows a uniform distribu-
tion) and missing not at random (MNAR) (i.e., the probability to observe the value y; ;) is
equal to e¥i® /(1 + e%(®)). Note that the last situation adds many missing values when the
true value of ;) is close to zero, so the occurrence of missing values depends on the latent
states. Table 2 compares the results obtained with and without missingness, considering
case hard-medium. It shows that estimators are robust to missingness. Results obtained for
the other three cases are similar and are reported in the supplementary material, Du Roy de
Chaumaray et al. (2020b, Section 4.1).

6.2. Using the approach on classical accelerometer data. We consider the accelerometer
data measured on three subjects available from Huang et al. (2018b). The accelerometer
measures the activity every five minutes for one week. Note that the first subject has 2%
of missing values. The purpose of this section is to illustrate the differences between the
method of Huang et al. (2018b) and the method proposed in this paper.

Huang et al. (2018b) consider one HMM per subject with three latent states. This
model is used for monitoring the circadian rhythmicity, subject by subject. Because they



MIXTURE OF HMM FOR ACCELEROMETER DATA 17

TABLE 2
Convergence of estimators obtained over 1000 replicates with and without missing data when data are
sampled from case hard-medium: ARI between estimated and true partition, ARI between estimated and
true latent states and MSE between the MLE and the true parameters

Adjusted Rand index Mean square error
n T missingness partition states Ay Eh ap bn Ok
10 100 no missingness 0.995 0.621 0.021 0.001 0.088 0.024 0.047
MCAR-1 0.991 0.613 0.024 0.001 0.102 0.028 0.047
MCAR-2 0.987 0.605 0.028 0.001 0.113 0.032 0.047
MNAR 0.934 0.497 0.051 0.003 0.398 0.050 0.050
10 500 no missingness 1.000 0.632 0.007 0.000 0.020 0.005 0.048
MCAR-1 1.000 0.631 0.007 0.000 0.020 0.005 0.048
MCAR-2 1.000 0.631 0.007 0.000 0.019 0.005 0.048
MNAR 0.999 0.516 0.021 0.003 0.233 0.028 0.048
100 100 no missingness 0.996 0.630 0.004 0.000 0.011 0.003 0.005
MCAR-1 0.994 0.624 0.004 0.000 0.013 0.003 0.005
MCAR-2 0.989 0.618 0.005 0.000 0.014 0.004 0.005
MNAR 0.951 0.512 0.014 0.002 0.200 0.026 0.005
100 500 no missingness 1.000 0.634 0.003 0.000 0.005 0.002 0.005
MCAR-1 1.000 0.633 0.002 0.000 0.006 0.002 0.005
MCAR-2 1.000 0.632 0.002 0.000 0.005 0.002 0.005
MNAR 1.000 0.520 0.011 0.002 0.198 0.026 0.005

fit one HMM per sequence measured by the accelerometer of a subject, the definition of
the activity level is different for each subject (see, Huang et al. (2018b, Figure 4)). This is
not an issue for their study because the analysis is done subject by subject. However, the
mean time spent by activity levels cannot be compared among the subjects. The method
proposed here makes this comparison possible. Figure 4 depicts the activity data of the
three subjects, the expected value of Yj(;) conditionally to the most likely state and on
the most likely component and the probability of each state. Based on the QQ-plot (see,
supplementary material, Du Roy de Chaumaray et al. (2020b, Section 4.2)), we consider
M = 4 activity levels. These levels can be easily characterized with the model parameters
presented in Table 3. The model permits to describe the physical activity of each subject
by computing the repartition of the time spent in each state (see Table 4). Moreover, the
transition matrices also make sense. For instance, class 1 (subjects 9 and 20) has an almost
tri-diagonal transition matrix (by considering an order between the states given through
the activity levels per state) and class-2 (subject 2) is composed of a subject with low-
overall activity. Note that the state that we call sleeping is characterized by a very low
activity so we assume that subjects are sleeping when they are in this state. However, this
assumption could be verify if polysomnography (PSG) data would be available.



18

M. DU ROY DE CHAUMARAY ET AL

Subject 9 Subject 16 Subject 20
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© sleeping © low © moderate © intensive

Fic 4. State estimation for the three subjects: (top) accelerometer data where color indicates the expected
value of Yy conditionally to the most likely state and to the most likely component; (bottom) probability of
each state at each time.

0.86 0.14 0.00 0.00
0.12 0.81 0.06 0.01
0.00 0.07 0.79 0.14
0.00 0.00 0.13 0.87

})
I

TABLE 3

Description of the states: estimator of the parameters, mean and standard deviation (sd) of the count per

5 minutes measured by the accelerometer conditionally on the state.

State name Eh an bn Count per five minutes
mean sd

intensive-level  0.00 98.94 0.65 152.76 15.36

moderate-level 0.00 11.09 0.11 99.34 29.84

low-level 0.00 232 0.11 20.98 13.79

sleeping 0.22 148 0.72 2.06 1.70

TABLE 4
Repartition of the times spent at the different states for each subject (sum for each subject is equal to one).

State name Subject 9  Subject 16  Subject 20
intensive-level 0.42 0.00 0.20
moderate-level 0.21 0.00 0.27
low-level 0.15 0.55 0.34

sleeping 0.22 0.45 0.19
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7. Analysis of PAT data. In this section, we analyze the data presented in Section 2.

7.1. Experimental conditions. In order to compare our approach to the cuts defined a
priori in the PAT study (see Section 2), the model was fitted with four activity levels. Note
that selecting the number of states in HMM stays a challenging problem (see the discussion
in the conclusion). However, approaches considering four activity levels are standard for
accelerometer data. The number of components (i.e., the number of classes) is estimated,
using an information criterion unlike the PAT study where it is arbitrarily set at 3 or
4. For each number of components, 5000 random initializations of the EM algorithm are
performed. The analysis needs about one day of computation on a 32-Intel(R) Xeon(R)
CPU E5-4627 v4 @ 2.60GHz.

7.2. Model selection. To select the number of components, we use two information crite-
ria which are generally used in clustering: the BIC (Schwarz, 1978) and the ICL (Biernacki
et al., 2000) defined by

n S
BIC(K) = (x(6;y) —flog O Ti+1),

i=1 s=1
and

n K
ICL(K) = BIO(K) + 3~ > zx(6) log 7x(6),

where vy = (K — 1)+ K(M + M?) + 3M is the number of parameters for a model with K
components and M states and Z;,(6) defines the partition by the MAP rule associated to
the MLE such that

o L if 7(6) = argmax,_; g 7i¢(6)
(0) = g et T
Zi,(0) { 0 otherwise

The ICL is defined according as the integrated complete-data likelihood computed with
the partition given by the MAP rule with the MLE. The values of the information crite-
ria are given in Table 5, for different number of classes. Both criteria select five compo-
nents. The values of ICL(K) are close to those of the BIC(K), implying that the entropy
Yoy Zle Zik log le(é) ~ 0. This is a consequence of Theorem 2 (see also numerical ex-
periments in Section 6). In the following, we interpret the results obtained with M = 4
activity levels and K = 5 classes.

7.3. Description of the activity levels. The parameters of the ZIG distributions are
presented in Table 6. The four distributions are ordered by the value of their means. The
sleeping state is characterized by a large probability of observing zero (i.e., &, is close to
one). Again, note that we call this state sleeping state due to the low activity level but
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TABLE 5
Information criteria obtained on PAT data with four levels of activity (minima are in bold)
K 1 2 3 4 5 6 7

BIC -2953933 -2952313 -2951809 -2951705 -2951308 -2951364 -2951696
ICL -2953933 -2952313 -2951810 -2951707 -2951309 -2951364 -2951697

that PSG data should be used to verify that subject are really sleeping within this state.
However, ¢, is not equal to zero for the other states, but the more active the state is,
the smaller gp, is. We also compute the marginal cutoffs (i.e., the cutoffs by considering
the MAP of P(X;() | Yi())). These cutoffs neglect the time dependency due to the Markov
structure, but can be compared to the cutoffs proposed by the PAT study. Indeed, according
to the PAT study, minutes with < 100 counts are assigned to Sedentary activity, minutes
with 100-2019 counts were classified as Light, the class Moderate corresponds to 2020-
5998 counts/minute and Vigorous 5999 and above counts/minute. The marginal cutoff
associated with the low-level state is very close to that of the Sedentary class of the PAT.
We find, however, that our marginal cutoffs are more accurate for higher levels of activity.
PAT cutoffs do not adequately characterize the activity level of the study population.
Finally, contrary to classical thresholds, our modeling approach allows to capture and
characterize the variability associated with the different levels of activity, variability which
seems important (see Figure 5 and Table 6).

TABLE 6
Parameters describing the four activity levels for PAT data and statistics on the distribution of the counts
per five minutes per state.

Name of the activity level Parameters Statistics

En an bn mean marginal cutoffs
sleeping 0.988 7.470 7.470 0.012 [0, 0]
low-level 0.260 0.974 0.020 36.926 10, 97.7]
moderate-level 0.025 1.408 0.004  329.249 197.7, 614.4]
intensive-level 0.007 2.672 0.002 1696.935 1614.4, +o0]

7.4. Description of the classes. Classes can be described using their proportions and
their associated parameters presented in Table 6. The data are composed of a majority
class (01 = 0.518). Three other classes are composed of more sedentary individuals (e.g.,
their marginal probabilities of being in states 1 and 2 are higher). Finally, there is a small
class (05 = 0.045) which contains the most active subjects (i.e., g4 = 0.143). For three of
the five classes, Figure 5 presents a characteristic subject of each class and the probabilities
of the activity levels (the associated graphs for the two remaining classes are given in the
supplementary material, Du Roy de Chaumaray et al. (2020b, Section 4.3)). Classes can be
interpreted from the mean time spent at different activity levels presented in Table 7 and
from transition matrices presented in Table 8 which are almost tri-diagonal. This could
be expected because it seems relevant to obtain a low probability of jumping between the
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Fi1c 5. Exzamples of observations assigned into the five classes with the probabilities of the states.

sleeping state and the intensive state. Additionally, the approximation made for efficiently
handling the missingness (see Section 4.4) turns out to be relevant. The minimal range of
missing values is indeed equal to dy;, = 60 which leads to a distance in total variation
between the dyin-power of the transition matrices and the stationary distribution being
less than 5.10~* for any component.

TABLE 7
Repartition of the times spent at the different states for each class (sum for each class is equal to one).
class
active  sedentary  moderate wvery sedentary  wery active
sleeping 0.306 0.467 0.304 0.504 0.189
low-level 0.284 0.209 0.411 0.366 0.351
moderate-level  0.338 0.263 0.225 0.124 0.316
intensive-level 0.072 0.061 0.060 0.006 0.143
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TABLE 8
Transition matriz for the five classes

Class moderate
sleeping low-level ~moderate-level intensive-level

sleeping 0.76 0.21 0.03 0.00
low-level 0.16 0.73 0.11 0.00
moderate-level 0.03 0.20 0.73 0.04
intensive-level 0.01 0.04 0.16 0.80

Class very sedentary
sleeping low-level moderate-level intensive-level

sleeping 0.85 0.08 0.06 0.00
low-level 0.20 0.67 0.13 0.01
moderate-level 0.10 0.11 0.76 0.03
intensive-level 0.01 0.04 0.14 0.82

Class very active
sleeping low-level moderate-level intensive-level

sleeping 0.80 0.14 0.05 0.01
low-level 0.08 0.74 0.17 0.01
moderate-level 0.03 0.18 0.69 0.10
intensive-level 0.01 0.05 0.21 0.74

8. Conclusion. A specific mixture of HMM has been introduced to analyze accelerom-
eter data. It avoids the traditional cutoff point method and provides a better characteri-
zation of activity levels for the analysis of these data, while adapting to the population.
The proposed model could be applied to a population with different characteristics (e.g.,
younger) which would lead to different definitions of activity levels. In addition, the use
of several HMMs make to take into account dependency over time and thus improve the
traditional method based on cutoff points (Witowski et al., 2014). This approach also al-
lows us to take into account the heterogeneity of the population (in the sense of physical
activity).

An interesting perspective is to consider adjusting for covariates (e.g., gender or age).
These confusing factors could impact the probabilities of transition between the latent
spaces (e.g., using a generalized linear model approach) and/or the definition of the ac-
celerometer measurement given a state (e.g., linear regression on some parameters of the
Z1G distribution).

In the application, the number of activity levels was not estimated but fixed at a common
value for accelerometer data. Estimating the number of states for a mixture of HMM is an
interesting but complex topic: for instance, the use of BIC is criticized (see, Cappé et al.
(2005, Chapter 15)). This makes the study of relevant information criteria for selecting the
number of states an interesting topic for future work. Pseudo-likelihood based criteria could
be used (Gassiat, 2002; Csiszar and Talata, 2006) but the fact that the marginal distribution
of one Yj;) is not identifiable limits this approach. A more promising approach could be to
use cross-validated likelihood (Celeux and Durand, 2008) but it would be computationally
intensive because accelerometer data provide a large number of observations.
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