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Abstract

We propose a new point of view in the study of Fourier analysis on graphs, taking advantage of
localization in the Fourier domain. For a signal f on vertices of a weighted graph G with Laplacian
matrix L, standard Fourier analysis of f relies on the study of functions g(L)f for some filters g on
IL, the smallest interval containing the Laplacian spectrum sp(L) ⊂ IL. We show that for carefully
chosen partitions IL = t1≤k≤KIk (Ik ⊂ IL), there are many advantages in understanding the collection
(g(LIk)f)1≤k≤K instead of g(L)f directly, where LI is the projected matrix PI(L)L. First, the partition
provides a convenient modelling for the study of theoretical properties of Fourier analysis and allows for
new results in graph signal analysis (e.g. noise level estimation, Fourier support approximation). We
extend the study of spectral graph wavelets to wavelets localized in the Fourier domain, called LocLets,
and we show that well-known frames can be written in terms of LocLets. From a practical perspective,
we highlight the interest of the proposed localized Fourier analysis through many experiments that
show significant improvements in two different tasks on large graphs, noise level estimation and signal
denoising. Moreover, efficient strategies permit to compute sequence (g(LIk)f)1≤k≤K with the same
time complexity as for the computation of g(L)f .

Keywords: Nonparametric regression; Multiscale statistics; Variance estimation; Concentration in-
equalities; Graph signal processing; Spectral graph theory; Graph Laplacian; Harmonic analysis on graphs

1 Introduction

Graphs provide a generic representation for modelling and processing data that reside on complex domains
such as transportation or social networks. Numerous works combining both concepts from algebraic and
spectral graphs with those from harmonic analysis (see for example [11, 13, 3] and references therein)
have allowed to generalize fundamental notions from signal processing to the context of graphs thus
giving rise to Graph Signal Processing (GSP). For an introduction to this emerging field and a review of
recent developments and results see [48] and [40]. In general, two types of problems can be distinguished
according to whether the underlying graph is known or unknown. The first case corresponds to the
setup of a sampled signal at certain irregularly spaced points (intersections of a transportation network,
nodes in a computer network, . . . ). In the second case, a graph is constructed from the data itself, it is
generally interpreted as a noisy realization of one or several distributions supported by a submanifold of
the Euclidean space. In this latter context, the theoretical submanifold is somehow approximated using
standard methods such as k-NN, ε-graph and their Gaussian weighted versions. In any of these cases, the
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framework is actually similar: it consists of a graph (given by the application or by the data) and signals
are real-valued functions defined on the vertices of the graph.

Notions of graph Fourier analysis for signals on graphs were introduced and studied over the past
several years [48, 45, 49, 46]. The graph Fourier basis is given by the eigenbasis (χ`)` of the Laplacian
matrix L. The Graph Fourier Transform (GFT) consists in representing a signal f in the Fourier basis
(〈f, χ`〉)`, and by analogy with the standard case, the eigenvalues of L play the role of frequencies. From
this definition, it follows that many filtering techniques are written in terms of vectors g(L)f , for some
filter functions g which act on the spectrum of L (scaling, selecting, ...). Fourier analysis on graphs has
been successfully applied to many different fields such as stationary signals on graphs [41], graph signal
energy study [26], convolutional neural networks on graphs [18].

Graph wavelets are an important application of graph Fourier analysis, and several definitions of graph
wavelets were proposed [15, 13, 24, 34, 57, 27]. When performing Fourier analysis of a signal, there is no
guarantee that localization of a signal in the frequency domain (a.k.a Fourier domain) implies localization
in the graph domain. This phenomenon is illustrated by the fact that the eigenvectors corresponding
to the upper part of Laplacian spectrum tend to be more oscillating than those from the bottom of
the spectrum (see for example [58, Fig. 1.6, p. 28] for an illustration). To overcome this problem, [28]
developed a fairly general construction of a frame enjoying the usual properties of standard wavelets: each
vector of the frame is defined as a function g(sL)δm (where δm is a Kronecker signal, having zero values
at every vertex except m) and is localized both in the graph domain and the spectral domain at fine scale
s. The transform associated with this frame is named Spectral Graph Wavelet Transform (SGWT), and
it was used in numerous subsequent works [54, 2, 27].

Signals which are sparse in the Fourier domain form an important class of graph signals. Indeed, there
is a tight relationship between sparsity in the Fourier domain and the notion of regularity of a signal f
on the vertices of a graph G which comes from the Laplacian matrix L of G. Intuitively, a smooth signal
will not vary much between two vertices that are close in the graph. This regularity property can be read
in the Fourier domain: a very smooth signal will be correctly represented in the Fourier domain with
a small number of eigenvectors associated with the lower spectral values; on the contrary, non-smooth
signals (i.e. highly oscillating) are represented with eigenvectors corresponding to the upper part of the
spectrum. Both the types of signal are said frequency sparse.

In this paper, we propose to exploit localization in the Fourier domain to improve graph Fourier
analysis. More precisely, we consider vectors of the form g(LIk)f instead of vectors g(L)f in graph
Fourier analysis, where LIk is defined as the matrix LPIk(L) and PIk(L) denotes the projection onto
the eigenspaces whose eigenvalue is contained in subset Ik. Localized Fourier analysis is motivated by
problems and properties defined on strict subsets of the spectrum sp(L) (e.g. any problem defined in
terms of frequency sparse graph signals). As a central application of Fourier localization, we introduce
the Fourier localized counterpart of SGWT, that we call LocLets for Localized graph wavelets. We
prove that various frame constructions can be written in terms of LocLets, hence benefiting from all the
advantages of localization discussed in this paper.

Defining IL as the smallest interval containing the entire spectrum sp(L), the local Fourier analysis
consists in choosing a suitable partition IL = tkIk into subintervals on which standard Fourier analysis
is performed. Such an analysis on disjoint intervals naturally benefits from several interesting properties.
In particular, when f is modeled by a Gaussian random vector with independent entries, the disjointness
of subintervals preserves these properties in the sense that random variables (g(LIk)f)k are still Gaussian
and independent. This simple observation has important consequences to study the graph problem at
stake. In this work, it allows us to propose some noise level estimator from the random variables sequence
(g(LIk)f)k, and to provide a theoretical analysis of the denoising problem. Disjointness of subsets (Ik)k
also provides simple strategies to parallelize Fourier analysis computations.

We also consider the general problem given by a noisy signal on a graph f̃ = f + ξ, where ξ is some
random Gaussian vector with noise level σ. We provide results for two important tasks: the estimation of
σ when the latter is unknown, and the denoising of noisy signal f̃ in order to recover signal f . We show



B. de Loynes, F. Navarro and B. Olivier 3

that for frequency sparse signals, localization allows to adapt to the unknown Fourier support of signal
f . Theoretical guarantees and practical experiments show that localized Fourier analysis can improve
state-of-the-art denoising techniques, not only in precision of the estimator f̂ of f , but also in time
computations.

We provide an efficient method to choose a partition IL = tkIk for the Fourier localized vectors
g(LIk)f to be sufficiently informative. Using well-known techniques for efficient graph Fourier analysis
(a.k.a Chebyshev filter approximations), we propose scalable methods to perform localized Fourier analysis
with no computational overhead over standard fast Fourier graph analysis. In particular, all methods
introduced in the paper avoid the computation of the entire eigendecomposition of L which is a major
computational advantage when considering large graphs in applications.

The paper is structured as follows. Section 2 presents the relevant notions and techniques necessary to
perform localized Fourier analysis. In Section 2.2, we introduce LocLets, the Fourier localized extension
of SGWT. Section 3 is devoted to the study of the denoising problem for signals on graphs. The section
provides results about noise level estimation, and signal denoising. Additional properties of LocLets,
such as computational aspects and relationships with known wavelet transforms, are further developed
in Section 4. In Section 5, we analyze the experiments made to support the interesting properties of
localized Fourier analysis highlighted in this paper. Finally, the proofs are gathered in Section 7.

2 Localized Fourier analysis for graph signals

In this section, we introduce the central notion studied in this paper: localization of graph Fourier
analysis. First, we recall the relevant notions of graph Fourier analysis. Then we provide examples
from previous works that motivates localization in the Fourier domain. We also introduce LocLets, an
important application of Fourier localization to SGWT. Finally, we discuss briefly the particular case of
graphs sampled from a manifold.

2.1 Functional calculus and Fourier analysis for graph signals

Let G = (V, E) be an undirected weighted graph with V the set of vertices, E the set of edges, n = |V|
the number of nodes (the size of G), and (Wij)i,j≤n the weights on edges. Let us introduce the diagonal
degree matrix whose diagonal coefficients are given by Dii =

∑
1≤j≤nWij for 1 ≤ i ≤ n. The resulting

non-normalized Laplacian matrix L of graph G is defined as L = D−W . The n non-negative eigenvalues
of L, counted without multiplicity, are denoted by λ1, . . . , λn in the decreasing order. In the sequel, sp(L)
stands for the spectrum of L. The corresponding eigenvectors are denoted χ1, . . . , χn.

Given a graph G, the GFT of a real-valued function f defined on the vertices of G is nothing but the
representation of f in the orthonormal basis of eigenvectors of L. Namely, for a signal f : G → R, the `-th
Fourier coefficient of f , denoted f̂(`), is given by f̂(`) = 〈f, χ`〉. The Fourier support supp(f̂) of signal f
is the set of indices ` such that f̂(`) 6= 0. We will see in Section 2.2 that graph wavelets can be defined
in a similar manner.

Functional calculus is a powerful technique to study matrices, and constitutes the heart of GSP. For
a function g defined on some domain Dg, sp(L) ⊂ Dg, functional calculus reads as

g(L) =
∑

1≤`≤n
g(λ`)〈χ`, ·〉χ`.

Interpreting the eigenvalues λ`, ` = 1, . . . , n, as the fundamental frequencies associated with a graph, the
linear map g(L) is generally seen as a filter operator in terms of signal analysis.

Also, spectral projections of matrix L can be made explicit with the help of functional calculus, by
setting g = 1I . More precisely, for any subset I ⊂ IL, consider the map PI(L) given by:

PI(L) =
∑

1≤`≤n
1I(λ`)〈χ`, ·〉χl =

∑
`: λ`∈I

〈χ`, ·〉χ`.
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Then, PI(L) is nothing but the spectral projection on the linear subspace spanned by the eigevectors
associated with the eigenvalues belonging to I. In the sequel, nI = |I ∩ sp(L)| will stand for the number
of eigenvalues contained in subset I ∩ sp(L).

Spectral projections are a practical tool to focus on some part of the spectrum sp(L). More precisely,
let IL = t1≤k≤KIk be a partition of interval IL into disjoint subsets (Ik)k. Since intervals Ik are disjoints,
functional analysis of L reduces to that of its projections LIk = LPIk(L) in the sense of the identity:

g(L) =
∑

1≤k≤K
g(LIk).

In this paper, one will study the extent to which Fourier analysis on large graphs is improved when
considering local Fourier analysis on each subset Ik instead of global Fourier analysis on IL.

2.2 LocLets: a localized version of SGWT

This section introduces an important application of the localized graph Fourier analysis, namely the
notion of localized SGWT.

2.2.1 Construction of a SGWT

Let f : G → R be a signal on the graph G. Let ϕ,ψ : R → R be respectively the scaling and kernel
functions (a.k.a. father and mother wavelet functions), and let sj > 0, 1 ≤ j ≤ J , be some scale values.
The discrete SGWT is defined in [28] as follows:

Wf = (ϕ(L)fT , ψ(s1L)fT , . . . , ψ(sJL)fT )T .

The adjoint matrix W∗ of W is:

W∗(ηT0 , ηT1 , . . . , ηTJ )T = ϕ(L)η0 +
J∑
j=1

ψ(sjL)ηj . (1)

We also recall from [28] that a discrete transform reconstruction formula using SGWT coefficients (cj,m) 0≤j≤J
1≤m≤n

is obtained by the formula
(W∗W)−1W∗(cj,m)j,m,

where (W∗W)−1 stands for a pseudo-inverse of the matrix W∗W.

Remark 1. From a theoretical point of view, no more assumptions on the scale values sj are required.
However, the choice in practice of the scale values depends simultaneously on the mother wavelet ψ and
the maximal spectral value of the Laplacian L. In [28], these values sj are suitably chosen accordingly
with the graphs considered in the experiments. Besides, for our experiments, we follow the construction
of [27] in which sj = bj for some real b > 1 (see also Section 4.2.1 for the details).

2.2.2 Motivation for considering Fourier localized graph signals

The definition of SGWT as given in [28] is closely related to its counterpart from traditional wavelet
transform by the action of the transform on the Fourier domain. Equation (9) in [28] highlights the
following decomposition of wavelet coefficients in the frequency domain:

ψ(sL)f(x) =
1

2π

∫ +∞

−∞
ψ̂∗(sω)f̂(ω)eiωxdω, (2)

where ψ̂∗(sω) = ψ̂s(ω) denotes the Fourier coefficient of a scaled version ψs of the mother wavelet ψ, and

x 7→ eiωx are the eigenfunctions of the one-dimensional Laplacian L = ∂2

∂x2
on the real line. On the other
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hand, a similar formula holds for the case of graph wavelets where integration over frequencies is replaced
by summation over Laplacian eigenvalues. It is given by Equation (22) in [28]:

ψ(sL)f(n) =
∑
`

ψ(sλ`)f̂(`)χ`(n). (3)

Equations 2 and 3 suggest strong similarities between the role of frequencies for wavelets on the real
line and the role of Laplacian eigenvalues for graph wavelets. For example, an explicit mapping between
frequencies and Laplacian eigenvalues is exhibited in part III.C of [34] for the case of the cycle graph.
As an important consequence, filtering in the frequency domain for traditional time signals is similar
to filtering Laplacian spectrum in the graph setting. This similarity has guided authors of [33] who
propose an analog of Meyer wavelets [39] for graphs by applying traditional Meyer filters on the graph
Fourier domain. As for the traditional case, smoothness for graph Meyer wavelets can be guaranteed by
calibrating Meyer filters so that the Fourier support of wavelet functions is concentrated in the bottom
of the Laplacian spectrum. A larger list of tight frames candidates obtained from traditional wavelets
defined on the Fourier domain is provided in Table 1 of [34].

Other examples of signals with limited frequency support have inspired graph counterparts with
restricted Fourier supports. In [1, 8, 42, 43], k-bandlimited graph signals are supported on the eigenspaces
associated with the k smallest eigenvalues and define an equivalent of ω-bandlimited signals. Compressive
sampling is an application of this type of signals both in the traditional [7, 20, 6] and in the graph [42]
settings. While low-pass frequency filters are usually used to capture the smooth part of a signal, high-pass
filters have the ability to point out anomalies in smooth signals. Such applications of high-pass filters can
be found in [9] for optical laser measurements and time signals, but also in [45] for anomalies detection
in temperature measurements on a graph of weather stations. The latter application was also considered
in Section V.D of [8] to illustrate the use of filter banks that split the graph signal into two bandlimited
signals. Authors of [55, 56] introduce graph sampling methods in the Fourier domain taking advantage
of periodic patterns and extending to the graph setting sampling techniques designed for shift-invariant
signals [21]. The sampling task for time signals was addressed in [30, 36] in the case of multiband signals
supported on a disjoint union of frequency subsets. This suggests providing methods adapted to disjoint
subsets in the Fourier domain also for the case of multiband graph signals.

All the examples discussed above share a common feature: their Fourier support is localized in the
Fourier domain in the sense that such signals f satisfy f = PI(L)f for some subset I ⊂ IL, I ∩ sp(L) 6=
sp(L). For k-bandlimited signals, I is a set containing only the k smallest eigenvalues of L; for high-
pass filters, I contains only the largest eigenvalues; for periodic signals, I is a set such that I ∩ sp(L) =
{λi mod m | λi ∈ sp(L)} for some period m; and for multiband signals, I is a disjoint union I = tkIk of
intervals (Ik)k. The current paper proposes methods to study these graph signals that we call Fourier
localized signals.

2.2.3 Definition of LocLets

Spectral graph wavelet functions are given by (ϕ(L)δm, ψ(sjL)δm)1≤j≤J,1≤m≤n. We define a LocLet
function to be the projection of a graph wavelet function onto a subset of eigenspaces of L.

Definition 2. Let (ϕ(L)δm, ψ(sjL)δm)1≤j≤J,1≤m≤n be the family functions induced by a SGWT. Then,
for any subset I ⊂ IL, 1 ≤ j ≤ J and 1 ≤ m ≤ n, set:

ϕm,I = ϕ(LI)δm =
∑
`:λ`∈I

ϕ(λ`)δ̂m(`)χ`

ψj,m,I = ψ(sjLI)δm =
∑
`:λ`∈I

ψ(sjλ`)δ̂m(`)χ`,

where δ̂m(·) = 〈δm, χ·〉 is the graph Fourier transform of δm. The functions (ϕm,I , ψj,m,I)1≤j≤J,1≤m≤n are
called Localized waveLets functions (LocLets). The functions ϕm,I , ψj,m,I are said to be localized at I.
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Let IL = t1≤k≤KIk be some partition. Then, the localized SGWT transfom of f with respect to
partition (Ik)1≤k≤K , denoted by W(Ik)kf , is defined as the family W(Ik)kf = (WIkf)k where

WIkf = (ϕ(LIk)fT , ψ(s1LIk)fT , ...)T , 1 ≤ k ≤ K.

Similarly to Equation (1), the adjoint transform is given by

WIk∗(ηT0 , η
T
1 , . . . , η

T
J )T = ϕ(LIk)η0 +

J∑
j=1

ψ(sjLIk)ηj , 1 ≤ k ≤ K.

As already observed, localized SGWT of a signal f contains more precise information about signal f than
its standard SGWT. The latter can easily be obtained from the former since subsets (Ik)k are pairwise
disjoint and formula g(sL) =

∑
1≤k≤K g(sLIk) holds for all filter g, and in particular for g = ϕ or g = ψ.

When the partition IL = t1≤k≤KIk is carefully chosen, we show that the SGWT localization provides
interesting features such as independence of random variables in denoising modelling, or considerable
improvements in denoising tasks.

Remark 3. The functions ϕm,I , ψj,m,I are localized in the Fourier domain in the sense that the support
of their Fourier transforms are contained in a subset I of IL. A different localization property, observable
in the graph domain, is considered in [28]. We refer to the latter property as graph domain localization
in the current paper.

A property about the graph domain localization at fine scales is stated in [28, Theorem 5.5] but this
result appears to be not informative in general for the case of Fourier localized functions ϕm,I , ψj,m,I . For
instance, any function of the form ψ1I vanishes in a neighborhood of 0 as soon as 0 /∈ I, as observed in
Section 2.3 of [27]. However, other graph domain localization results were obtained by the authors of [14]
for the case of frames considered in [27] and discussed in our Section 4.2.1. In addition, the weaker graph
localization property [28, Lemma 5.2] for powers of the Laplacian still holds in our Fourier localized setting
since in practice we approximate any function x → ψ(sjx)1I(x) by a Chebyshev polynomial of order N
(see Section 4).

2.3 Fourier localization for weighted graphs sampled from manifolds

In some applications, the underlying graph is unknown and is built from the data. In this case, the
resulting graph is thought as a random sampling of a low-dimensional sub-manifold embedded in a higher
dimensional Euclidean space.

More precisely, let M be a Riemannian manifold of dimension d embedded in Rm with m > d. A
popular way to define a graph from a finite set of points {x1, . . . , xn} ⊂ M consists in defining a weighted
adjacency matrix W = (Wij)i,j≤n as follows:

Wij = k

(
‖xi − xj‖22

2ε

)
, (4)

where ‖ · ‖22 stands for the Euclidean distance in Rm and ε > 0 is some parameter called the bandwidth
of the kernel k. A typical choice for the kernel k is the exponential function k(x) = exp(−x), x ∈ R. As
an example, the swissroll graph of Section 5 is built following this idea.

A whole part of the literature is dedicated to the question of the convergence of the discrete (normalized
or non-normalized) Laplacian matrices Ln,ε toward the Laplace-Beltrami operator ∆M (see [44] for a
detailed exposition of this classical object from differentiable geometry). The discretized operator Ln,ε
depending on two parameters, the convergence as n→∞ and/or ε→ 0 have been considered in [29, 53,
12, 25, 3, 38]. Loosely speaking, theses results are devoted to the approximation of ∆Mf by Ln,εf at the
sample points.
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Furthermore, it is shown in [59, 23] that, under mild conditions, eigenvalues and eigenfunctions of
∆M are well approximated by those of Ln,ε. As a consequence of particular interest, bandlimited (or
even multiband) signals on the manifoldM, when sampled at the points {x1, . . . , xn} ⊂ M, are expected
to be bandlimited (multiband) with respect to the graph Laplacian Ln,ε (with slight differences when
considering the normalized or the non-normalized Laplacian). It is worth noting that the sample points
{x1, . . . , xn} do not have to lie exactly in the manifold M but can be disrupted by a noise. The spectral
properties are preserved by standard spectral perturbation arguments (see [32]) providing the noise level
is sufficiently small. Such a perturbation argument is discussed at some point in [12] and remains valid
in our context.

To conclude this discussion, let us point out that the choice of a Gaussian kernel in (4), while popular,
is quite arbitrary. The results in [23] are stated for a rather general kernel including non-smooth kernels.
In addition, a variable bandwidth kernel is also considered in [5].

3 Local Fourier analysis and graph functions denoising

The denoising problem is stated as follows: given an observed noisy signal f̃ of the form f̃ = f + ξ
where ξ is a n-dimensional Gaussian vector distributed as N (0, σ2Id), provide an estimator of the a priori
unknown signal f .

This section shows how localized Fourier analysis helps in estimating the noise level σ when it is
unknown, and in recovering the original signal f when the latter is sparse in the Fourier domain. In what
follows, we will focus on random variables of the form ‖PIk f̃Ik‖2 where f̃ is the noisy signal and Ik is a

subset in the partition IL = tkIk. To keep the notations light, nk, fk, ξk and f̃k will stand for nIk , PIkf ,

PIkξ and PIk f̃ respectively. In addition, the cumulative distribution function of a random variable X will
be denoted by ΦX .

3.1 Noise level estimation for frequency sparse signals

Since in real application the noise level σ remains unknown in general, new estimators σ̂ based on local-
ization properties in the spectrum are introduced in the sequel.

3.1.1 Noise level estimation from projections along sp(L)

For any filter g defined on IL and any subset I ⊂ IL, simple computations give rise to

E(f̃T g(LI)f̃) = fT g(LI)f + σ2Tr(g(LI)). (5)

Since both f̃T g(LI)f̃ and Tr(g(LI)) are known, Equation (5) suggests building estimators from the ex-

pression f̃T g(LI)f̃
Tr(g(LI)) . In [17], the noise level is estimated by f̃TLf̃

Tr(L) which can be seen as the graph analog of

the Von Neumann estimator from [60]. The main drawback of this estimator is its bias.

Theoretically, without any assumption on the signal f , the bias term fT g(LI)f
Tr(g(LI)) is minimized when

g = 1{λ`∗} where `∗ = argmin{|f̂(`)| : λ` ∈ sp(L)}. The computation of such filters would require the
complete reduction of L which does not scale well with the size of the graph. Instead, these ideal filters
will be approximated by filters of the form g = 1Ik , for Ik a subset in the partition IL = tkIk. It is worth
noting that with k∗ = argmink‖fk‖2, the function g∗ = 1Ik∗ achieves the minimal bias of the estimator
among all filters of the form g =

∑
k αk1Ik .

Discarding some intervals Ik with nk = 0, it can be assumed without loss of generality that nk 6= 0
for all 1 ≤ k ≤ K. Also, observe that the random variable ‖f̃k‖22 can be decomposed as follows

‖f̃k‖22 = ‖fk‖22 + ‖ξk‖22 + 2〈fk, ξk〉, (6)

where
‖ξk‖22
σ2 and 〈fk,ξk〉σ are random variables distributed as χ2(nk) and N (0, ‖fk‖22) respectively.
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Proposition 4. Let (ck)1≤k≤K be the sequence of non-negative random variables defined, for all k =

1, . . . ,K, by ck = ‖f̃k‖22/nk. Then,

1. the random variables c1, . . . , cK are independent;

2. for all k, k′ such that fk = fk′, ck and ck′ are identically distributed if and only if nk = nk′;

3. for k such that fk = 0, ck is distributed as σ2

nk
Γnk where Γnk ∼ χ2(nk).

3.1.2 The case of frequency-sparse signals

When the signal f is sparse in the Fourier domain, the condition fk = 0 is met for most of the intervals
Ik ⊂ IL. Let us define If = t

k:Ik∩suppf̂ 6=∅Ik to be the union of subsets Ik intersecting the Fourier support

supp(f̂) of f . Also, denote by If = IL\If its complement set. In order to take advantage of Fourier
sparsity, let us introduce the quantities σ̂mean and σ̂med as follows:

σ̂mean(c)2 =
1

|{k : Ik ⊂ If}|

∑
k:Ik⊂If

ck and σ̂med(c)2 = mediank:Ik⊂If (ck). (7)

The following concentration inequalities show that σ̂mean and σ̂med are natural estimators of the noise
level σ.

Proposition 5. Let Kf = |{k : Ik ⊂ If}|, n0 = min{nk : k, Ik ⊂ If}, n∞ = max{nk : k, Ik ⊂ If},
Vf = 2σ4

∑
k:Ik⊂If 1/nk and Bf = 2σ2/n0. Then the following concentration inequalities hold:

1. for all t ≥ 0,

P
(
σ̂mean(c)2 − σ2 ≥ t

)
≤ exp

− K2
f t

2

Vf (1 +Bf +
√

1 +
2BfKf t
Vf

)

 ,

and for all 0 ≤ t ≤ σ2,

P
(
σ̂mean(c)2 − σ2 ≤ −t

)
≤ exp

(
−
K2
f t

2

2Vf

)
;

2. for all t ≥ 0, with β = n0/n∞,

P
(
σ̂2

med ≥ β−1σ2 + 2σ2β−1t
)
≤ exp

(
Kf

2
ln
[
4p+(t)(1− p+(t))

])
,

and for all 0 ≤ t ≤ 1 such that p−(t) ≤ 1/2,

P
(
σ̂2

med ≤ βσ2 − σ2βt
)
≤ exp

(
Kf

2
ln
[
4p−(t)(1− p−(t))

])
,

where
p+(t) = P(Γn∞ ≥ n∞ + 2n∞t) and p−(t) = P(Γn0 ≤ n0 − n0t).

Obviously, the Fourier support supp(f̂) and the subset If remain generally unknown in applications
and have to be approximated. Let us recall that the main issue for estimating σ comes from the bias term
‖fk‖22
nk

in Equation (5), and in particular when the value σ2 is negligible compared to
‖fk‖22
nk

. Therefore,

a suitable candidate to approximate If will be some subset Jf ⊂ IL for which the impact of larger

values
‖fk‖22
nk

is minimized. This is made clear by Proposition 6 below. The latter involves the following
concentration bounds for Gaussian random variables: for all 0 < α < 1

P(|〈fk, ξk〉| ≥ tα,σ‖fk‖2) ≤ α where tα,σ = σ ×
√
−2 ln

(α
4

)
. (8)
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Proposition 6. Let 0 < α < 1. Let tα,σ be defined by Equation (8). Assume that f` = 0 and that the
following inequality holds:

‖fk‖22 + 2tα,σ‖fk‖2
σ2

≥ Φ−1
nk
n`

Γn`−Γnk

(
1− 3α

2

)
.

Then, the quantities

bk =
‖ξk‖22 + ‖fk‖22 + 2〈ξk, fk〉

nk
and b` =

‖ξ`‖22
n`

satisfy P(bk ≥ b`) ≥ 1− α.

By invariance under permutations, one may assume without loss of generality that the values ck are
ordered in the decreasing order. Proposition 6 quantifies the fact that the highest values of ck correspond
most likely to the indices k for which fk 6= 0. Consequently, setting Jf (r) = tk∈{r,r+1,...K−r}Ik for all

1 ≤ r ≤ K
2 , the estimators introduced in Equation (7) may be rewritten replacing the unknown subset If

by its known approximation Jf (r). So we define the estimators

σ̂rmean(c)2 =
1

|{k : Ik ⊂ Jf (r)}|

∑
k:Ik⊂Jf (r)

ck and σ̂rmed(c)2 = medk:Ik⊂Jf (r)(ck).

It is worth noting that from the symmetry of the subset Jf (r), it follows that the value σ̂rmed actually
does not depend on parameter r, and one will write σ̂med in place of σ̂rmed.

3.2 Denoising Frequency Sparse Signals

Let us begin with a result illustrating that localized Fourier analysis in IL provides strong benefits in
noise reduction tasks when the underlying signal is frequency sparse.

Proposition 7. Assume f = fI for some subset I ⊂ IL. Then

E
[∥∥f − f̃I∥∥2

2

]
= E

[∥∥f − f̃∥∥2

2

]
− σ2

∣∣I ∩ sp(L)
∣∣.

In particular, denoising of f̃ boils down to denoising of f̃I = fI + ξI .

While Proposition 7 asserts a trivial denoising solution in the Fourier domain, i.e. simply destroying
the projection f̃I = ξI , this approach is no longer that immediate when considering the graph domain
observations since the Fourier support of f is unknown in practice and needs to be estimated. Based
on the χ2-statistics, Algorithm 1 is designed for this purpose. To the best of our knowledge, previous
works that proposed method for Fourier support recovery for graph noisy signals [47] involve the complete
eigendecomposition of matrix L. The methodology suggested below makes use of projectors on eigenspaces
which can be approximating with Chebyshev polynomials as detailed in the next Section 4.

Heuristically, if I contains the support of the Fourier transform of f , on the complementary subset
I we only observe pure white Gaussian noise so that ‖PI f̃‖22 = ‖f̃I‖22 is distributed as σ2χ2(nI) with
nI = |I ∩ sp(L)|. On the other hand, on I the square of the Euclidean norm of a non-centered Gaussian

vector is observed. Consequently, the quantity P
(
χ2(nI) > σ−2‖PI f̃‖22

)
is typically very close to zero

whereas P
(
χ2(n− nI) > σ−2‖PI f̃‖22

)
remains away from 0. To put it in a nutshell, sliding a window

along the spectrum of L, Algorithm 1 performs a series of χ2-test.
With the objective to provide theoretical guarantees that χ2-tests approach supp(f̂) correctly, it is

important to turn the condition on the pk-value into a condition involving only the values ‖fk‖2 and σ.

The next lemma shows that for sufficiently large values of the ratio ‖fk‖2σ , the inequality pk ≤ α holds

so that the corresponding components supp(f̂k) of the Fourier domain are legitimately included in the
support estimate I.
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Algorithm 1: Support approximation in the Fourier domain for noisy signal

Data: noisy signal f̃ , a subdivision I1, I2, . . . , IK , estimated nk = |Ik ∩ spL|, k = 1, . . . ,K,
threshold α ∈ (0, 1)

Result: f̃I = PI(L)f̃ , where I is an approximation of the Fourier support of f̃
1 for k = 1, . . . ,K

2 Compute ‖f̃k‖22 = ‖PIk(L)f̃‖22;
3 Compute

pk = P(σ2Γnk > ‖f̃k‖
2
2) and Γnk ∼ χ

2(nk);

4 Compute f̃I =
∑

k: pk≤α
PIk f̃ .

Lemma 8. Let 0 < α < 1 and let Γnk ,Γ
′
nk

be two i.i.d χ2(nk) random variables. Assume that:

‖fk‖2
σ

(
‖fk‖2
σ
− 2

tα/2,σ

σ

)
≥ Φ−1

Γnk−Γ′nk

(
1− α

2

)
,

where tα,σ is defined by Equation (8). Then pk ≤ α.

In contrast to Lemma 8, the lemma below states that condition pk > α holds for sufficiently small
values of ratio σ−1‖fk‖2.

Lemma 9. Let 0 < α < 1 and let Γnk be a χ2(nk) random variable. For 0 < β < 1, set tβ,k =
σ2Φ−1

Γnk
(1− β). Assume that (

‖fk‖2 +
√
tβ,k

σ

)2

< Φ−1
Γnk

(
1− α

1− β

)
.

Then pk > α.

Compared to Proposition 7, the result below quantifies the error resulting by approximating the
support running Algorithm 1. Note that the requirement to have a constant sequence (nk)k is used for
statement clarity but similar assertions hold for the case nk 6= nk′ .

Proposition 10. Set fI =
∑

k:pk≤α PIkf . Assume that nk = n1 for all 1 ≤ k ≤ K. Then,

1. the Fourier support approximation `2-error satisfies

‖f − fI‖22 ≤ |{k, Ik ⊂ If , pk > α}|

(
tα/2,σ +

√
t2α/2,σ +

(
σΦ−1

Γn1−Γ′n1

(
1− α

2

))2
)2

. (9)

2. the Noise `2-error on Fourier support:

E‖fI − f̃I‖22 = |{k, pk ≤ α}|n1σ
2. (10)

Lemma 9 asserts that the set {k, pk > α} is small when most of the values ‖fk‖2 are large enough
compared to noise level σ for Ik ∩ suppf̂ 6= ∅. In such a case, Fourier support approximation `2-error is
small. Regarding the noise `2-error, the inclusion {k, pk ≤ α} ⊂ {k, Ik ∩ suppf̂ 6= ∅} holds by Lemma
9. Moreover, Lemma 8 asserts that the set {k, pk ≤ α} contains the entire set {k, Ik ∩ suppf̂ 6= ∅} for
sufficiently large values of σ−1‖fk‖2 when Ik∩ suppf̂ 6= ∅. For such favorable situations, the noise `2-error
is exactly n1σ|{k, Ik ⊂ If}|, the amount of noise on the extended support If .
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Algorithm 2: LocLets thresholding estimation procedure

Data: f̃ , α, (Ik)k=1,...,K , estimated nk = |Ik ∩ sp(L)|, thresholds t1, t2
Result: estimator f̂ of signal f

1 Apply Algorithm 1 with f̃ , α, (Ik)k=1,...K , estimated nk; it outputs f̃I and f̃I ;

2 Apply soft-thresholding with threshold t1 to WI f̃ and t2 to WI f̃ ;

3 Apply the inverse LocLet transform to the soft-thresholded coefficients to obtain f̂I , f̂Ĩ ;

4 Compute the estimator f̂ = f̂I + f̂I ;

The second step gives an estimate of the original signal using a thresholding procedure on each element
f̃I and f̃I . On the one hand, the methodology developed in [27] is prohibitive in terms of time and space
complexity as soon as the underlying graphs become moderately large. On the other hand, the fast SGWT
remains an approximating procedure. If a signal happens to be very frequency-sparse, then an even more
optimal strategy is possible: first, the support I in the frequency domain is approximated with the help
of Algorithm 1; then, the procedure of [27] is applied to PIf (the low-rank part) and LocLets on PI(L)f .
This idea is made precisely in Algorithm 3.

Algorithm 3: LocLets support approximation, and low-rank Parseval Frame thresholding procedure

Data: f̃ , α, (Ik)k=1,...,K , estimated nk = |Ik ∩ sp(L)|, thresholds t1, t2
Result: estimator f̂ of signal f

1 Apply Algorithm 1 with f̃ , α, (Ik)k=1,...K , estimated nk; it outputs f̃I and f̃I ;
2 Compute Parseval Frame for LI ;
3 Apply Parseval Frame thresholding with threshold t1 to f̃I ; it outputs f̂I ;

4 Apply soft-thresholding with threshold t2 to WI f̃ ;

5 Apply the inverse LocLet transform to the soft-thresholded coefficients to obtain f̂
Ĩ
;

6 Compute the estimator f̂ = f̂I + f̂I ;

Estimator f̂ produced in Algorithm 3 satisfies a tighter oracle bound inequality than the one given in
[27, Theorem 3]. This theoretical guarantee is widely supported by our experiments described in Section
5. Following notations from [27, Equation (21)], we denote by OB(fI) the oracle bound obtained from
an oracle estimator of fI from a noisy f̃I exploiting some knowledge about the unknown signal fI . We
refer to [27] for precise details.

Theorem 11. Let I, f̂ be respectively the support approximation and the estimator of f obtained from
Algorithms 1 and 3 with threshold value t2 = 0. Then we have

E‖f − f̂‖22 ≤ E‖f − fI‖22 + (2 log(nI) + 1)(σ2 +OB(fI)).

The right-hand side in the inequality of Theorem 11 has a more explicit expression in terms of α, σ
using Proposition 10. Up to the error made by approximating the support with Algorithm 1, the `2-risk
is essentially bounded by the `2-risk of the Parseval frame procedure from [27] on the low-rank projection
fI of f , that is

E‖f − f̂‖22 . (2 log(nI) + 1)(σ2 +OB(fI)).

To conclude, Theorem 11 provides a theoretical guarantee that the support approximation improves the
denoising performances obtained from [27].
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4 Properties of LocLets

In this section, we highlight important properties for the application of Fourier localization in practice.
First we discuss computational analysis, and methods to apply our techniques to large graphs. Then we
study the relationships of LocLets with well-known graph wavelet constructions.

4.1 Fast LocLet Transform and Computational Analysis

In the case of large graphs, GSP requires a special care for being efficient since functional calculus relies
a priori on the complete reduction of the Laplacian. Actually, several efficient methods were designed
to retrieve only partial information from the eigendecomposition as matrix reduction techniques (see for
instance [37, 54]) or polynomial approximations [28, 50, 19]. In this paper, the widely adopted latter
approach with Chebyshev polynomials approximation is preferred and briefly recalled below (we refer the
reader to [50, Section III.C.] for a brief but more detailed description of Chebyshev approximation).

4.1.1 Chebyshev approximations

Roughly speaking, the idea is to approximate the function g with its Chebyshev expansion gN at order
N . More precisely, the Chebyshev polynomials of the first kind (Ti)i≥0 are defined from the second order
recursion

T0(x) = 1, T1(x) = x, |x| ≤ 1, and Ti(x) = xTi−1(x)− Ti−2(x),

for i ≥ 2. Then, the matrix L is normalized as L̃ = 2
λ1
L − In so that sp(L̃) ⊂ [−1, 1]. This gives rise

to some function g̃ : [−1, 1] → R with the property g(L) = g̃(L̃). In fact, g̃(x) = g(λ12 (x + 1)) for all
x ∈ [−1, 1]. Then g(L) has the following truncated Chebyshev expansion g(L) ≈ gN (L):

gN (L) =
∑

0≤i≤N
ai(g̃)Ti(L̃),

where N is the maximal degree of polynomials Ti used in the expansion, and ai(g̃) is the i-th coefficient
in the N -th order Chebyshev expansion of function g̃. Following [28], for any filter g on sp(L) and any
signal f on graph G, the approximation gN (L) provides a vector value close to g(L)f with time complexity
O(|E|N).

The object presented in the sequel involves in particular the spectral projection PI(L)f of a signal
f for any subset I ⊂ IL which can be derived from the Chebyshev expansion of the indicator function
g = 1I . This observation actually appears in several recent works [19, 22]. More importantly for our study,
this efficient estimation is part of the Hutchinson stochastic trace estimator technique [31], providing us
with an effective method to estimate nI = Tr(LI). Finally, the present paper focuses on the computation
of a sequence g(LIk)1≤k≤K (or its vector counterpart g(LIk)f) instead of a single g(L) (resp. g(L)f).
While a naive estimation would suggest that the computational complexity is then multiplied by a factor
K compared to the complexity of the computation of g(L), we argue in the following that there is in fact
no significant computational overhead.

4.1.2 Sharing Chebyshev polynomial matrices among filters

Let us assume that it is needed to compute the estimated values of gk(L)f for a given signal f for several
filters gk, k = 0, . . . ,K. Then the following two-step strategy can be adopted: (1) pre-compute Cheby-
shev expansions g̃k(x) ≈ g̃k,N (x) =

∑
0≤i≤N ai(g̃k)Ti(x) for all k = 0, . . . ,K; independently, compute

Chebyshev approximation vectors Ti(L̃)f for all 0 ≤ i ≤ N ; (2) combine the previous results to compute
the Chebyshev approximation gk,N (L)f of gk(L)f :

gk,N (L)f =
∑

0≤i≤N
ai(g̃k)Ti(L̃)f.
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The complexity of the first step is dominated by the N matrix-vector multiplications required to
obtain Ti(L̃)f . So the first step has complexity O(|E|N). The second step adds N weighted matrices
ai(g̃k)Ti(L̃) together, which is an operation of complexity O(Nn2) at most. As an important matter of
fact, the overall complexity for this procedure is bounded by O(|E|N +Nn2), which is independent of the
number of filters gk, and the same as for the computation of g(L).

Sharing matrices among filters has several examples of applications in the current paper:

1. Computation of g(LIk)f for all 1 ≤ k ≤ K: the equation g(LIk)f = g(1Ik(L)L)f holds so that we
can consider filters gk(x) = g(1Ik(x)x).

2. Computation of g(sL)f for several scale values s: consider filters of the form gs(x) = g(sx).

3. Computation of nIk for all 1 ≤ k ≤ K: Hutchinson’s stochastic estimation computes averages of
fTi PIk(L)fi for some random vectors fi (i ≤ nH) whose computational complexity is dominated by
the approximation of vectors PIkfi. Considering filters gk(x) = 1Ik(x), and sharing random vectors
(fi)i among all approximations of nk, we end up with a complexity of O(nHN |E|), independent of
value K.

In particular, Algorithm 1 has complexity O(nHN |E| + Nn2). Indeed, its efficiency is calibrated on
the computations of sequences (‖f̃k‖2)1≤k≤K and (nk)1≤k≤K whose computational analysis was discussed
previously. It is worth observing that values nk do not depend on signal f and should be estimated only
once in the case where several signals f̃1, f̃2, . . . are to be denoised.

4.1.3 Optimizing storage of LocLets coefficients

The storage of wavelet coefficients (WIkf)1≤k≤K requires a priori K times the storage cost associated
with the original transform Wf . When matrix reduction techniques are used to compute wavelets trans-
form [54], one may reduce the storage consumption of the localized SGWT by suitably choosing the
impulse functions (δm)m. For instance, assume that for each subset Ik a Lanczos basis (vkm)m of the sub-
space spanned by {χ`, ` ∈ Ik} is given. Then the size of sequences (vkm)m and (vkm)m,k are respectively of
order O(|Ik ∩ sp(L)|) = O(nk) and O(n). Thus, with impulse functions (vkm)n in place of δm for transform
WIk , the storage requirements of localized transform (WIkf)1≤k≤K and the original one Wf are of the
same order O(Jn).

4.2 Connections with Well-know Frames

A family F = {ri}i∈I of vectors of RV is a frame if there exist A,B > 0 satisfying for all f ∈ RV

A‖f‖22 ≤
∑
i∈I
|〈f, ri〉|2 ≤ B‖f‖22.

A frame is said to be tight if A = B. This section gives two examples of frames introduced in the
literature which can be realized as a LocLets representation and thus benefit from the advantages given
by localization in the spectrum.

4.2.1 Parseval frames

Parseval frames are powerful representations to design wavelets with nice reconstruction properties [34, 27].
In this section, we investigate the extent to which Parseval frames can be obtained from some LocLet
representation. We show that for a particular choice of partition IL = tkIk, there exist frames which are
Parseval frames and composed only of LocLets functions.
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A finite collection (ψj)j=0,...,J is a finite partition of unity on the compact [0, λ1] if

ψj : [0, λ1]→ [0, 1] for all j ≤ J and ∀λ ∈ [0, λ1],
J∑
j=0

ψj(λ) = 1. (11)

Given a finite partition of unity (ψj)j=0,...,J , the Parseval identity implies that the following set of vectors
is a tight frame:

F =
{√

ψj(L)δi, j = 0, . . . , J, i ∈ V
}
.

Some constructions of partition of unity involve functions (ψj)j that have almost pairwise disjoint supports
i.e. supp(ψj) ∩ supp(ψj′) = ∅ as soon as |j − j′| > 1. For such partition of unity, set I0 = supp(ψ0),
IJ = I0 = supp(ψJ) and Ij = supp(ψj) ∩ supp(ψj+1) for all 1 ≤ j ≤ J − 1. Then, the sequence (Ij)0≤j≤J
defines a finite partition of [0, λ1], [0, λ1] = t0≤j≤JIj , such that:

ψ01I0 = 1I0 , (ψj + ψj+1)1Ij = 1Ij , 0 < j < J, and ψJ1IJ = 1IJ . (12)

An alternative tight frame can be constructed using a LocLet representation as shown in the following
proposition.

Proposition 12. Assume Equations (11) and (12) hold and set, for all 1 ≤ k ≤ J , ϕn,k =
√
ψ0(LIk)δn,

ψ1,n,k =
√
ψk(LIk)δn and ψ2,n,k =

√
ψk(LIk+1

)δn for all 1 ≤ k ≤ J . Then (ϕn,k, ψj,n,k)1≤j≤2, 1≤m≤n, 1≤k≤J
is a tight frame.

The resulting tight frame of Proposition 12 is actually frame of LocLets if additionally the functions ψj
is of the form ψj = ψ1(sj .) for some scale parameter sj , 1 ≤ j ≤ J . This is typically the case for the frames
introduced in [34, 27]. In these papers, the partition of unity is defined as follows: let ω : R+ → [0, 1] be
some function with support in [0, 1], satisfying ω ≡ 1 on [0, b−1] and set ψ0(·) = ω(·) and for j = 1, . . . , J

ψj(·) = ω(b−j ·)− ω(b−j+1·) with J =

⌊
log λ1

log b

⌋
+ 2.

In particular, the functions ψk have supports in intervals Jk = [bk−2, bk]. Thus, one may define disjoint
intervals (Ik)k as follows: Ik = [bk−1, bk]. We have Jk = Ik ∪ Ik+1, so that Equations (12) hold whereas
the scaling property ψj = ψ1(b−1.) is straightforward. By Proposition 12, the set of vectors{√

ψ0(LIk)δn,
√
ψ1(skLIk)δn,

√
ψ1(skLIk+1

)δn, n, k
}

is a tight frame of LocLets. Observe that the transform (WIk)Ikeach component WIk of the LocLet
transform (WIk)Ik only admit two scale parameters sk, sk−1.

4.2.2 Spectrum-adapted tight frames

Let us consider another family of tight frames tailored to the distribution of the Laplacian L eigenvalues
proposed in [51]. As shown below, these frames can be written in terms of a warped version of LocLets, and
up to some approximation, in terms of (non-warped) LocLets. First, let us briefly recall the construction
from [51].

The notion of warped SGWT is introduced in [51] to adapt the kernel to the spectral distribution.
Given a warping function ω : IL → R, the warped SGWT is defined as:

Wωf = (ϕ(ω(L))fT , ψ(s1ω(L))fT , . . . , ψ(sJω(L))fT )T .

As for our spectral localization, the objective of warping is to take benefits from the distribution of sp(L)
along interval IL. While the two techniques show similarities (e.g. estimation of sp(L) distribution), they
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are meant to answer different problems: warped SGWT is a technique to adapt the whole spectrum to
some task (e.g. producing a tight frame), whereas localized SGWT is designed to answer problems related
to localized subsets in the spectrum (e.g. denoising a frequency sparse signal). Here we show that the
advantages of both LocLets and warped SGWT are obtained when the two methods are combined in a
warped LocLet representation.

Let ω be some warping function on IL chosen in the form ω(·) = log(Cω0(·)) where ω0 stands for
the cumulative spectral distribution of L and C is some normalization constant as shown in [51]. Then,
let γ > 0 be an upper bound on sp(L) and let R, J be two integers such that 2 ≤ R ≤ J . Setting
ωγ,J,R = γ

J+1+R , Corollary 2 in [51] asserts that the family (gm,j)m,j of functions defined below is a tight
frame

gm,j =
∑
`

ĝj(λ`)δ̂m(`)χ`, (13)

where functions ĝj arise from some kernel ĝ as

ĝj(λ) = ĝ(ω(λ)− jωγ,J,R) = ĝ

(
log

Cω(λ)

ejωγ,J,R

)
.

Typically in [51], the kernel ĝ takes the form

ĝ(λ) =

 ∑
0≤j≤J

aj cos

(
2πj cos

(
λ

Rωγ,J,R
+

1

2

)) 1[−Rωγ,J,R,0](λ).

for some sequence (aj)j satisfying
∑

j(−1)jaj = 0.

The following proposition states that Equation (13) admits an alternative form involving only (warped)
LocLets functions.

Proposition 13. Setting ψ(λ) = ĝ(log(Cλ)) for λ > 0, consider the family of warped LocLets defined for
all 0 ≤ k ≤ R− 1, 1 ≤ m ≤ n and 1 ≤ j ≤ J by

ψj,m,Ik =
∑
`∈Ik

ψ(sjω0(λ`))δ̂m(`)χ` with Ik =

[
e(k−R)ωγ,J,R

C
,
e(k−R+1)ωγ,J,R

C

]
.

Then, the following identity holds for all j = 1, . . . , J and all m = 1, . . . , n

gm,j =
∑

1≤k≤R−1

ψj,m,Ik .

5 Experiments on suites of large matrices

This section details experiments made on large graphs to validate the Fourier localization techniques
introduced in that paper. After describing the experimental settings, we describe the outcomes of several
experiments showing strong advantages in the use of Fourier localization in practice.

5.1 Choice of spectral partition IL = tkIk
In order to keep the problem combinatorially tractable, it is necessary to reduce the choice of possible
partitions of IL into subintervals Ik. That is why, the partitions considered in the sequel are regular in the
sense that all intervals have the same length λ1/K for some integer K ≥ 1. Thereafter, the parameter K
is chosen so that the eigenvalues are distributed as evenly as possible in each interval Ik. Without prior
information, it is indeed natural not to favor one part of the spectrum over another. Most importantly,
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Figure 1: Variations of EN (K) and MREN (K) with parameter K.

in the view of the concentration property of the median around the noise level σ2 of Proposition 5, it is
essential to keep the parameter β as close to one as possible.

In order to implement the ideas above, it is necessary to estimate the spectral measure of L which
can be described by the so-called spectral density function:

ϕL(λ) =
1

n

n∑
`=1

δ(λ− λ`) for all λ ∈ IL.

There are several techniques for such an approximation among which the Kernel Polynomial Method
(see, e.g. [52, 61]). The latter approximates the spectral density ϕL with the help of matrix Chebyshev
expansion (ϕNL )N (see [35] for a detailed presentation).

Now, let (Ik)1≤k≤K be some regular partition of IL and (nk)1≤k≤K be the corresponding numbers of
eigenvalues in each Ik. Choosing the parameter K ≥ 1 so that the entropy defined by

E(K) = −
∑

1≤k≤K

nk
n

log
(nk
n

)
is maximal ensures that the eigenvalues are as equally distributed in each interval as possible. In applica-
tion, the Kernel Polynomial Method provides an approximation nNk of nk and the corresponding empirical
entropy EN (K) is used as a proxy for the theoretical one.

Empirically, the entropy increases logarithmically and then stabilizes from a certain elbow value Kelbow

as illustrated in Figure 1. This elbow value is displayed in dashed lines in Figure 1. In the experiments,
we choose this value Kelbow motivated by two reasons. First, as the intervals become shorter it is more
difficult to obtain a uniform distribution of the eigenvalues into those intervals. The second reason is
related to the quality of the estimate nNk of nk as the sample size decreases. To illustrate this fact, we
consider the Mean Relative Error (MRE) defined by

MREN (K) =

∑
1≤k≤K |nk − nNk |

n
.

As highlighted by Figure 1, the empirical entropy actually stabilizes when the Chebyshev approximation,
in terms of MRE, is no longer sharp enough.

5.2 The experimental settings

Following [22], we propose to validate our techniques on an extended suite of large matrices extracted
from the Sparse Matrix Collection in [16]. Most of these matrices have an interpretation as the Laplacian
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matrix of a large graph. We define matrix L from the following matrices of the suite:si2 (n = 769),
minnesota (n = 2642), cage9 (n = 3534), saylr4 (n = 3564) and net25 (n = 9520). We extend this graph
collection with the well-studied swissroll graph Laplacian matrix (n = 1000).

We sample randomly signals whose supports are sparse in the Fourier domain. We will use the
notation fi−j for normalized signals supported on a sub-interval of IL containing exactly the eigenvalues
λi, λi+1, . . . , λj . As an example, fn−n is a constant signal while f1−2 is a highly non-smooth signal
supported on the eigenspaces of large eigenvalues λ1, λ2. For experiments, the signals were calculated
from the knowledge of sp(L), and relevant projections of random functions on the graph.

We have compared the performances of Algorithms 2 and 3 against the thresholding procedure de-
scribed in [27]. As the denoising method in [27] requires the computation of the whole spectral decompo-
sition of the Laplacian, it does not scale to large graphs. We stress here that we provide a fair comparison
with [27], only in terms of denoising performance, and with no computational considerations. Moreover,
we choose for LocLets to use the most naive thresholding procedure by considering a global and scale
independent threshold level.

For all the experiments below, the SGWT and LocLets are built upon the scale and kernel functions
giving rise to the Parseval frame of [27], whose construction is recalled in Section 4.2.1. More precisely,
set respectively ϕ =

√
ζ0 and ψ =

√
ζ1 for the scale and kernel functions with ζ0(x) = ω(x), and

ζ1(x) = ω(b−1x) − ω(x), where we choose b = 2 and ω is piecewise linear, vanishes on [1,∞) and is
constant equal to one on (−∞, b]. The scales are of the form sj = b−j+1 for j = 1, . . . , J where J is chosen
similarly to [27].

In what follows, ‘PF’ stands for Parseval Frame and refers to the estimator of [27]; the estimators
implemented by Algorithm 2 and Algorithm 3 are referred to as ‘LLet’ and ‘LLet+PF’ respectively. The
notation ‘SNRin’ refers to the trivial model releasing the noisy signal f̃ , corresponding to the classical
input noise level measurement, and serves as a worst-case baseline for other models. Below, the latter
methodology is shown to outperform all the others for very frequency-sparse signals. It is also worth
recalling that ‘LLet+PF’ benefits from the dimension reduction property of LocLets. More precisely,
whereas the whole eigendecomposition of L is required to apply ‘PF’, for Parseval frame denoising in the
context of ‘LLet+PF’, only a low-rank spectral decomposition is needed, namely the decomposition of LI
for I the estimate of suppf̂ .

For all our experiments, we set α = 0.001 for Algorithm 1. For the denoising experiment, we compute
the best SNR result rD over a large grid of values (t1, t2), and for each denoising method D with D ∈
{‘SNRin’,‘PF’,‘LLet’,‘LLet+PF’}. Then, we calculate two metrics: the maximum MD and average value
µD of the values rD over 10 random perturbations of the signal f . We recall that a good quality in
denoising is reflected by a large value of the SNR metric.

5.3 Analysis of our experiments

5.3.1 Noise level estimation

We have evaluated the performances of estimators σ̂rmean and σ̂med in the estimation of the unknown
noise level σ from 10 realizations of the noisy signal f̃ = f + ξ for a given noise level σ. Figure 2 (resp.
Figure 3 ) shows the best performances of each estimator on the minnesota (resp. net25 ) graph for the
non-regular but frequency sparse signal f1392−1343 (resp. f = f4971−5020), when parameter K ranges in
{5, 10, 20, 30, 40, 50} and for level of noise σ = 0.01 (resp. σ = 0.001).

Figure 2 illustrates that both estimators σ̂rmean and σ̂med can provide good estimates of σ. Best
performances are obtained for values of parameter K below the elbow value Kelbow(minnesota) = 22
introduced in Section 5.1. We observe that performances drop considerably if almost no localization is
used (for instance, for parameter values K = 1 or K = 2, σ̂ ∼ 0.021 in the experiment of Figure 2, far
from the performances for K ≥ 5 for estimating σ = 0.01).

Figure 3 shows that localization is necessary, namely K ≥ 10 or even K ≥ 20, in order to reach the best
performances for the large net25 graph. Contrary to experiments for the minnesota graph, estimators
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Figure 2: Performances of estimators σ̂mean (left) and σ̂med (right) for minnesota graph, signal f1392−1343

and σ = 0.01.
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Figure 3: Performances of estimators σ̂rmean (left) and σ̂rmed (right) for net25 graph, signal f4971−5020 and
σ = 0.001.

σ̂rmean and σ̂med underestimate the value of σ. Also, best values of K range between 10 and 30 for net25
graph, compared to best values K = 5 and K = 10 for minnesota graph (see Figure 2). This illustrates the
idea that noise level estimation strongly depends on the underlying graph structure. As a consequence, a
parameter K selection has to take graph and signal information into account to be relevant. Interestingly,
the elbow values Kelbow(minnesota) = 22 and Kelbow(net25) = 22 provide performances which are not
optimal, but close to the best possible ones.

In Figure 4, performances for various values of parameter r are displayed for a fixed parameter K =
Kelbow(minnesota). While it is true that σ̂rmean can perform better than σ̂rmed, it happens only for very
specific values of r, which a priori depend on the signal regularity. Without any further parameter
selection, these observations suggest using the most robust estimator σ̂med in practice.

5.3.2 Sparse signal denoising

As a first denoising experiment, we have compared the performances of ‘LLet’, ‘PF’ and ‘LLet+PF’ for
a fixed value K = Kelbow given by the rule of thumb described in Section 5.1. For each matrix in the
Extended Matrices Suite, we have experimented the denoising task on two frequency-sparse signals, one
regular and the other non-regular. Several values of noise level σ were used, corresponding to values of
SNRin ranging in [4, 18]. Results from experiments are displayed in Tables 5.3.2 and 2. The first obvious
observation is that ‘LLet+PF’ performs better than its competitors in almost all situations. The gain is
sometimes considerable since we observed a gap of 5dB in µD-metric between ‘LLet+PF’ and its closest
concurrent ‘PF’ in some cases, and up to 7dB in MD-metric. These experiments confirm the theoretical
guarantees obtained in Theorem 11. The benefits of localization are reduced for graph net25 : Table 2
shows that the more conservative choice K = 5 is better than K = 25. It appears that for net25, the
spectrum sp(L) is localized at a small number of distinct eigenvalues, hence diminishing the advantages
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Figure 4: Dependence on parameter r for minnesota graph, signal f1392−1343, K = 22 and σ = 0.1 (left),
σ = 0.01 (right).

of localizing with our methods.

Table 1: SNR performance for Swissroll (n = 1000, K = 22).

signal σ SNRin MPF MLLet MLLet+PF µPF µLLet µLLet+PF

f951−1000 0.005 16.195 17.557 20.580 20.528 17.361 20.035 19.974
f501−550 0.005 15.859 18.298 8.244 20.821 18.044 8.140 20.245
f951−1000 0.01 10.267 12.183 15.564 15.701 10.433 13.652 13.760
f501−550 0.01 10.178 13.121 7.879 16.204 11.165 7.646 14.518
f951−1000 0.015 6.763 9.430 12.661 13.129 8.961 12.127 12.388
f501−550 0.015 6.362 9.898 7.611 14.159 9.540 7.481 13.398

Another interesting observation is that ‘LLet’ may outperform ‘PF’ in some specific signal and noise
level configurations, as shown in Table 5.3.2. This is a very favorable result for localized Fourier analysis,
since ‘LLet’ appears to be a technique which is more accurate and more efficient as well compared to ‘PF’
in some situations. However in many cases, ‘LLet’ performances drop down compared to the more stable
thresholding techniques ‘PF’ and ‘LLet+PF’, which use thresholds adapted to the wavelet basis.

We also provide experimental results to understand the extent to which our results depend on the
partition size parameter K. A few remarks are suggested by Figure 5:

• The best performances are not obtained for the elbow value Kelbow, suggesting searching for a more
task-adapted size of partition K.

• Good performances persist for values of K much larger than Kelbow, and in particular for regular
signals.

• For large values of K, there is a severe drop in performances. As explained before, the error
generated by Chebyshev’s approximation grows with the number of intervals in the partition, which
makes the approximation of the support more difficult.

6 Conclusion and future works

We have introduced a novel technique to efficiently perform graph Fourier analysis. This technique uses
functional calculus to perform Fourier analysis on different subsets of the graph Laplacian spectrum. In
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Table 2: SNR performances for denoising task.

matrix signal σ SNRin MPF MLLet+PF µPF µLLet+PF

Si2 f720−769 0.005 17.104 22.344 26.973 21.849 25.170
(n = 762, K = 22) f370−419 0.005 16.820 18.034 21.778 17.813 20.673

f720−769 0.01 11.408 16.821 22.501 16.572 20.558
f370−419 0.01 11.175 12.444 19.740 12.151 17.121
f720−769 0.02 4.826 11.476 15.695 11.104 14.711
f370−419 0.02 5.047 7.354 13.542 6.925 12.677

Minnesota f2593−2642 0.004 13.599 17.839 20.717 17.672 20.035
(n = 2642, K = 22) f1343−1392 0.004 13.741 15.999 20.388 15.822 19.234

f2593−2642 0.005 11.681 16.086 19.342 15.830 18.417
f1343−1392 0.005 11.916 14.459 18.392 14.298 18.029
f2593−2642 0.01 5.911 10.875 14.143 10.605 13.556
f1343−1392 0.01 5.843 9.660 11.762 9.409 10.952

Cage9 f3485−3534 0.003 15.016 20.477 9.700 20.216 9.664
(n = 3534, K = 22) f1785−1834 0.003 15.014 15.876 16.945 15.798 16.799

f3485−3534 0.005 10.503 17.290 18.410 16.772 18.185
f1785−1834 0.005 10.507 12.118 13.032 12.035 12.898
f3485−3534 0.009 5.423 13.002 13.264 12.763 12.898
f1785−1834 0.009 5.395 8.329 10.468 8.168 9.827

Saylr4 f3515−3564 0.003 14.871 23.108 24.516 23.040 24.117
(n = 3564, K = 22) f2015−2064 0.003 15.069 21.365 23.903 21.010 23.412

f3515−3564 0.005 10.478 19.135 20.966 18.943 20.268
f2015−2064 0.005 10.635 17.016 19.610 16.662 18.732
f3515−3564 0.009 5.420 15.277 17.070 14.791 16.567
f2015−2064 0.009 5.480 12.055 14.802 11.830 14.031

Net25 f9471−9520 0.006 4.682 5.171 5.319 5.094 5.205
(n = 9520, K = 5) f4971−5020 0.006 4.577 5.811 6.035 5.714 5.933

f9471−9520 0.007 3.282 5.287 5.416 5.127 5.251
f4971−5020 0.007 3.406 5.267 5.451 5.104 5.266
f9471−9520 0.008 2.208 5.171 5.268 4.928 5.034
f4971−5020 0.008 2.153 4.450 4.594 4.319 4.471

Net25 f9471−9520 0.006 4.495 5.319 6.004 5.190 5.834
(n = 9520, K = 25) f4971−5020 0.006 4.574 5.849 4.752 5.714 4.579

f9471−9520 0.007 3.307 5.264 5.765 4.951 5.447
f4971−5020 0.007 3.256 5.132 4.182 5.014 4.102
f9471−9520 0.008 2.111 4.913 5.249 4.756 5.128
f4971−5020 0.008 2.150 4.345 3.670 4.251 3.554
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Figure 5: SNR performance depending on parameter K for minnesota graph, σ = 0.01, a regular signal
f2593−2642 (left) and a non-regular signal f1343−1392 (right), over 10 realizations of noise.

this paper, we have demonstrated that localization in the spectrum provides interesting improvements in
theoretical results for some graph signal analysis tasks. New estimators of the noise level were introduced,
taking advantage of the convenient modelling of the denoising problem given by localization, and for which
concentration results were proved. Localization allows also to study theoretically the denoising procedure
with wavelets, and fits with the design of many well-known techniques (e.g. tight frames for graph
analysis). Through many experiments, we have validated that localization techniques introduced in this
paper improve on state-of-the-art methods for several standard tasks.

Although we provide a rule of thumb to choose a partition IL = t1≤k≤KIk for which denoising results
show good performances, experiments suggest that our elbow rule is not optimal in most cases. There
is certainly an interesting topic in searching for a suitable partition IL = t1≤k≤KIk that would be more
adapted to a specific task (e.g. denoising). To extend the current work, it would also be interesting to
consider other common tasks in GSP, such as de-convolution or in-painting.

7 Proofs

Proof of Proposition 4. 1. We have f̃k = fk+ξk, where ξk =
∑

`:λ`∈Ik ξ̂(`)χ`. Random variables (ξ̂(`))`
are all distributed asN (0, σ2) and independent by orthogonality of the eigenbasis (χ`)`. In particular
for k 6= k′, vectors ξk and ξk′ are independent as expressions involving variables ξ̂(`) over disjoint
subsets Ik and Ik′ . Thus the random variables (ck)1≤k≤K are also independent.

2. When nk = nk′ , ξk and ξk′ are identically distributed and the result follows from Equality (6).

When nk 6= nk′ , we have E(ck) 6= E(ck′) as the following equality holds for all 1 ≤ k ≤ K:

E(ck) =
‖fk‖22
nk

+ σ2.

3. Since (ξ̂(`))` are independent normal variables N (0, σ2), the statement is clear from the expression
ck = 1

nk

∑
`:λ`∈Ik |ξ̂(`)|

2.

The following lemma is useful for the proof of Proposition 5.

Lemma 14. Let Z ∼ B(n, p) for some parameters n ≥ 1 and p ≤ 1/2. Then

P(Z ≥ dn/2e) ≤ exp
(n

2
ln(4p(1− p))

)
.
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Proof. A simple consequence of [10, Theorem 1] implies that for all n ≥ 1 and all a ≥ p

P(Z ≥ na) ≤
[

(1− p)1−a

1− a

(
1− a
a

p

)a]n
.

Now the result follows since na = dn/2e implies 1
2 ≤ a ≤

1
2 + 1

n so that

(1− p)1−a

1− a

(
1− a
a

p

)a
≤ (1− a)a−1

aa

√
p(1− p) ≤

√
4p(1− p).

Proof of Proposition 5. 1. For k such that Ik ⊂ If , we have ck = σ2

nk
Γnk , which follows the Γ(nk2 ,

2σ2

nk
)

distribution. Then concentration inequalities for σ̂mean(c)2 are a direct consequence of Theorem

2.57 in [4], applied with ak = nk
2 and bk = 2σ2

nk
.

2. For all k = 1, . . . ,Kf , we define

γ−k = Φ−1
Γn0
◦ ΦΓnk

(nk
σ2
ck

)
and γ+

k = Φ−1
Γn∞
◦ ΦΓnk

(nk
σ2
ck

)
.

As a matter of fact, (γ−)k=1,...,Kf and (γ+
k )k=1,...,Kf are two sequences of i.i.d. random variables

with γ−1 ∼ χ2(n0) and γ+
1 ∼ χ2(n∞) such that

∀k = 1, . . . ,Kf , γ−k ≤
nk
σ2
ck ≤ γ+

k almost surely.

Then, for all t > 0,

P
(
σ̂2

med ≥ β−1σ2 + 2σ2β−1t
)

= P

Kf∑
k=1

1{ck≥β−1σ2+2σ2β−1t} ≥
⌈
Kf

2

⌉
≤ P

Kf∑
k=1

1{γ+k ≥n∞+2n∞t} ≥
⌈
Kf

2

⌉ . (14)

Similarly, for all t ∈ (0, 1),

P
(
σ̂2

med ≤ βσ2 − σ2βt
)
≤ P

Kf∑
k=1

1{γ−k ≤n0−n0t} ≥
⌈
Kf

2

⌉ . (15)

To conclude, apply Lemma 14 to Inequalities (14) and (15) to obtain our result.

Proof of Proposition 6. The concentration bound of Equation (8) implies that

P(bk ≥ b`) = P(nkbk ≥ nkb`) = P
(
σ−2

(
nk
n`
‖ξ`‖22 − ‖ξk‖22

)
≤ σ−2

(
‖fk‖22 + 2〈fk, ξk〉

))
≥ α

2
+ P

(
σ−2

(
nk
n`
‖ξ`‖22 − ‖ξk‖22

)
≤ σ−2

(
‖fk‖22 + 2tα,σ‖fk‖2

))
.

Since subsets Ik and I` are disjoint, random variables ‖ξk‖22 and ‖ξ`‖22 are independent. Thus, nk
n`
‖ξ`‖22 −

‖ξk‖22 is distributed as nk
n`

Γn`−Γnk where Γnk and Γn` are independent random variables with Γnk ∼ χ2(nk)

and Γn` ∼ χ2(n`). Therefore, the statement of Proposition 6 follows.
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Proof of Proposition 7. First, the following equalities hold:

f − f̃ = f − f̃I + f̃I − f̃ = (f − f̃)I + f̃I .

As (f − f̃)I and f̃I are orthogonal vectors, it follows that∥∥∥f − f̃∥∥∥2

2
=
∥∥∥f − f̃I∥∥∥2

2
+
∥∥∥f̃I∥∥∥2

2
.

It remains to notice that E(||f̃I ||2) = σ2|I ∩ sp(L)|.

Proof of Lemma 8. By Equation (6) and the concentration bound of Equation (8), it follows that

pk = P(σ2Γnk > ‖ξk‖
2
2 + ‖fk‖22 + 2〈fk, ξk〉)

≤ α

2
+ P

(
σ2Γnk > ‖ξk‖

2
2 + ‖fk‖22 − 2‖fk‖2tα/2,σ

)
=
α

2
+ P

(
σ2(Γnk − Γ′nk) > ‖fk‖22 − 2‖fk‖2tα/2,σ

)
=
α

2
+ 1− ΦΓnk−Γ′nk

(θ(fk, α, σ)),

where θ(fk, α, σ) = σ−2(‖fk‖2 − 2tα/2,σ)‖fk‖2. Consequently, 1 − ΦΓnk−Γ′nk
(θ(fk, α, σ)) ≤ α/2 and pk ≤

α.

Proof of Lemma 9. Using an estimate on the χ2(nk) tail distribution and independence of Γnk and Γ′nk =
σ−2‖ξk‖22, it follows

pk ≥ P
(
σ2Γnk > ‖ξk‖

2
2 + ‖fk‖22 + 2〈ξk, fk〉, ‖ξk‖22 ≤ tβ,k

)
≥ P

(
σ2Γnk > ‖ξk‖

2
2 + ‖fk‖22 + 2‖ξk‖2‖fk‖2, ‖ξk‖22 ≤ tβ,k

)
= P

(
σ2Γnk > (‖fk‖2 +

√
tβ,k)

2, ‖ξk‖22 ≤ tβ,k
)

= P
(
σ2Γnk > (‖fk‖2 +

√
tβ,k)

2, σ2Γ′nk ≤ tβ,k
)

≥ P
(
σ2Γnk > (‖fk‖2 +

√
tβ,k)

2
)

(1− β)

≥ α

1− β
× (1− β) = α.

Proof of Proposition 10. 1. To prove Inequality (9), first observe that f =
∑

k:Ik⊂If fk so that

f − fI =
∑

k:Ik⊂If

fk −
∑

k:pk≤α
fk.

The summands which are not present in both terms are exactly those satisfying either Ik ⊂ If and
pk > α or Ik ∩ If = ∅ and pk ≤ α. Noting that fk = 0 when Ik ∩ If = ∅, it comes

‖f − fI‖22 =
∑

k:Ik⊂If ,pk>α
‖fk‖22.

Applying Lemma 8 for all indices 1 ≤ k ≤ K satisfying pk > α, one deduce

‖fk‖2 < tα/2,σ +

√
t2α/2,σ +

(
σΦ−1

Γnk−Γ′nk
(1− α

2
)
)2
.

from which, since nk = n1 for all k, Inequality (9) follows.
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2. Since σ−2||ξk||22 is distributed as a χ2(n1) random variable, the second Inequality (10) follows

E‖fI − f̃I‖22 =
∑

k:pk≤α
E‖ξk‖22 = |{k, pk ≤ α}|n1σ

2.

Proof of Theorem 11. Since threshold value is t2 = 0 on I, f̂ = f̂I . Then, clearly fI(fI − f̂I) = 0 almost
surely so that

E‖f − f̂‖22 = E‖f − f̂I‖22 = E‖f − fI + fI − f̂I‖22 = E‖f − fI‖22 + ‖fI − f̂I‖22.

Applying Theorem 3 from [27] to E‖fI − f̂I‖22 yields our statement.

Proof of Proposition 12. Recalling that, for any function g defined on sp(L) and any subset I ⊂ IL,∑
n

|〈√g(LI)δn, f〉|2 = ‖√g(LI)f‖22 = 〈g(LI)f, f〉

it follows by Equations (11) and (12).∑
n,k

|〈ϕn,k, f〉|2 + |〈ψ1,n,k, f〉|2 + |〈ψ2,n,k, f〉|2

=
∑
k

〈ψ0(LIk)f, f〉+ 〈ψk(LIk)f, f〉+ 〈ψk(LIk+1
)f, f〉

= 〈ψ0(L)f, f〉+
∑
k

〈ψk(L)f, f〉 = ‖f‖22

Proof of Proposition 13. Remarking that ĝj(λ) = ψ(sjω0(λ)) with sj = e−jωγ,J,R , Equation (13) implies
that

gm,j =
∑
l

ψ(sjω0(λl))δ̂m(l)χl. (16)

Setting Jj = [C−1e(j−R)ωγ,J,R , C−1ejωγ,J,R ] and recalling that supp(ĝ) = [−Rωγ,J,R, 0], it follows that
λ ∈ supp(ĝj) if and only if ω0(λ) ∈ Jj if and only if sjω0(λ) ∈ J0. Moreover, J0 = tkIk and Jj = s−1

j J0

yield Jj = tks−1
j Ik with s−1

j Ik ∩ s−1
j′ Ik′ excepted when j = j′ ad k = k′. Consequently, Equation (16) can

be reformulated as
gm,j =

∑
1≤k≤R−1

∑
`∈Ik

ψ(sjω0(λ`))δ̂m(`)χ`.
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on graphs: Sampling theory. IEEE transactions on signal processing, 63(24):6510–6523, 2015.

[9] Xiao-yun Chen and Yan-yan Zhan. Multi-scale anomaly detection algorithm based on infrequent
pattern of time series. Journal of Computational and Applied Mathematics, 214(1):227–237, 2008.

[10] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. Ann. Math. Statistics, 23:493–507, 1952.

[11] Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92. American Mathematical
Soc., 1997.
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[27] Franziska Göbel, Gilles Blanchard, and Ulrike von Luxburg. Construction of tight frames on graphs
and application to denoising. In Handbook of Big Data Analytics, pages 503–522. Springer, 2018.

[28] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral
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