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LocLets: Localized Graph Wavelets for Processing Frequency

Sparse Signals on Graphs

Basile de Loynes∗, Fabien Navarro†, Baptiste Oliver‡

June 18, 2019

Abstract

In this article, a new family of graph wavelets, abbreviated LocLets for Localized graph
waveLets, is introduced. These wavelets are localized in the Fourier domain on subsets
of the graph Laplacian spectrum. LocLets are built upon the Spectral Graph Wavelet
Transform (SGWT) and adapt better to signals that are sparse in the Fourier domain than
standard SGWT. In fact, as a refinement of SGWT, LocLets benefits from the Chebyshev’s
machinery to ensure the LocLets transform remains an efficient and scalable tool for signal
processing on large graphs. In addition, LocLets exploits signals sparsity in various ways:
compactness, efficiency and ease of use of the transform are improved for sparse signals in
the Fourier domain. As typical examples of such sparse signals, there are smooth and highly
non-smooth signals. For these latter signals, their mixtures or even a wider class of signals,
it is shown in this paper that LocLets provide substantial improvements in standard noise
reduction tasks compared to advanced graph-wavelet based methods.

Keywords: Graph Signal Processing; Spectral Graph Theory; Wavelet; Chebyshev Ap-
proximations; Graph Fourier Transform; Frame; Denoising.

1 Introduction

Graph Signal Processing (GSP) aims to generalize the standard framework of signal analysis
to signals defined on graphs by combining the theoretical concepts of algebraic and spectral
graphs with harmonic analysis (see for instance [4, 1] and references therein). Such an extension
becomes necessary to process structured data. We refer the reader to [16] for an introduction
to this emerging field and to [14] for an overview of recent developments, challenges and ap-
plications. In general, two types of problems can be distinguished according to whether the
underlying graph is known or unknown. The first case corresponds to the set up of a sampled
signal at certain irregularly spaced points (intersections of a transportation network, nodes in
a computer network, . . . ). In the second case, a graph is constructed from the data itself,
it is generally interpreted as a noisy realization of one or several distributions supported by
a submanifold of the Euclidean space. In this latter context, the theoretical submanifold is
somehow approximated using standard methods such as k-NN, ε-graph and their Gaussian
weighted versions. In any of these cases, the framework is actually similar: it consists of a
graph (given by the application or by the data) and signals are real valued functions defined
on the vertices of the graph.
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Related Work

Basically, to any frame corresponds a signal analysis theory (see [2, 3] or [13, Chapter 5], for
example). Therefore, the main challenge of signal analysis consists in finding an appropriate
frame for the problem of interest. For instance, the spectral decomposition of the graph Lapla-
cian gives rise to an orthonormal basis called the Fourier basis by analogy with the standard
case. If this frame is well localized in the frequency by definition, it is no longer verified in
the graph domain. This phenomenon is illustrated by the fact that the eigenvectors corre-
sponding to the upper part of Laplacian spectrum tend to be more oscillating than those from
the bottom of the spectrum (see for example [19, Fig. 1.6, p. 28] for an illustration). To
overcome this problem, [11] developed a fairly general construction of a frame enjoying the
usual properties of standard wavelets: each vector of the frame is localized both in the graph
domain and the spectral domain. The transform associated with this frame is named Spectral
Graph Wavelet Transform (SGWT), its precise definition is recalled in Section 2. Other choices
were also suggested (we refer to [5, 12, 18, 10]). Among them authors of [12, 10] ensure the
wavelet transform is orthogonal. This property implies in particular that the inverse transform
is simply the adjoint of the direct transform.

Contribution

With the notion of graph Laplacian comes a notion of regularity of a signal f ∈ RV . Intu-
itively, a smooth signal will not vary much between two vertices that are close in the graph.
This regularity property can be read in the Fourier domain: a very smooth signal will be cor-
rectly represented in the Fourier domain with a small number of eigenvectors associated with
the lowest spectral values; on the contrary, non-smooth signals (i.e. highly oscillating) are
represented with eigenvectors corresponding to the upper part of the spectrum. Both types of
signal are said frequency sparse (see Section 3 for the precise definition).

Basically, LocLets, defined in Section 2, aims to take advantage of this prior information on
the signal. More precisely, LocLets provides a richer collection of wavelets by applying SGWT
not to the original Laplacian but to its projections on several pairwise orthogonal eigenspaces.
Thus, it is expected to obtain sparser wavelet representation when the signal is localized in
the Fourier domain, which reveals a specific regularity. It should be noted that, in some
areas of application, signal regularity can be a reasonable assumption: for example, physical
measurements are often diffusive, some features are naturally homogeneous inside communities
of social networks. . . Intuitively, LocLets induce frames that are better suited to these sparse
frequency signal subclasses.

Experimental results1 are gathered in Section 5. First, a toy example (a small weighted
graph of size n = 10 is generated) is considered and the performance of LocLets is compared
with the denoising procedure introduced in [10]. As a second test, the well-known “Swiss
roll” data set (with n = 1000 points) is considered. Again, our procedure shows fairly better
performance than the one in [10].

2 Localized Wavelet Transforms

The main idea behind LocLets is to apply SGWT not to the signal itself, but separately to
each element of the signal decomposition with respect to some pairwise orthogonal eigenspaces
of the graph Laplacian.

1Source code available at https://bitbucket.org/batistbucket/loclets/src/master/

https://bitbucket.org/batistbucket/loclets/src/master/
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2.1 Fast Spectral Graph Wavelet Transform

Let G be an undirected weighted graph, with set of vertices V , and weights (wij)i,j∈V with the
property wij = wji for i, j ∈ V . The size of the graph is the number of nodes n = |V |. The
(unnormalized) graph Laplacian matrix L ∈ RV×V associated with G is the symmetric matrix
defined as L = D −W , where W is the matrix of weights with coefficients (wij)i,j∈V , and D
the diagonal matrix with diagonal coefficients Dii =

∑
j∈V wij . A signal f on the graph G is

a function f : V → R.
Let F = {ri}i∈I be a frame of vectors of RV , that is a family of vectors in RV such that

there exist A,B > 0 such that for all f ∈ RV

A‖f‖22 ≤
∑
i∈I
|〈f, ri〉|2 ≤ B‖f‖22. (1)

The linear map TF : RV → RI defined for f ∈ RV by TFf = (〈f, ri〉)i∈I is called the analysis
operator. The synthesis operator is the adjoint of TF, it is the linear map T ∗F : RI → RV
defined for a vector of coefficients (ci)i∈I by T ∗F (ci)i∈I =

∑
i∈I ciri. As a frame is in particular

a generating family of RV , a signal f ∈ RV can be recovered from its coefficients TFf with the
help of the synthesis operator.

2.1.1 Spectral Information of Lnd Functional Calculus

Let us recall some useful definitions and facts related to the functional calculus applied to
symmetric matrix L. Recall that L has a spectral decomposition

L =
∑
`

λ`〈χ`, ·〉χ`,

where λ1 ≥ λ2 ≥ · · · ≥ λn = 0 denote the (ordered) eigenvalues of matrix L, and (χ`)1≤`≤n
are the associated normalized and pairwise orthogonal eigenvectors. Note that the operator
P` = 〈χ`, ·〉χ` is a projection onto the 1-dimensional subspace generated by the eigenvector χ`.
For any function f : sp(L)→ R defined on the spectrum sp(L) of matrix L, we define

f(L) =
∑
`

f(λ`)〈χ`, ·〉χ` (functional calculus).

For any subset I ⊂ R+, PI(L) stands for the projection onto the subspace generated by (χ`)λ`∈I ,
that is

PI(L) =
∑

`: λ`∈I
〈χ`, ·〉χ`.

In particular, LI = LPI(L) = PI(L)L is essentially the projection of matrix L onto the range
of projections PI(L). It is worth noting that sp(LI) = sp(L) ∩ I.

2.1.2 Discrete SGWT

The authors of [11] have introduced a new form of graph wavelets. Our LocLets are designed
upon the definition of these graph wavelets. Let’s recall the basic definitions related to the
framework in [11]. Let ϕ,ψ : R→ R be the scaling and kernel functions respectively. Fix scales
(sj)1≤j≤J . The discrete SGWT is defined as follows:

Wf = (ϕ(L)fT , ψ(s1L)fT , . . . , ψ(sJL)fT )T .

Such a formula can be decomposed on the following wavelet functions:

ψj,m = ψ(sjL)δm, and φm = ϕ(L)δm,
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for 1 ≤ m ≤ n.

Therefore, the discrete SGWT can be written in terms of the wavelet coefficients of the
form Wf (j,m) = 〈ψj,m, f〉 and coefficients 〈ϕm, f〉. The adjoint matrix W∗ to W is:

W∗(ηT0 , ηT1 , . . .)T = ϕ(L)η0 +
∑
j≥1

ψ(sjL)ηj .

FromW andW∗ a reconstruction formula is obtained by applying (W∗W)−1W∗ to the wavelet
coefficients.

In order to evaluate the quality of the reconstruction (e.g. frame bounds in [11]), the
following function G defined below plays a central role. We will also discuss the role of G in
the LocLets framework.

G(λ) = ϕ(λ)2 +
∑

1≤j≤J
ψ(sjλ)2 for λ ∈ R+.

In fact, [11, Theorem 5.6] asserts that (ϕm, ψj,m)j,m is a frame F whose bounds inequalities
(1)

A = min
λ∈sp(L)

G(λ) and B = max
λ∈sp(L)

G(λ).

2.1.3 Fast Computation of SGWT

An important challenge raised by the definition of SGWT in [11] is the practical calculation
of the transform without considering the whole spectral decomposition of L that is known to
be poorly scalable. Fortunately, the only quantities required are of the form g(L)f , for some
functions g defined on the spectrum sp(L), and a signal f . In [11], g(L)f is approximated with
Ti(L)f , where Ti is a Chebyshev polynomial of the first kind approximating the g function
correctly on the compact set sp(L). The computation of the vectors Ti(L)f only involves i
matrix-vector multiplications possibly exploiting the sparsity of L. This efficient method was
coined fast SGWT.

2.1.4 Reconstruction Formula Using Chebyshev Approximation

In [11], a reconstruction formula is given using pseudo-inverse (W∗W)−1W∗ of W. The recon-
struction of a signal f from its coefficients c is given by (W∗W)−1W∗c. To compute the recon-
structed signal, the authors of [11] propose to solve the square matrix equation W∗Wf =W∗c
using fast gradient descent algorithms. As already noted in [12], an alternative approach in-
volving Chebyshev approximation is also possible. However, in the latter paper, the authors
restrict themselves to the case of Parseval’s frames i.e. A = B = 1 in Equation (1).

First, note that W∗W is a diagonal matrix in the basis (χ`)` of eigenvectors of L. More
precisely, the following proposition holds.

Proposition 1. Let G(λ) = ϕ(λ)2 +
∑

j ψ(sjλ)2. Then

W∗Wf = G(L)f =
∑
`

G(λ`)〈f, χ`〉χ`.

Proof. It is sufficient to verify W∗Wχl = G(λl)χl for all l. Let 1 ≤ l ≤ n. We have

Wχl = (ϕ(λl)χ
T
l , ψ(s1λl)χ

T
l , ...)

T .

From the definition of W∗, it follows W∗Wχl = G(λl)χl.
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In other words, assuming G(λ) > 0 for all λ ∈ sp(L) (or equivalently W∗W is invertible),
we have (W∗W)−1f = (G(L))−1f for any signal f . In particular, the latter quantity can
be approached using Chebyshev approximation, and matrix-vector multiplications of L with
vectors. To go further, we also have a closed formula for the pseudo-inverse:

(W∗W)−1W∗(ηT0 , ηT1 , . . .)T =
ϕ

G
(L)η0 +

∑
j≥1

ψ(sj .)

G
(L)ηj . (2)

Hence, the reconstruction formula can be realized in practice with Chebyshev approximations

of the terms ϕ
G(L)g,

ψ(sj .)
G (L)g for some vectors g.

For Parseval’s frame, G ≡ 1 so that W∗W = Id. In this case, Equation (2) with G ≡ 1 is
nothing but the one obtained for the reconstruction in [12].

2.2 Loclets: Localized Graph Wavelets and LocLets Transform

2.2.1 LocLets: Basic Definitions

In this section, the main object of this article is presented a.k.a. localized graph wavelets
abbreviated as LocLets. First, let us fix some subset I ⊂ R+. Recall that LI stands for the
projected Laplacian PI(L)L. The LocLet discrete transform at I is nothing but the discrete
SGWT, applied to LI in place of L. Its formula and that of its adjoint are given below:

WIf = (ϕ(LI)f
T , ψ(s1LI)f

T , . . .)T and (WI)∗(ηT0 , η
T
1 , . . .)

T = ϕ(LI)η0+
∑
j≥1

ψ(sjLI)ηj .

LocLets functions and coefficients are defined similarly to their SGWT analog, for 1 ≤ j ≤ J ,
and 1 ≤ m ≤ n:

ψj,m,I = ψ(sjLI)δm, ϕm,I = ϕ(LI)δm and WI
f (j,m) = 〈ψj,m,I , f〉.

Now assume that one has a partition of the smallest interval IL ⊂ R+ containing the spectrum
sp(L), in disjoint subsets (Ik)1≤k≤K , that is IL = tkIk. Then the LocLet transform of a signal
f with respect to partition (Ik)1≤k≤K is given by

WLocLetf = (WIkf)1≤k≤K .

There are several motivations for introducing LocLets objects:

• localization in the Fourier domain (i.e. on sp(L)) is closely related to smoothness prop-
erties of the signal f ;

• this transform is more suitable for signals whose support in the Fourier domain is sparse.
For example, smooth signals on the graph have a representation in the Fourier domain
mainly supported in an interval I containing only the smallest eigenvalues of L;

• in the case of large graphs but smooth signal, the dimension of the problem can be
considerably reduced;

• many theoretical results (e.g. frame bounds, errors in Lanczos procedure,. . . ) can be
expressed in terms of functional over the spectrum sp(L), and can be improved by means
of restrictions on sub-intervals I ⊂ IL.

In spite of its apparent similarity to SGWT from [11], we show that LocLets significantly
improve the accuracy over the usual SGWT (and other concurrent techniques) in some standard
tasks handled by graph wavelets.
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2.2.2 Fast Computation of Loclets

Optimization in fast computation of SGWT relies on exploiting matrix-vector multiplications
as much as possible. We fit with this approach to propose a fast computation of LocLets. Our
goal is to approach vectors of the form g(LI)f for some subset I ⊂ IL and some function g.
Indeed, we observe that we have

g(LI)f = g(L)fI where fI = PI(L)f.

We therefore propose to first calculate fI , then to chain with the machinery of [11]. It is crucial
to consider functional calculus (here g(L) and PI(L)) with respect to matrix L, and not LI :
that way, we can still benefit from sparsity properties of matrix L in matrix-vector calculations.

Our fast computation of fI = PI(L)f also uses Chebyshev approximation of a relevant
function: we just notice that we have 1I(L) = PI(L), where 1I is the indicator function of
the interval I, and thus approaching 1I on IL by Chebyshev polynomials provides an efficient
method for calculating fI .

As will be seen in our experiments, this simple method already gives interesting results.
However, it is well known that a non-regular function such as 1I is subject to certain boundary
phenomena (e.g. Gibbs phenomenon) at discontinuities (here the ends of the interval I). Some
works proposed efficient computations of PI(L) based on the approximation of more regular
functions: see for instance [15, Section 3], where contours integral are used; another reference
of interest is [6].

3 LocLets and Frequency Sparse Signal

A signal f : V → R is frequency sparse if its Fourier transform is sparse. Smooth signals are
substantial examples of frequency sparse signals. Intuitively, a signal is smooth if it contains
only low frequencies. Mathematically, signal smoothness is related to its Fourier spectrum via
the Dirichlet’s formula (see for instance [20, p.15]) recalled below:

fTLf =
∑
l

λ`|〈f, χ`〉|2 =
1

2

∑
i∼j

wij |fi − fj |2.

The rightmost expression of the smoothness modulus exhibits a weighted sum of squares of the
gradient function of f making the connection with its oscillation properties. For this reason, the
quantity SL(f) = fTLf is called the smoothness modulus of signal f (with respect to Laplacian
L). As a special case, we have SL(f) = 0 if and only if f is constant. Similarly, the modulus
SL(f) tends to be small as signal f is smooth on the graph, that is with few oscillations.
LocLets are designed to exploit the connections expressed in the Dirichlet’s formula between
the smoothness of a signal and the importance of its spectral projections.

The following result states that the LocLet transform with respect to a single subset I ⊂ R+

of a signal f is nothing but the SGWT of fI = PI(L)f .

Proposition 2. Let I ⊂ R+ be any subset. Then, WIf =WfI .

Proof. From functional calculus properties, we have ψ(sjLI) = PI(L)ψ(sjL), and so ψj,m,I =
PI(L)ψsj ,m. It follows

〈fI , ψj,m〉 = 〈PI(L)f, ψj,m〉 = 〈f, PI(L)ψj,m〉 = 〈f, ψj,m,I〉.

Hence the equalityWfI (j,m) =WI
f (j,m) holds for each coefficient, and thenWfI =WIf .

Consequently, consider t1≤k≤KIk = IL an ordered partition of IL meaning that Ik contains
larger values than Ik′ for k < k′. Then, by definition of LocLet transform and Proposition 2,
it follows

WLocLetf = (WfIk)k.
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Hence, LocLets simply perform SGWT component-wise on the decomposition f =
∑

k fIk
along different levels of smoothness ranging from the smoothest part fIK to most oscillating
one fI1 .

The following proposition provides an error bound on the error made when a LocLet trans-
form is performed in place of the SGWT.

Proposition 3. Let I ⊂ IL be an arbitrary subset. Let f = fI + fI be the orthogonal decom-
position of signal f associated with subsets I, I. Defining

BI = max
λ∈I

G|I(λ),

where G|I is the restriction of G to subset I, the following estimate holds

∑
j,n

∣∣Wf (j, n)−WfI (j, n)
∣∣2 ≤ BI ‖fI‖22 ∣∣{`, λ` ∈ sp(L) ∩ I}

∣∣.
Proof. We have Wf (s, n) =WfI (s, n) +WfI

(s, n) for all s, n. Moreover,

∑
j,n

∥∥∥WfI

∥∥∥2
2

=
∑
j,n

∣∣〈ψsj ,n, fI〉∣∣2 ≤∑
j,n

∥∥ψIsj ,n∥∥22 ∥∥fI∥∥22
=
∥∥fI∥∥22 ∑

`: λ`∈sp(L)∩I

G|I(λ`) ≤
∣∣{` : λ` ∈ sp(L) ∩ I}

∣∣ BI ∥∥fI∥∥22.

As an illustration, exploiting the sparsity in the frequency domain of a signal f , one might
choose some subset I ⊂ IL in such a way that ‖fI‖2 ≤ ε for some small ε > 0. Then,
Proposition 3 states that the `2-error made when LocLet transform is performed in place of
SGWT is of order

ε2 BI
∣∣{`, λ` ∈ sp(L) ∩ I}

∣∣.
Therefore, if f is sufficiently smooth so that ε2 �

[
BI
∣∣{`, λ` ∈ sp(L) ∩ I}

∣∣]−1, then compared
to the standard SGWT transform Wf , LocLet transform WIf provides a sufficiently accurate
approximation while space-time complexity is reduced. These better performances are mainly
due to the fact that the matrix LI has a lower rank than the matrix L.

4 Denoising Frequency Sparse Signals with LocLets

Given an observed noisy signal f̃ of the form f̃ = f + Z where Z is a n-dimensional Gaussian
vector distributed as N(0, σ2Id), the aim of denoising is to provide an estimator of the a priori
unknown signal f .

Simple observations highlighted in the following proposition demonstrate the benefits of
using LocLets for noise reduction tasks, when the signal f is sparse in the Fourier domain.

Proposition 4. Assume f = fI for some subset I ⊂ IL. Then

E
[∥∥f − f̃I∥∥22] = E

[∥∥f − f̃∥∥2
2

]
− σ2

∣∣I ∩ sp(L)
∣∣.

In particular, denoising of f̃ boils down to denoising of f̃I = fI + ZI .
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Proof. First, the following equalities hold:

f − f̃ = f − f̃I + f̃I − f̃ = (f − f̃)I + f̃I .

As (f − f̃)I and f̃I are orthogonal vectors, it follows that∥∥∥f − f̃∥∥∥2
2

=
∥∥∥f − f̃I∥∥∥2

2
+
∥∥∥f̃I∥∥∥2

2
.

It remains to notice that E(||f̃I ||2) = σ2|I ∩ sp(L)|.

While Proposition 4 asserts a trivial denoising solution in the Fourier domain, i.e. simply
destroying the projection f̃I = ZI , this approach is no longer as immediate whence based on
the graph domain observations. Hence LocLets, with their possibilities to localize implicitly in
the frequency domain, seem to be the suitable tools for frequency sparse signals.

In practice, it is needed to estimate the support of the Fourier transform in the frequency
domain in an efficient way i.e. without computing the whole eigendecomposition of matrix
L. Based on the χ2-statistics and the fact the Fourier transform is orthogonal, Algorithm 1 is
designed for this purpose.

Algorithm 1: Support approximation in the Fourier domain

Input: noisy signal f̃ , a subdivision I1, I2, . . . , IK0 , estimated |Ik ∩ spL|, k = 1, . . . ,K0,
threshold α ∈ (0, 1).

Output: f̃I = PI(L)f̃ , where I is an approximation of the Fourier support of f̃ .
1 for k = 1, . . . ,K0 do
2 Compute ‖fIk‖22 = ‖PIk(L)f‖22;
3 Compute

pk = P(Γk > ‖fIk‖
2
2) and Γk ∼ χ2(|Ik ∩ sp(L)|);

4 end

5 Compute f̃I =
∑

k: pk≤α
PIk f̃ ;

Heuristically, if I contains the support of the Fourier transform of f , on the complementary
subset I we only observe pure white Gaussian noise so that ‖PI f̃‖22 = ‖f̃I‖22 is distributed as
σ2χ2(dI) with dI = |I ∩ sp(L)|. On the other hand, on I the square of the Euclidean norm of a

non-centered Gaussian vector is observed. Consequently, the quantity P
(
χ2(dI) > σ−2‖PI f̃‖22

)
is typically very close to zero whereas P

(
χ2(n− dI) > σ−2‖PI f̃‖22

)
remains away from 0. To

put it in a nutshell, sliding a window along the spectrum of L, Algorithm 1 performs a series
of χ2-test.

However, for a subset I ⊂ IL, the quantity dI remains unknown. To overcome this problem,
we rely on an estimate computed by the algorithm introduced in [7]. More precisely, the interval
IL is decomposed into intervals I1, . . . , IK0 of equal size and the counting algorithm is performed
on each sub-interval. This counting process requires K0 Chebyshev approximations. If K0 � n,
the complexity of our method remains acceptable. Furthermore, let us stress that the numbers
of the eigenvalues in each Ik depends only on the Laplacian and should be estimated only once,
independently of signals on the graph.

The second step gives an estimate of the original signal using a thresholding procedure on
each element f̃I and f̃I .

On the one hand, the methodology developed in [10] is prohibitive in terms of time and
space complexity as soon as the underlying graphs become moderately large. On the other
hand, the fast SWGT remains an approximating procedure. If a signal happens to be very
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Algorithm 2: LocLets thresholding estimation procedure

Input: f̃ , α, (Ik)k=1,...,K0 , estimated |Ik ∩ sp(L)|, thresholds t1, t2
Output: estimator f̂ of signal f

1 Apply Algorithm 1 with f̃ , α, (Ik)k=1,...K0 , estimated |Ik ∩ sp(L)|; it outputs f̃I and f̃I ;

2 Apply soft-thresholding with threshold t1 to WI f̃ and t2 to WI f̃ ;

3 Apply the inverse LocLet transform to the soft-thresholded coefficients to obtain f̂I , f̂Ĩ ;

4 Compute the estimator f̂ = f̂I + f̂I ;

sparse in frequency, then an even more optimal strategy is possible: first, the support I in
the frequency domain is approximated with the help of Algorithm 1; then, the procedure of
[10] is applied to PIf (the low rank part) and LocLets on PIf . This idea is made precisely in
Algorithm 3. As shown in our experiments in Section 5, it turns out that a fair gain is obtained
applying this procedure.

Algorithm 3: LocLets support approximation, and low-rank Parseval Frame thresholding
procedure

Input: f̃ , α, (Ik)k=1,...,K0 , estimated |Ik ∩ sp(L)|, thresholds t1, t2
Output: estimator f̂ of signal f

1 Apply Algorithm 1 with f̃ , α, (Ik)k=1,...K0 , estimated |Ik ∩ sp(L)|; it outputs f̃I and f̃I ;
2 Compute Parseval Frame for LI ;

3 Apply Parseval Frame thresholding with threshold t1 to f̃I ; it outputs f̂I ;

4 Apply soft-thresholding wtih threshold t2 to WI f̃ ;

5 Apply the inverse LocLet transform to the soft-thresholded coefficients to obtain f̂Ĩ ;

6 Compute the estimator f̂ = f̂I + f̂I ;

5 Experimental Validation

5.1 General Settings

In this section, we compare the numerical performance of LocLets with that of state-of-the-art
classical wavelet frame introduced in [10]. Let us recall that the latter frame can be considered
as a special case of SGWT as defined in [11].

However, the denoising method in [10] requires the computation of the whole spectral
decomposition of the Laplacian which does not scale to large graphs. We stress here that
we provide a fair comparison with [10], only in terms of denoising performance, and with
no computational considerations. Moreover, we choose for LocLets to use the most naive
thresholding procedure by considering a global and scale independent threshold scale. The
discussion of possible improvements is postponed in Section 6.

For all the experiments below, the SGWT and LocLets are built upon the scale and kernel
functions giving rise to the Parseval frame of [10]. More precisely, set respectively ϕ =

√
ζ0

and ψ =
√
ζ1 for the scale and kernel functions where

ζ0(x) = ω(x) and ζ1(x) = ω(b−1x)− ω(x),

where we choose b = 2 and ω is piecewise linear, vanishes on [1,∞) and is constant equal to
one on (−∞, b−1]. The scales are of the form sj = b−j+1 for j = 1, . . . , J where J is chosen
similarly to [10].
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In the sequel, ‘PF’ stands for Parseval Frame and refers to the estimator of [10]; the esti-
mators implemented by Algorithm 2 and Algorithm 3 are referred to as ‘LLet’ and ‘LLet+PF’
respectively. Below, the latter methodology is shown to outperform all the others for very
frequency sparse signals.

It is worth recalling that ‘LLet+PF’ benefits from the dimension reduction property of Lo-
cLets. More precisely, whereas the whole eigendecomposition of L is required to apply ‘PF’, for
Parseval frame denoising in the context of ‘LLet+PF’, only a low-rank spectral decomposition
is needed, namely the decomposition of LI .

For all our experiments, we set α = 0.001 for Algorithm 1. Our experiments are carried
out on a grid of the parameters (f, w, t1, t2) with f the signal at stake, w the size of the sliding
window in Algorithm 1 (so approximately a number of intervals equal to w × K0 ∼ |IL|),
and t1, t2 the thresholds in Algorithms 2, 3. First, we compute the best SNR (Signal-to-
Noise Ratio) result rD over a large grid of values (t1, t2), and for each denoising method
D ∈ {‘PF’,‘LLet’,‘LLet+PF’}. Then, we calculate two metrics: the maximum MD and average
value µD of the values rD over 10 random perturbations of the signal f . The same SNR
evaluation is performed on the raw noisy signal without any denoising, and is referred in our
results by ‘SNRin’. We recall that a good quality in denoising is reflected by a large value of
the SNR metric.

We sample randomly signals whose support are sparse in the Fourier domain. We will use
the notation fi−j for normalized signals supported on a sub-interval of IL containing exactly
the eigenvalues λi, λi+1, . . . , λj . As an example, fn is a constant signal while f1−2 is a highly
non-smooth signal supported on the eigenspaces of large eigenvalues λ1, λ2. For experiments,
the signals were calculated from the knowledge of sp(L), and relevant projections of random
functions on the graph.

5.2 Low-Dimensional Experiment

We first provide a toy experiment on a small randomly selected graph. We simulate a graph
of size n = 10 by randomly sampling a Laplacian matrix L ∈ Rn×n, with a non-zero coefficient
ratio almost equal to 0.3 (to simulate a certain sparsity in the graph connections). For the
graph in our experiments, we have λ1 = 32.0, and IL = [0.0, 32.0].

Then, we randomly sample the signals (fi−(i+1))1≤i≤9 on the graph with variable and sparse
supports in the Fourier domain. The noise reduction task is parametrized by the white noise
standard deviation σ = 0.05. For each function fi−(i+1), ten noisy realizations are simulated.
The SNR performances for denoising functions fi−(i+1) are computed over these ten samples,
and the results for functions f1−2, f5−6, f9−10 are shown in Table 1. Since w × K0 ∼ |IL|, a
sliding window w = 1 will produce K0 = 32 intervals in Algorithm 1, while a sliding window
w = 10 only 4 intervals.

The first obvious observation is that ‘LLet+PF’ performs better than its concurrent in
almost all situations. The gain is very significant since there is sometimes a gap of 4dB in
µD-metric between ‘LLet+PF’ and its closest concurrent, and up to 8dB in MD-metric.

The low-dimensional regime has some specificities, which will not be observed for the case
n = 1000. First, the results show a large variance over random realizations. This is easily seen
from a comparison of the best results in Table 1 (left) obtained for SNR values close to 33 to
the best in Table 1 (right) attaining a 24 SNR value. Secondly, we would expect to have worse
results for larger sliding windows, as the estimation of the Fourier support of f is less accurate.
But this fact is not observed, even for the case K0 = 4 (w = 10).

5.3 Experiment on the Swiss Roll Graph

Below, a similar comparison is made for signals on a large Swiss roll graph. Following [11] for
instance, this graph is generated by considering (ui, vi)1≤i≤n uniformly random points in the
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Table 1: SNR performance for n = 10.

id w SNRin MPF MLLet MLLet+PF µPF µLLet µLLet+PF

1-2 1 15.78 24.29 25.32 33.04 18.96 20.11 24.00
5-6 1 17.25 24.48 23.48 24.61 19.10 19.21 19.77
9-10 1 16.93 31.72 18.22 33.00 21.73 15.30 24.73
1-2 2 16.92 21.72 25.52 29.70 19.11 22.07 25.54
5-6 2 17.54 23.92 23.06 22.68 16.42 18.01 18.55
9-10 2 17.54 24.19 18.59 30.06 20.45 15.23 24.65
1-2 5 13.77 24.64 25.39 27.46 18.95 21.70 22.06
5-6 5 18.45 25.75 25.06 24.85 17.52 19.64 20.33
9-10 5 12.50 23.32 22.23 24.85 18.82 16.05 20.61
1-2 10 14.95 21.77 28.39 30.80 18.44 21.24 22.93
5-6 10 16.73 23.01 21.25 26.85 17.93 17.81 19.37
9-10 10 15.42 26.12 16.91 28.05 21.13 14.40 23.35

unit square. The size of the graph is n = 1000 in our experiments. Then, these random points
are mapped to the Swiss roll via the parametrisation.x(u, v)

y(u, v)
z(u, v)

 =

 ρ(u) cos(ρ(u))
π2(β2 − α2)v/2
ρ(u) sin(ρ(u))


where ρ(u) = π

√
(β2 − α2)u+ α2, α = 1 and β = 4. Given this set of random points (pi), a

weighted graph is built by affecting a Gaussian weight wi,j = exp(−‖pi−pj‖22/2s2) where s > 0
is some parameter (s = 2 in the experiments) between nodes pi and pj . Finally, this graph has
been sparsify by thresholding the weights lower than 10−10.

Table 2: SNR performance for n = 1000.

id w SNRin MPF MLLet MLLet+PF µPF µLLet µLLet+PF

951-1000 1 15.84 22.95 25.76 27.83 22.16 24.87 26.34
501-550 1 15.89 17.74 20.35 20.48 17.41 19.93 20.09
1-50 1 15.82 20.87 25.26 25.80 20.41 23.88 24.64
951-1000 2 15.93 22.67 24.32 26.16 21.98 23.53 24.96
501-550 2 15.99 17.60 20.23 20.52 17.38 19.78 19.90
1-50 2 15.70 20.99 23.12 24.20 20.48 22.72 23.43
951-1000 3 15.90 22.84 22.10 24.95 22.12 21.50 24.10
501-550 3 16.14 17.79 19.19 19.69 17.44 18.73 19.32
1-50 3 15.78 20.95 23.34 24.18 20.572 22.62 23.37
951-1000 4 16.15 22.96 20.78 24.56 22.28 19.94 23.60
501-550 4 16.16 17.52 18.67 18.75 17.30 18.34 18.44
1-50 4 15.98 21.14 8.74 8.91 20.68 8.67 8.84

We randomly sample the signals (fi−(i+49))1≤i≤999. The noise reduction task is parametrized
by the white noise standard deviation σ = 0.005. For each function fi−(i+49), ten noisy realiza-
tions are simulated. The results for functions f1−50, f501−550, f951−1000 are presented in Table 2.
Since the largest eigenvalue of L is λ1 = 8.8, we obtain IL = [0.0, 8.8]. The sliding window w
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ranges from 1 to 4, producing a number of intervals K0 ranging from 9 to 3 in Algorithm 1.
For a single experiment, with a sample size n = 1000, we display the noisy observations and
the unknown function f in Figure 1(a)–(b). A typical example of estimation for each of the
three compared methods is also given in Figure 1(c)–(e).

For reasonably small values of the sliding window w, ‘LLet+PF’ performs better than its
concurrent in almost all situations. By contrast with the case n = 10, ‘LLet’ provides better
performances than ‘PF’ more systematically. Indeed, signals are much more sparse in the
Fourier domain for our experiment with n = 1000, which benefits to methods using LocLets.

As expected and observed for function f1−50 with w = 4, a size value too large w for
intervals in Algorithm 1 decreases performances of LocLets methods. If the approximation of
the Fourier support of the signal is too coarse, our LocLets lose their interesting frequency
localization properties. Fortunately, this drop in performances occurs only for large values of
w, here corresponding to values of K0 ≤ 3. The efficiency of Chebyshev approximations allow
the use of larger values K0.

(a) True function (b) Noisy observation

(c) PF (d) LLet (e) LLet + PF

Figure 1: Typical reconstructions from a single simulation with n = 1000.

6 Discussion and further improvements

In this paper we proposed a new wavelet transform called LocLets, which is a variation of
SGWT designed for large graph signals sparse in the frequency domain. Basic theoretical
properties of LocLets were provided and experiments were conducted on several denoising
tasks applied to a large family of sparse signals. Empirical results have demonstrated that
LocLets-based methods show significant improvements over the best prior denoising techniques.
By contrast with their closest method in terms of denoising performances, which requires the
computation of the whole spectral decomposition of the graph Laplacian, LocLets do not require
any eigendecomposition, and scale much more easily with the size of the graph by means of
standard Chebyshev approximations techniques.

LocLets transform suggests several interesting directions for future work. First, dimen-
sionality reduction in the context of SGWT was already considered in some previous works,
usually with connections to the Lanczos procedure [17]. As shown in the current paper with
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method ‘LLet+PF’, one can benefit from both state-of-the-art denoising performances of Par-
seval frames and sparsity optimizations in the frequency domain of LocLets. We plan to
investigate further the relationship between LocLets and low-rank Laplacian matrices.

In our experiments, we select the best denoising performance for each method with a grid
search over thresholding values. Threshold selection was studied since a long time in the signal
processing community, and several adaptative thresholding methods were proposed in the case
of standard wavelets [8, 9]. LocLets introduced in this paper would certainly benefit from
data-driven thresholds selection for practical use.
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