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Abstract

In this paper, we consider an unknown functional estimation problem in a

general nonparametric regression model with the feature of having both multi-

plicative and additive noise.We propose two new wavelet estimators in this general

context. We prove that they achieve fast convergence rates under the mean inte-

grated square error over Besov spaces. The obtained rates have the particularity

of being established under weak conditions on the model. A numerical study in

a context comparable to stochastic frontier estimation (with the difference that

the boundary is not necessarily a production function) supports the theory.
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1 Introduction

We consider a nonparametric regression model with both multiplicative and additive

noise. It is defined by n random variables Y1, . . . , Yn, where

Yi = f(X i)Ui + Vi, i ∈ {1, . . . , n}, (1)

f is an unknown regression function defined on a subset ∆ of Rd, with d ≥ 1, X1, . . . ,Xn

are n identically distributed random vectors with support on ∆, U1, . . . , Un are n iden-

tically distributed random variables and V1, . . . , Vn are n identically distributed random

variables. Moreover, it is supposed that X i and Ui are independent, and Ui and Vi are

independent for any i ∈ {1, . . . , n}. We are interested in the estimation of the unknown

function r := f 2 from (X1, Y1), . . . , (Xn, Yn); the random vectors (U1, V1), . . . , (Un, Vn)

form the multiplicative-additive noise. We consider the general formulation of model

given by (1) since besides the theoretical interest it embodies several potential appli-

cations. For example, for Ui = 1, (1) becomes the standard nonparametric regression

model with additive noise. It has been studied in many papers via various nonpara-

metric methods, including kernel, splines, projection and wavelets methods. See, for

instance, the books of Härdle et al. (2012), Tsybakov (2009) and Comte (2015), and

the references therein. For Vi = 0, (1) becomes the standard nonparametric regression

model with multiplicative noise. Recent studies can be found in Chichignoud (2012);

Comte (2015) and the references therein. For Vi 6= 0 with the same variance across

i a first study, based on a linear wavelet estimator, was proposed by Chesneau et al.

(2019). In the case where Vi is a function of X i, (1) becomes the popular nonparametric

regression model with multiplicative heteroscedastic noises:

Yi = g(Xi) + f(Xi)Ui

In particular, this model is widely used in financial applications, where the aim is

to estimate the variance function r := f 2 from the returns of an asset, for instance,

to establish confidence intervals/bands for the mean function g. Variance estimation

is a fundamental statistical problem with wide applications (see Muller et al. (1987);

Hall and Marron (1990); Härdle and Tsybakov (1997); Wang et al. (2008); Brown et al.

(2007); Cai et al. (2008) for fixed design and recently Kulik et al. (2011); Verzelen et al.

(2018); Shen et al. (2019) for random design).
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This multiplicative regression model is also popular in various application areas.

For example, in econometrics, within deterministic (Vi = 0) and stochastic (Vi 6= 0)

non-parametric frontier models. These models can be interpreted as a special case

of the model (1), where the random variable Ui represents the technical inefficiency

of the company and Vi represents noise that disrupts its performance, the nature of

which comes from unanticipated events such that machine failure, strikes, staff strikes,

etc. Under monotonicity and concavity assumptions, the regression function r can be

viewed in this case as a function of the production set of a firm and its estimation

is therefore of paramount importance in production econometrics. Specific estimation

methods have been developed, see for instance Farrell (1957); De Prins et al. (1984);

Gijbels et al. (1999); Daouia and Simar (2005) for deterministic frontiers models and

Fan et al. (1996); Kumbhakar et al. (2007); Simar and Zelenyuk (2011) for stochastic

frontier models. For general regression function and general nonparametric setting, we

refer to Girard and Jacob (2008); Girard et al. (2013) and Jirak et al. (2014) for the

definitions and properties of robust estimators.

Applications also exist in signal and image processing (e.g., for Global Position-

ing System signal detection Huang et al. (2013) as well as in speckle noise reduction

encounter in particular in synthetic-aperture radar images Kuan et al. (1985) or in med-

ical ultrasound images Rabbani et al. (2008); Mateo and Fernández-Caballero (2009)),

where noise sources can be both additive and multiplicative. In this context, one can

also cite Korostelev and Tsybakov (2012) where the author deals with the estimation

of the function’s support.

The aim of this paper is to develop wavelet methods for the general model (1), with

a special focus on mild assumptions on the distributions of U1 and V1 (moments of

order 4 will be required, including Gaussian noise). Wavelet methods are of interest in

nonparametric statistics thanks to their ability to estimate efficiently a wide variety of

unknown functions, including those with spikes and bumps. We refer to Abramovich

et al. (2000) and Härdle et al. (2012), and the references therein. To the best of our

knowledge, their development for (1) taking in full generality is new in the literature.

First of all, we construct a linear wavelet estimator using projections of wavelet coeffi-

cients estimators. We evaluate its rate of convergence under the mean integrated square

error (MISE) under mild assumptions on the smoothness of r; it is assumed that r be-
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longs to Besov spaces. The linear wavelet estimator has the advantage to be simple, but

the knowledge of the smoothness of r is necessary to calibrate a tuning parameter which

plays a crucial role in the determination of fast rates of convergence. For this reason,

an alternative is given by a nonlinear wavelet estimator. Using a thresholding rule of

wavelet coefficients estimators, we develop a nonlinear wavelet estimator. To reach the

goal of mildness assumptions on the model, we use a truncation rule in the definition of

the wavelet coefficients estimators. This technique was introduced by Delyon and Judit-

sky (1996) in the nonparametric regression estimation setting, and recently improved in

Chesneau (2013) (in a multidimensional regression function under mixing dependence

framework) and Chaubey et al. (2015) (for a density estimation under a multiplicative

censoring problem). The construction of the hard wavelet estimator does not depend

on the smoothness of r and we prove that, from a global point of view, it achieves a

better rate of convergence under the MISE. In practice, the empirical performance of

the estimators developed in this paper depends on the choice of several parameters,

the truncation level of the linear estimator as well as the threshold parameter of the

non-linear estimator. We propose here a method of automatic selection of these two

parameters based on the 2-fold cross-validation method (2FCV) introduced by Nason

(1996). A numerical study, in a context similar to stochastic frontier estimation, is

being carried out to demonstrate the applicability of this approach.

The rest of the paper is organized as follows. Preliminaries on wavelets are described

in Section 2. Section 3 specifies some assumptions on the model, presents our wavelet

estimators and the main results on their performances. Numerical experiments are

presented in Section 4. Section 5 is devoted to the proofs of the main result.

2 Preliminaries on wavelets

2.1 Wavelet bases on [0, 1]d

We begin with a classical notation in wavelet analysis. A multiresolution analysis

(MRA) is a sequence of closed subspaces {Vj}j∈Z of the square integrable function

space L2(R) satisfying the following properties:

(i) Vj ⊆ Vj+1, j ∈ Z. Z denotes the integer set and N := {n ∈ Z, n ≥ 0};
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(ii)
⋃
j∈Z

Vj = L2(R) (the space
⋃
j∈Z

Vj is dense in L2(R));

(iii) f(2·) ∈ Vj+1 if and only if f(·) ∈ Vj for each j ∈ Z;

(iv) There exists φ ∈ L2(R) (scaling function) such that {φ(· − k), k ∈ Z} forms an

orthonormal basis of V0 = span{φ(· − k)}.

See Meyer (1992) for further details. For the purpose of this paper, we use the compactly

supported scaling function φ of the Daubechies family, and the associated compactly

supported wavelet function ψ (see Daubechies (1992)). Then we consider the wavelet

tensor product bases on [0, 1]d as described in Cohen et al. (1993). The main lines

and notations are described below. We set Φ(x) =
∏d

v=1 φ(xv) and wavelet functions:

Ψu(x) = ψ(xu)
∏d

v=1
v 6=u

φ(xv) when u ∈ {1, . . . , d}, and Ψu(x) =
∏

v∈Au ψ(xv)
∏

v 6∈Au φ(xv)

when u ∈ {d + 1, . . . , 2d − 1}, where (Au)u∈{d+1,...,2d−1} forms the set of all the non-

void subsets of {1, . . . , d} of cardinal superior or equal to 2. For any integer j and

any k = (k1, . . . , kd), we set Φj,k(x) = 2jd/2Φ(2jx1 − k1, . . . , 2
jxd − kd), for any u ∈

{1, . . . , 2d − 1}, Ψj,k,u(x) = 2jd/2Ψu(2
jx1 − k1, . . . , 2

jxd − kd). Now, let us set Λj =

{0, . . . , 2j − 1}d. Then, with an appropriate treatment on the elements which step on

the boundaries 0 and 1, there exists an integer τ such that the system S = {Φτ,k,k ∈

Λτ ; (Ψj,k,u)u∈{1,...,2d−1}, j ≥ τ, k ∈ Λj} forms an orthonormal basis of L2([0, 1]d). For

any integer j∗ ≥ τ , a function h ∈ L2([0, 1]d) can be expressed via S by the following

wavelet series:

h(x) =
∑
k∈Λj∗

αj∗,kΦj∗,k(x) +
∞∑
j=j∗

2d−1∑
u=1

∑
k∈Λj

βj,k,uΨj,k,u(x), x ∈ [0, 1]d, (2)

where αj,k = 〈h,Φj,k〉[0,1]d and βj,k,u = 〈h,Ψj,k,u〉[0,1]d .

Also, let us mention that, by construction,
∫

[0,1]d
Φj,k(x)dx = 2−jd/2 and

∫
[0,1]d

Ψj,k,u(x)dx =

0.

Let Pj be the orthogonal projection operator from L2([0, 1]d) onto the space Vj with

the orthonormal basis {Φj,k(·) = 2jd/2Φ(2j ·−k),k ∈ Λj}. Then, for any h ∈ L2([0, 1]d),

Pjh(x) =
∑
k∈Λj

αj,kΦj,k(x), x ∈ [0, 1]d.
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2.2 Besov spaces

Besov spaces are important in theory and applications. They have the features to a wide

variety of function spaces as Hölder and L2 Sobolev spaces. Definitions of those spaces

are given below. Suppose that φ is m regular (i.e., φ ∈ Cm and |Dαφ(x)| ≤ c(1+ |x|2)−l

for each l ∈ Z, with α = 0, 1, . . . ,m) and consider the wavelet framework defined in

Subsection 2.1. Let h ∈ Lp([0, 1]d), p, q ∈ [1,∞] and 0 < s < m. Then the following

assertions are equivalent:

(1) h ∈ Bs
p,q([0, 1]d); (2) {2js‖Pj+1h− Pjh‖p} ∈ lq; (3) {2j(s−

d
p

+ d
2

)‖βj,.,.‖p} ∈ lq.

The Besov norm of h can be defined by

‖f‖Bsp,q := ‖(ατ,.)‖p + ‖(2j(s−
d
p

+ d
2

)‖βj,.,.‖p)j≥τ‖q, where ‖βj,.,.‖pp =
2d−1∑
u=1

∑
k∈Λj

|βj,k,u|p.

Further details on Besov spaces are given in Meyer (1992), Triebel (1994) and Härdle

et al. (2012).

3 Assumptions, estimators and main result

We consider the model (1) with ∆ = [0, 1]d for the sake of simplicity. Additional

technical assumptions are formulated below.

A.1 We suppose that f : [0, 1]d → R is bounded from above.

A.2 We suppose that X1 ∼ U([0, 1]d).

A.3 We suppose that U1 is reduced (mainly for the sake of simplicity in exposition)

and has a moment of order 4.

A.4 We suppose that V1 has a moment of order 4.

The two following assumptions involving Vi and X i are complementary and will be

considered separately in the study:

A.5 We suppose that X i and Vi are independent for any i ∈ {1, . . . , n}, and U1 is

centered or V1 is centered.

A.6 We suppose that Vi = g(X i) where g : [0, 1]d → R is known and bounded from

above, and U1 is centered.



7

These assumptions will be discussed later; some of them can be relaxed. In our main

results, we will consider the two following sets of assumptions:

H.1 = {A.1,A.2,A.3,A.4,A.5}, H.2 = {A.1,A.2,A.3,A.4,A.6}.

As usual in wavelet methods, the first step towards the estimation of r is to consider its

wavelet series given by (2). Then we aim to estimate the unknown wavelet coefficients

αj,k = 〈r,Φj,k〉[0,1]d and βj,k,u = 〈r,Ψj,k,u〉[0,1]d by efficient estimators. In this study, we

propose to estimate αj,k by

α̂j,k :=
1

n

n∑
i=1

Y 2
i Φj,k(X i)− vj,k, (3)

where

vj,k :=


E
[
V 2

1

]
2−jd/2 under A.5,∫

[0,1]d
g2(x)Φj,k(x)dx under A.6.

This is an unbiased estimator of αj,k and it converges to αj,k in L2 (see Lemmas 5.1

and 5.2 in Section 5). On the other side, we propose to estimate βj,k,u by

β̂j,k,u :=
1

n

n∑
i=1

(
Y 2
i Ψj,k,u(X i)− wj,k,u

)
1{|Y 2

i Ψj,k,u(Xi)−wj,k,u|≤ρn}, (4)

where 1A denotes the indicator function over an event A, ρn :=
√
n/ lnn and

wj,k,u :=


0 under A.5,∫

[0,1]d
g2(x)Ψj,k,u(x)dx under A.6.

Due to the thresholding in its definition, this estimator is not unbiased of βj,k,u but

it converges to βj,k,u in L2 (see Lemmas 5.1 and 5.2 in Section 5). The role of the

thresholding is to relax assumptions on U1 and V1; note that only moments of order 4

is required in A.3 and A.4 including uniform or Gaussian distribution. This selection

rule has been introduced in a wavelet setting in Delyon and Juditsky (1996). It has been

recently improved in Chesneau (2013) (in a multidimensional regression function under

mixing dependence framework) and Chaubey et al. (2015) (in a density estimation under

multiplicative censoring setting). In this study, we adapt it to the general nonparametric

regression model (1).
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The next step in the construction of our wavelet estimators for r is to expand the

most informative of the wavelet coefficients estimators using the initial wavelet basis.

We then define the linear wavelet estimator by

r̂lin
n (x) :=

∑
k∈Λj∗

α̂j∗,kΦj∗,k(x), x ∈ [0, 1]d.

We thus have projected the α̂j,k’s on the father wavelet basis at a certain level j∗.

Despite the simplicity of its construction, this estimator has a serious drawback: its

performance highly depends on the choice of the level j∗. A suitable choice of j∗, but

depending on the smoothness of r, will be specified in our main result. To address this

problem, an alternative is proposed by using a hard-thresholding rule that performs a

term-by-term selection of the wavelet coefficient estimators β̂j,k,u and to project them

on the original wavelet basis. We define the nonlinear wavelet estimator by

r̂non
n (x) :=

∑
k∈Λj∗

α̂j∗,kΦj∗,k(x) +

j1∑
j=j∗

2d−1∑
u=1

∑
k∈Λj

β̂j,k,u1{|β̂j,k,u|≥κtn}Ψj,k,u(x), x ∈ [0, 1]d,

where tn :=
√

lnn/n = ρ−1
n . The positive integer j1 is specified in our main result,

while the constant κ will be chosen in its proof (see the proof of Lemma 5.3). The idea

of keeping the estimators β̂j,k,u with magnitude greater to tn is not new; it is a well-

known wavelet techniques with strong mathematical and practical results for numerous

nonparametric problems; tn is so-called “universal threshold”. We refer to Donoho et al.

(1995), Delyon and Juditsky (1996) and Härdle et al. (2012). In this study, we describe

how to calibrate such estimator when we deal with the general model (1).

In the sequel, we adopt the following notations: x+ := max{x, 0}. A . B denotes

A ≤ cB for some constant c > 0; A & B means B . A; A ∼ B stands for both A . B

and B . A.

Theorem 3.1 below determines the rates of convergence attained by r̂lin
n and r̂non

n

over the MISE.

Theorem 3.1. Consider the problem defined by (1) under the assumptions H.1 or

H.2, let r ∈ Bs
p,q([0, 1]d) with p, q ∈ [1,∞), s > d/p. Then

• the linear wavelet estimator r̂lin
n with 2j∗ ∼ n

1
2s′+d and s′ = s − d(1/p − 1/2)+

satisfies

E

[∫
[0,1]d

(
r̂lin
n (x)− r(x)

)2
dx

]
. n−

2s′
2s′+d ; (5a)
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• the nonlinear estimator with 2j∗ ∼ n
1

2m+d (m > s), 2j1 ∼ (n/ lnn)
1
d satisfies

E

[∫
[0,1]d

(r̂non
n (x)− r(x))2 dx

]
. (lnn)n−

2s
2s+d . (5b)

The obtained rates of convergence are those obtained in the standard density es-

timation problem or the regression function estimation problem under the MISE over

Besov spaces (see Härdle et al. (2012)). Under some strong conditions on the model as

Ui := 1, the rate of convergence n−
2s

2s+d is proved to be optimal in the minimax sense

(see Härdle et al. (2012) and Tsybakov (2009)). So our nonlinear wavelet estimator

can be optimal in the minimax sense up to a lnn. However, in full generality, without

specifying the distributions of Ui and Vi, the optimal lower bounds for the MISE are

difficult to determine via standard techniques (Fano’s lemma, . . . ) and the optimality

of our estimators remains an open question.

Remark 3.1. Some assumptions used in Theorem 3.1 can be relaxed without changing

the result. In particular, one can consider the domain ∆ = [a, b]d with (a, b) ∈ R2 and

a < b with an adaptation of the wavelet basis. In this case, we can also replace A.2 by

X1 with density function h : [a, b]d → R bounded from below, with the following wavelet

coefficient estimators:

α̂j,k =
1

n

n∑
i=1

Y 2
i

h(X i)
Φj,k(X i)− vj,k,

and

β̂j,k,u =
1

n

n∑
i=1

(
Y 2
i

h(X i)
Ψj,k,u(X i)− wj,k,u

)
1{∣∣∣∣ Y 2

i
h(Xi)

Ψj,k,u(Xi)−wj,k,u
∣∣∣∣≤ρn}.

Finally, note that, in A.6 can be improved by assuming g unknown. To the best of

our knowledge, only Cai et al. (2008) have developed wavelet methods in this case for

d = 1, deterministic design (X i := i/n) and infinite moments for Ui. Extension of

these methods in the general setting of (1) needs further developments that we leave for

a future work.

4 Numerical Experiments

To illustrate the empirical performance of the estimators proposed in this work, we

carried out a simulation study. The objective is to highlight some of the theoretical
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Figure 1: The three test functions considered.

findings using numerical examples. We begin by giving some details about the speci-

ficities inherent in wavelet estimators in a non-deterministic design framework. We also

try to propose a realistic simulation setting using an adaptive selection method to select

both the truncation parameter of the linear estimator and the threshold parameter of

the non-linear estimator. In this context, we compare their empirical performances in

the model with both multiplicative and additive noise. Simulations were performed

using R and in particular the rwavelet package Navarro and Chesneau (2019) (available

from https://github.com/fabnavarro/rwavelet).

4.1 Computational aspect of wavelets and parameters selec-

tion

For fixed design, thanks to Mallat’s pyramidal algorithm (Mallat, 2008), the computa-

tion of wavelet-based estimators is simple and fast. When considering uniform random

design, the implementation requires some changes and several strategies have been de-

veloped in the literature (see, e.g., Cai et al. (1998); Hall et al. (1997)). For uniform

design regression, Cai and Brown (1999) has proposed to use an approach in which the

wavelet coefficients are computed by a simple application of Mallat’s algorithm using

the ordered Yi’s as input variables. We have followed this approach because it preserves

the simplicity of calculation and the efficiency of the equispaced algorithm. In the

context of wavelet regression in random design with heteroscedastic noise, Kulik et al.

(2009) and Navarro and Saumard (2017) also adopted this approach.

Nason successfully adjusted the standard two-Fold Cross Validation (2FCV) method

https://github.com/fabnavarro/rwavelet
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to select the threshold parameter in wavelet shrinkage (see, Nason (1996)). For the cal-

ibration of linear wavelet estimators, his strategy was used by Navarro and Saumard

(2017). We have chosen to apply this approach to select both the threshold and trun-

cation parameter of linear and non-linear estimators. More precisely, in the linear case,

we built a collection of linear estimators r̂lin
j∗,n, j∗ = 0, 1, . . . , log 2(n)−1 (by successively

adding whole resolution levels of wavelet coefficients), and select the best among this

collection by minimizing a 2FCV criterion denoted by 2FCV(j∗). The resulting esti-

mator of the truncation level is denoted by ĵ∗ and the corresponding estimator of r

by r̂lin
ĵ∗,n

(see, Navarro and Saumard (2017, 2018) for more details). For the nonlinear

estimator, the same estimator ĵ∗ of the truncation parameter j∗ obtained for the lin-

ear is used. The estimator of the thresholding parameter is obtained using the 2FCV

method developed in Nason (1996). The parameter j1 is fixed a priori as the maxi-

mum level allowed by the wavelet decomposition (i.e., j1 = log 2(n)− 1). It is a classic

choice that allows the coefficients to be selected down to the smallest scale. In addi-

tion, in order to facilitate and not to overburden the implementation of the nonlinear

estimator, we perform a standard hard thresholding of the wavelet coefficient estima-

tors (rather than the double threshold used in its definition). In order to be able to

evaluate the performance of these two criteria, the mean square error (MSE) is used

(i.e., MSE(r̂j∗,n, r) = 1
n

∑n
i=1(r(Xi)− r̂j∗,n(Xi))

2)). We consider three test functions for

r (see Figure 1), commonly used in the wavelet literature, Parabolas, Ramp and Blip

(see, e.g., Donoho et al. (1995)). In all simulations, we examine the case d = 1, the

design is chosen to satisfy A.2 (i.e., U([0, 1])) and the choice of the wavelet family used

is also fixed (i.e., Daubechies compactly supported wavelet with 8 vanishing moments).

4.2 Additive-multiplicative regression

This subsection examines the behaviour and performance of linear and non-linear es-

timators in the context of additive and multiplicative regression by considering V1 ∼

N (0, σ2), where σ2 = 0.01 and U1 ∼ U([−1, 1]). Thus, the goal is to estimate the

frontier r from (Xi, Yi) sample simulated from one of the test functions. By applying

one of the linear or nonlinear methods developed above to the estimation of r, one can

construct an estimator whose rate of convergence is given by (5a) and (5b) respectively.
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Note that here, the nature of the frontier function is not necessarily the same as that

commonly found in the literature on stochastic boundary estimation. Indeed, here r

is not necessarily a production function (e.g., r is concave), the only assumption we

make is given by A.1. Thus, the application here can be seen as the estimation of the

boundary or frontier of a sample affected by some additive (positive) noise (see Jirak

et al. (2014)).
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Figure 2: Typical estimation from a single simulation for n = 4096 and σ2 = 0.01. Noisy

observations (X, Y 2) (grey circles), true function (black line) and r̂lin
ĵ∗,n

(a). Graphs of

the MSE (black line) against j∗ and (rescaled) 2FCV(·) criterion (red line) for the linear

(b) and nonlinear (c) cases respectively. Original wavelet coefficients (d). Noisy wavelet

coefficients (e). Estimated wavelet coefficients (f).

A typical example of estimation for the Blip function, with n = 4096 is given in

Figure 2. It can be seen that the minimum of 2FCV(j∗) criteria coincides with that of

unknown risk (i.e., ĵ∗ = 4) and therefore provides the best possible linear estimator for

the collection under consideration (i.e., MSE(r, r̂lin
ĵ∗,n

) = 0.0027). We have not included
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Figure 3: Box plots of the MSE for the three-test functions with n = 4096 and σ2 = 0.01.

the results of the non-linear estimator in Figure 2. Indeed, in this case, the value of the

threshold obtained by minimizing the cross validated criterion leads to the elimination

of all the thresholded coefficients (i.e., going from ĵ∗ to j1) and therefore leads to the

same estimate and the same risk as the linear estimator. We can see (Figure 2(c)) that

the unknown risk behaves in the same way here. This is partly because the amplitude

of the coefficients at the fine scales is so large and variable from one scale to another

that it is not possible to obtain an overall optimal threshold value that makes it possible

to maintain certain important coefficients and that, on the contrary, keeps coefficients

associated with noise, with this specific thresholding policy (i.e., a ‘keep’ or ‘kill’ rule).

In particular the important coefficients located on scales larger than ĵ∗ (especially those

encoding the discontinuity of r) are too small in amplitude to be maintained by a global

threshold.

In order to determine whether this phenomenon observed for a single function and a

single realization is confirmed in a more general context, we compare the performance

in terms of MSE (computed on the functions after reconstruction) for both estimators

and for the three-test functions. For each function, a sample of N = 100 is generated

and we compare the average behavior of the MSE for parameters selected with the

oracle obtained by minimizing the MSE using the original signal r (denoted by MSElin

and MSEnon respectively), the linear 2FCVlin strategy and the non-linear 2FCVnon (i.e.,

calculated from ĵ∗ and the threshold that minimizes the 2FCV(λ)) strategy. Figure 3

presents the results in the form of boxplots, one for each function. On the one hand,

for all three functions, we can see that the performance of 2FCVlin is at the MSElin
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Figure 4: Box plots of the MSE for the three-test functions with n = 2048 and σ2 =

0.025.

level. This procedure therefore provides a remarkable surrogate of the unknown risk.

On the other hand, the non-linear 2FCVnon oracle is similar to MSElin, which means

that the optimal threshold here leads systematically to the suppression of all threshold

coefficients — which corresponds to the selection of values of the threshold parameter

which is greater than the largest noisy wavelet coefficient in absolute value. Finally,

the variability of the 2FCVnon is high as a result of selected threshold values that are

sometimes too small, resulting in the conservation of unnecessary coefficients in the

reconstruction. This is because the curves associated with non-linear criteria do not

generally allow a single global minimum, but the minimum is reached in the form of

a plateau (see Figure 2(c)). In practice, when the minimum is reached on such a

plateau, the first element that constitutes it is selected first. This has no influence on

MSEnon but generates this variability of 2FCVnon, i.e., when the abscissa of the first

point constituting the plateau associated with 2FCVnon is lower than that of MSEnon)

Note that to overcome this problem, in the presence of a plateau, we could for example

select a threshold value in the middle of it. We have not done so here to emphasize

the fact that a cross validation strategy of the global threshold seems ineffective in this

setting. It should also be noted that in our simulations, this finding is also verified

for other noise levels or sample sizes (the results are generally very similar, so we give

only another example by considering a lower number of samples, n = 2048 and a lower

additive noise level σ2 = 0.025).

In conclusion, the linear approach seems more appropriate than the non-linear ap-
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proach in the context of the simulations considered in this study. One way to fully

benefit from the non-linear approach would be to consider an optimal threshold selec-

tion strategy on a scale by scale basis. The selection procedure used here, based on an

interpolation performed in the original domain, does not facilitate this extension. For

this purpose it would be necessary, for example, to define an interpolated version of the

cross validation method in the wavelet coefficients domain.

5 Auxiliary results and proof of the main result

5.1 Auxiliary results

In this section, we provide some lemmas for the proof of the main Theorem.

Lemma 5.1. Let j ≥ τ , k ∈ Λj, α̂j,k be (3). Then, under H.1 or H.2, we have

E[α̂j,k] = αj,k, E

[
1

n

n∑
i=1

Y 2
i Ψj,k,u(X i)− wj,k,u

]
= βj,k,u.

Proof of Lemma 5.1. Using the independence assumptions on the random variables,

H.1 or H.2, observe that

E [U1V1f(X1)Φj,k(X1)] =

E[U1]E[V1]E [f(X1)Φj,k(X1)] under A.5,

E[U1]E [V1f(X1)Φj,k(X1)] under A.6,

= 0,

and

vj,k =


E [V 2

1 ] 2−jd/2 = E [V 2
1 ]
∫

[0,1]d
Φj,k(x)dx = E [V 2

1 ]E [Φj,k(X1)] under A.5,∫
[0,1]d

g2(x)Φj,k(x)dx under A.6,

= E
[
V 2

1 Φj,k(X1)
]
.

Therefore

E[α̂j,k] = E

[
1

n

n∑
i=1

Y 2
i Φj,k(X i)− vj,k

]
= E

[
Y 2

1 Φj,k(X1)
]
− vj,k

= E
[
U2

1 r(X1)Φj,k(X1)
]

+ 2E [U1V1f(X1)Φj,k(X1)] + E
[
V 2

1 Φj,k(X1)
]
− vj,k

= E
[
U2

1

]
E [r(X1)Φj,k(X1)] =

∫
[0,1]d

r(x)Φj,k(x)dx = αj,k.
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Using similar mathematical arguments, since
∫

[0,1]d
Ψj,k,u(x)dx = 0, we have

wj,k,u =


0 = E

[
V 2

1

] ∫
[0,1]d

Ψj,k,u(x)dx = E
[
V 2

1

]
E [Ψj,k,u(X1)] under A.5,∫

[0,1]d
g2(x)Ψj,k,u(x)dx under A.6,

= E
[
V 2

1 Ψj,k,u(X1)
]
.

We prove the second equality. The proof of Lemma 5.1 is complete. �

Lemma 5.2. Let j ≥ τ such that 2j ≤ n, k ∈ Λj, α̂j,k and β̂j,k,u be (3) and (4)

respectively. Then, under H.1 or H.2,

E
[
(α̂j,k − αj,k)2

]
.

1

n
, E

[
(β̂j,k,u − βj,k,u)2

]
.

lnn

n
.

Proof of Lemma 5.2. Owing to Lemma 5.1 we have E[α̂j,k] = αj,k. Therefore

E
[
(α̂j,k − αj,k)2

]
= V [α̂j,k] = V

[
1

n

n∑
i=1

Y 2
i Φj,k(X i)− vj,k

]

= V

[
1

n

n∑
i=1

Y 2
i Φj,k(X i)

]
=

1

n
V
[
Y 2

1 Φj,k(X1)
]
≤ 1

n
E
[
Y 4

1 Φ2
j,k(X1)

]
.

1

n

(
E
[
U4

1 f
4(X1)Φ2

j,k(X1)
]

+ E
[
V 4

1 Φ2
j,k(X1)

])
=

1

n

(
E
[
U4

1

]
E
[
f 4(X1)Φ2

j,k(X1)
]

+ E
[
V 4

1 Φ2
j,k(X1)

])
. (6)

By A.1 and E
[
Φ2
j,k(X1)

]
=
∫

[0,1]d
(Φj,k(x))2 dx = 1, we have E

[
f 4(X1)Φ2

j,k(X1)
]
. 1.

On the other hand, we have

E
[
V 4

1 Φ2
j,k(X1)

]
=


E
[
V 4

1

]
E
[
Φ2
j,k(X1)

]
. 1 under A.5,∫

[0,1]d
g4(x)Φ2

j,k(x)dx .
∫

[0,1]d
Φ2
j,k(x)dx = 1 under A.6.

Thus all the terms in the brackets of (6) are bounded from above. The first inequality

in Lemma 5.2 is proved.

Now, by the definition of β̂j,k,u, taking Ki := Y 2
i Ψj,k,u(X i) − wj,k,u and Di :=

Ki1{|Ki|≤ρn}−E
[
Ki1{|Ki|≤ρn}

]
for the sake of simplicity, the second equation in Lemma

5.1 yields

β̂j,k,u − βj,k,u =
1

n

n∑
i=1

Di − E
[
K11{|K1|>ρn}

]
.
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Hence, using E

[(
(1/n)

n∑
i=1

Di

)2
]

= (1/n2)V

[
n∑
i=1

Di

]
= V[D1]/n ≤ E [D2

1] /n, we

have

E
[
(β̂j,k,u − βj,k,u)2

]
. E

( 1

n

n∑
i=1

Di

)2
+

(
E
[
|K1|1{|K1|>ρn}

])2
.

.
1

n
E
[
D2

1

]
+
(
E
[
|K1|1{|K1|>ρn}

])2
.

Proceeding as for the proof of the first inequality, using the assumptions H.1 or

H.2, note that E [K2
1 ] . E

[
Y 4

1 Ψ2
j,k,u(X1)

]
+ w2

j,k,u . 1 and(
E
[
K11{|K1|>ρn}

])2
.
(
E
[
K2

1

]
/ρn
)2
.

lnn

n
. (7)

Therefore,

E
[
(β̂j,k,u − βj,k,u)2

]
.

1

n
+

lnn

n
.

lnn

n
.

The second inequality in Lemma 5.2 is proved. This ends the proof of Lemma 5.2. �

Lemma 5.3. Let j ≥ τ such that 2jd . n/ lnn, k ∈ Λj, β̂j,k,u be (4). Then there exists

a constant κ > 1 such that

P(|β̂j,k,u − βj,k,u| ≥ κtn) . n−4.

Proof of Lemma 5.3. By the definition of β̂j,k,u, taking Ki := Y 2
i Ψj,k,u(X i)− wj,k,u

and Di := Ki1{|Ki|≤ρn}−E
[
Ki1{|Ki|≤ρn}

]
for the sake of simplicity, the second equation

in Lemma 5.1 yields

|β̂j,k,u − βj,k,u| .
1

n

∣∣∣∣∣
n∑
i=1

Di

∣∣∣∣∣+ E
[
|K1|1{|K1|>ρn}

]
.

Using (7), there exists c > 0 such that E
[
|K1|1{|K1|>ρn}

]
≤ c
√

lnn/n. Then

{|β̂j,k,u − βj,k,u| ≥ κtn} ⊆

{
1

n

∣∣∣∣∣
n∑
i=1

Di

∣∣∣∣∣ ≥ (κ− c)tn

}
.

Note that E[Di] = 0 thanks to Lemma 5.1. According to the proof of Lemma 5.2,

E[D2
i ] := δ2 . 1. This with |Di| .

√
n/ lnn and Bernstein inequality shows

P

(
1

n

∣∣∣∣∣
n∑
i=1

Di

∣∣∣∣∣ ≥ (κ− c)tn

)
. exp

{
− n(κ− c)2t2n

2(δ2 + (κ− c)tnρn/3)

}
. exp

{
− lnn

(κ− c)2

2(δ2 + (κ− c)/3)

}
. n

− (κ−c)2

2(δ2+(κ−c)/3) .
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Then one choose large enough κ such that

P(|β̂j,k,u − βj,k,u| ≥ κtn) . n
− (κ−1)2

2(δ2+(κ−1)/3) . n−4.

This is the desired conclusion. �

5.2 Proof of the main result

This section is devoted to the proof of Theorem 3.1. We prove (5a) and (5b) in turn.

Proof of (5a) Note that

E

[∫
[0,1]d

∣∣r̂lin
n (x)− r(x)

∣∣2dx] = E
[∥∥r̂lin

n − Pj∗r
∥∥2

2

]
+
∥∥Pj∗r − r∥∥2

2
. (8)

It is easy to see that

E
[∥∥r̂lin

n − Pj∗r
∥∥2

2

]
= E

∥∥∥∥∥∥
∑
k∈Λj∗

(α̂j∗,k − αj∗,k)Φj∗,k

∥∥∥∥∥∥
2

2

 =
∑
k∈Λj∗

E

[∣∣∣α̂j∗,k − αj∗,k∣∣∣2] .
According to Lemma 5.2, |Λj∗| ∼ 2j∗d and 2j∗ ∼ n

1
2s′+d ,

E
[∥∥r̂lin

n − Pj∗r
∥∥2

2

]
.

2j∗d

n
∼ n−

2s′
2s′+d . (9)

When p ≥ 2, s′ = s. By Hölder inequality and r ∈ Bs
p,q([0, 1]d),

‖Pj∗r − r‖2
2 . ‖Pj∗r − r‖2

p . 2−2j∗s ∼ n−
2s

2s+d .

When 1 ≤ p < 2 and s > d/p, Bs
p,q([0, 1]d) ⊆ Bs′

2,∞([0, 1]d)

‖Pj∗r − r‖2
2 .

∞∑
j=j∗

2−2js′ . 2−2j∗s′ ∼ n−
2s′

2s′+d .

Therefore, in both cases,

‖Pj∗r − r‖2
2 . n−

2s′
2s′+d . (10)

By (8), (9) and (10),

E

[∫
[0,1]d

∣∣r̂lin
n (x)− r(x)

∣∣2dx] . n−
2s′

2s′+d .

Proof of (5b) We now follow the lines of (Delyon and Juditsky, 1996, Theorem 2) with

adaptation to our statistical setting, by using the definitions of our estimators and the
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auxiliary results of Section 5.1. By the definitions of r̂lin
n and r̂non

n , we have

r̂non
n (x)− r(x) =

(
r̂lin
n (x)− Pj∗r(x)

)
−
(
r(x)− Pj1+1r(x)

)
+

j1∑
j=j∗

2d−1∑
u=1

∑
k∈Λj

(
β̂j,k,u1{|β̂j,k,u|≥κtn} − βj,k,u

)
Ψj,k,u(x).

Hence,

E

[∫
[0,1]d

∣∣∣r̂non
n (x)− r(x)

∣∣∣2dx] . T1 + T2 +Q,

where T1 := E

[∥∥∥r̂lin
n − Pj∗r

∥∥∥2

2

]
, T2 :=

∥∥∥r − Pj1+1r
∥∥∥2

2
and

Q := E

∥∥∥∥∥∥
j1∑
j=j∗

2d−1∑
u=1

∑
k∈Λj

(
β̂j,k,u1{|β̂j,k,u|≥κtn} − βj,k,u

)
Ψj,k,u

∥∥∥∥∥∥
2

2

 .
According to (9) and 2j∗ ∼ n

1
2m+d (m > s),

T1 = E

[∥∥∥r̂lin
n − Pj∗r

∥∥∥2

2

]
.

2j∗d

n
∼ n−

2m
2m+d < n−

2s
2s+d .

When p ≥ 2, by the same arguments as (10) shows T2 =
∥∥∥r − Pj1+1r

∥∥∥2

2
. 2−2j1s. This

with 2j1 ∼ (n/ lnn)
1
d leads to

T2 . 2−2j1s ∼
(

lnn

n

) 2s
d

≤ (lnn)n−
2s

2s+d .

On the other hand, Bs
p,q([0, 1]d) ⊆ B

s+d/2−d/p
2,∞ ([0, 1]d) when 1 ≤ p < 2 and s > d/p.

Then

T2 . 2−2j1(s+ d
2
− d
p

) ∼
( lnn

n

) 2(s+ d2−
d
p )

d ≤ (lnn)n−
2s

2s+d .

Hence,

T2 . (lnn)n−
2s

2s+d ,

for each 1 ≤ p < +∞.

The main work for the proof of (5b) is to show

Q = E

∥∥∥∥∥∥
j1∑
j=j∗

2d−1∑
u=1

∑
k∈Λj

(
β̂j,k,u1{|β̂j,k,u|≥κtn} − βj,k,u

)
Ψj,k,u

∥∥∥∥∥∥
2

2

 . (lnn)n−
2s

2s+d .

Note that

Q =

j1∑
j=j∗

2d−1∑
u=1

∑
k∈Λj

E

[∣∣∣β̂j,k,u1{|β̂j,k,u|≥κtn} − βj,k,u∣∣∣2] . Q1 +Q2 +Q3, (11)
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where

Q1 =

j1∑
j=j∗

2d−1∑
u=1

∑
k∈Λj

E

[∣∣∣β̂j,k,u − βj,k,u∣∣∣2 1{|β̂j,k,u−βj,k,u|>κtn
2
}

]
,

Q2 =

j1∑
j=j∗

2d−1∑
u=1

∑
k∈Λj

E

[∣∣∣β̂j,k,u − βj,k,u∣∣∣2 1{|βj,k,u|≥κtn2 }
]
,

Q3 =

j1∑
j=j∗

2d−1∑
u=1

∑
k∈Λj

|βj,k,u|2 1{|βj,k,u|≤2κtn}.

For Q1, one observes that

E

[∣∣∣β̂j,k,u − βj,k,u∣∣∣2 1{|β̂j,k,u−βj,k,u|>κtn
2
}

]
≤
(
E

[∣∣∣β̂j,k,u − βj,k,u∣∣∣4]) 1
2
(
P
(
|β̂j,k,u − βj,k,u| >

κtn
2

)) 1
2

thanks to Hölder inequality. By Lemma 5.2, Lemma 5.3 and |β̂j,k,u − βj,k,u|2 . n/ lnn,

E

[∣∣∣β̂j,k,u − βj,k,u∣∣∣2 1{|β̂j,k,u−βj,k,u|>κtn
2
}

]
.

1

n2
.

Then Q1 .
j1∑
j=j∗

2jd/n2 . 2j1d/n2 . 1/n ≤ n−
2s

2s+d , where one uses the choice 2j1 ∼

(n/ lnn)
1
d . Hence,

Q1 ≤ n−
2s

2s+d . (12)

To estimate Q2, one defines

2j
′ ∼ n

1
2s+d .

It is easy to see that 2j∗ ∼ n
1

2m+d ≤ 2j
′ ∼ n

1
2s+d ≤ 2j1 ∼ (n/ lnn)

1
d . Furthermore, one

rewrites

Q2 =

(
j′∑

j=j∗

+

j1∑
j=j′+1

)
2d−1∑
u=1

∑
k∈Λj

E

[∣∣∣β̂j,k,u − βj,k,u∣∣∣2 1{|βj,k,u|≥κtn2 }
]

:= Q21 +Q22.

By Lemma 5.2 and 2j
′ ∼ n

1
2s+d ,

Q21 :=

j′∑
j=j∗

2d−1∑
u=1

∑
k∈Λj

E

[∣∣∣β̂j,k,u − βj,k,u∣∣∣2 1{|βj,k,u|≥κtn2 }
]

.
j′∑

j=j∗

2d−1∑
u=1

∑
k∈Λj

lnn

n
.

j′∑
j=j∗

(lnn)
2jd

n
. (lnn)

2j
′d

n
∼ (lnn)n−

2s
2s+d .
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On the other hand, it follows from Lemma 5.2 that

Q22 :=

j1∑
j=j′+1

2d−1∑
u=1

∑
k∈Λj

E

[∣∣∣β̂j,k,u − βj,k,u∣∣∣2 1{|βj,k,u|≥κtn2 }
]

.
j1∑

j=j′+1

2d−1∑
u=1

∑
k∈Λj

lnn

n
1{|βj,k,u|≥κtn2 }

.

When p ≥ 2, since r ∈ Bs
p,q([0, 1]d), Lemma 5.2 and tn =

√
lnn/n,

Q22 .
j1∑

j=j′+1

2d−1∑
u=1

∑
k∈Λj

lnn

n
1{|βj,k,u|≥κtn2 }

.
j1∑

j=j′+1

2d−1∑
u=1

∑
k∈Λj

lnn

n

(
βj,k,u
κtn/2

)2

.
j1∑

j=j′+1

2−2js . 2−2j′s ∼ n−
2s

2s+d . (13)

When 1 ≤ p < 2 and s > d/p, Bs
p,q([0, 1]d) ⊆ B

s+d/2−d/p
2,∞ ([0, 1]d). Then

Q22 .
j1∑

j=j′+1

2d−1∑
u=1

∑
k∈Λj

lnn

n
1{|βj,k,u|≥κtn2 }

.
j1∑

j=j′+1

2d−1∑
u=1

∑
k∈Λj

lnn

n

(
βj,k,u
κtn/2

)p

.
j1∑

j=j′+1

(lnn)n
p
2
−12−j(s+d/2−d/p)p

. (lnn)n
p
2
−12−j

′(s+d/2−d/p)p ∼ (lnn)n−
2s

2s+d . (14)

It follows from the upper bounds above that

Q2 . (lnn)n−
2s

2s+d . (15)

Finally, one evaluates Q3. Clearly,

Q31 :=

j′∑
j=j∗

2d−1∑
u=1

∑
k∈Λj

|βj,k,u|2 1{|βj,k,u|≤2κtn}

≤
j′∑

j=j∗

2d−1∑
u=1

∑
k∈Λj

∣∣∣2κtn∣∣∣2 . j′∑
j=j∗

lnn

n
2jd .

lnn

n
2j
′d.

This with the choice of 2j
′

shows

Q31 . (lnn)n−
2s

2s+d .

On the other hand, Q32 :=
j1∑

j=j′+1

2d−1∑
u=1

∑
k∈Λj

|βj,k,u|2 1{|βj,k,u|≤2κtn}. According to the argu-

ments of (13), for p ≥ 2,

Q32 .
j1∑

j=j′+1

2d−1∑
u=1

∑
k∈Λj

|βj,k,u|2 . n−
2s

2s+d .
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When 1 ≤ p < 2, |βj,k,u|2 1{|βj,k,u|≤2κtn} ≤ |βj,k,u|
p |2κtn|2−p. Then similar to the argu-

ments of (14),

Q32 .
j1∑

j=j′+1

2d−1∑
u=1

∑
k∈Λj

|βj,k,u|p |2κtn|2−p

.

(
lnn

n

) 2−p
2

j1∑
j=j′+1

2−j(s+d/2−d/p)p .

(
lnn

n

) 2−p
2

2−j
′(s+d/2−d/p)p

.

(
lnn

n

) 2−p
2
(

1

n

) (s+d/2−d/p)p
2s+d

≤ (lnn)n−
2s

2s+d .

It follows from the inequalities above that

Q3 . (lnn)n−
2s

2s+d , (16)

in both cases. Owing to (11), (12), (15), and (16), we prove that

Q . (lnn)n−
2s

2s+d ,

which is the desired conclusion. �
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