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with Spectral Graph Wavelet Transform

Basile de Loynes*, Fabien Navarrof, Baptiste Olivert

July 27, 2020

Abstract

This paper is devoted to adaptive signal denoising in the context of Graph Signal Pro-
cessing (GSP) using Spectral Graph Wavelet Transform (SGWT). This issue is addressed
via a data-driven thresholding process in the transformed domain by optimizing the parame-
ters in the sense of the Mean Square Error (MSE) using the Stein’s Unbiased Risk Estimator
(SURE). The SGWT considered is built upon a partition of unity making the transform semi-
orthogonal so that the optimization can be performed in the transformed domain. However,
since the SGWT is over-complete, the divergence term in the SURE needs to be computed
in the context of correlated noise. Two thresholding strategies called coordinatewise and
block thresholding process are investigated. For each of them, the SURE is derived for a
whole family of elementary thresholding functions among which the soft threshold and the
James-Stein threshold. This multi-scales analysis shows better performance than the most
recent methods from the literature. That is illustrated numerically for a series of signals on
different graphs.

1 Introduction

The emerging field of Graph Signal Processing (GSP) aims to bridge the gap between signal
processing and spectral graph theory (see for instance Chung (1997); Belkin and Niyogi (2008)
and references therein). One objective is to generalize fundamental analysis operations from
regular grid signals to irregular structures as graphs. There is an extensive literature on GSP,
in particular we refer the reader to Shuman et al. (2013) for an introduction to this field and
Ortega et al. (2018) for an overview of recent developments, challenges and applications. As a
matter of fact, GSP have already been applied in machine/deep learning: convolutional neural
networks (CNN) on graphs Bruna et al. (2014); Henaff et al. (2015); Defferrard et al. (2016),
semi-supervised classification with graph CNN Kipf and Welling (2017); Hamilton et al. (2017),
community detection Tremblay and Borgnat (2014), to name just a few. In the context of GSP,
the authors of Coifman and Lafon (2006); Gavish et al. (2010); Hammond et al. (2011) have
developed wavelet transforms on graphs. More specifically, in Hammond et al. (2011) a fairly
general construction of a frame enjoying the usual properties of standard wavelets is developed:
each vector of the frame is localized both in the graph domain and the spectral domain. The
transform associated with this frame is named Spectral Graph Wavelet Transform (SGWT).
Many studies based on SGWT (or some variants) explore the denoising performance of this
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approach using different strategies Leonardi and Van De Ville (2013); Onuki et al. (2016); Wang
et al. (2016); Deutsch et al. (2016); Irion and Saito (2017); Dong et al. (2016); Gobel et al.
(2018) from signal adapted tight frames to regularization method.

The denoising approach chosen in this paper involves several thresholding processes in the
transformed domain of the wavelet coefficients. Actually, this can be seen as an extension to
SGWT of the methodology of Donoho and Johnstone (1995); Cai (1999). With this approach,
the main challenge is the efficient calibration of the parameters minimizing the MSE risk in a
complete data-driven way. Recently, in the setting of discrete wavelets transform on a regular
grid—the so-called regular case—the Stein’s unbiased risk estimate (SURE) has proven to be
a powerful tool for signal/image restoration Luisier et al. (2007); Pesquet et al. (2009); Vaiter
et al. (2013). Based on the Stein’s lemma, this estimator acts as a proxy for the MSE which
cannot be computed in practice since the original signal is unknown. In this paper, the SURE is
explicitly computed for an arbitrary thresholding process in Theorem 1 and for correlated noise
in the graph domain in Corollary 1. Also, let us point out that contrary to the regular wavelet
transform, the SGWT is no longer orthogonal so that a white Gaussian noise in the graph
domain is transformed in a correlated noise. Consequently, the divergence term of the resulting
SURE involves the covariance of the transformed noise making the numerical evaluation less
simple than in the regular case. Afterward, the SURE is specified to the case of coordinatewise
and block thresholding. The latter is inspired by image denoising problems for which a Stein
risk estimator has been proposed in Peyré et al. (2011) to tune both the block-sparsity structure
and the threshold. A similar selection strategy has been developed by Navarro et al. (2013) in
the context of deconvolution. The R package gasper which implements the method introduced
in this paper is available on github! (de Loynes et al., 2020) as well as the scripts to reproduce
the results presented?.

Regarding the regularization method implemented in Onuki et al. (2016), the regularization
parameter is also selected optimizing an MSE proxy based on a similar argument. Nonetheless,
beyond the fact that the philosophy is different (regularization versus thresholding), one stress
that the empirical risk bias is explicitly determined while the MSE estimation in Onuki et al.
(2016) is only validated numerically. Another penalization method is given in Wang et al.
(2016) that extends the approach from Tibshirani and Taylor (2011) within the framework of
graphs. For this method, the divergence term is computed explicitly; this gives rise to a data-
driven parameter selection method so that this approach is an interesting concurrent to our
methodology.

The paper is organized as follows. Section 2 introduces the notation and briefly reviews the
notions of tight frame and SGWT of Hammond et al. (2011). Section 3 is devoted to denoising
and the SURE estimator for generic thresholding process in the transformed domain. Then, the
SURE is specified in the cases of coordinatewise, block thresholding processes and for correlated
noise in the graph domain. In Section 4 numerical comparisons with the classical Wiener filter
(oracle version) and the trend filtering introduced in Wang et al. (2016) for denoising are dis-
cussed. Several signals and graphs, including examples from real datasets, are considered. For
these experimental results, the construction of the frame follows Gdbel et al. (2018). In terms
of denoising performance, other tight frames such as spectrum adapted and/or signal adapted
tight frames from Shuman et al. (2015) and Behjat et al. (2016) might give better results. Still,
Theorem 1 actually applies to any tight frame and the question of exhibiting the most efficient
one is beyond the scope of the paper.

"https://github.com/fabnavarro/gasper
https://github.com /fabnavarro/SGWT-SURE
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2 Spectral Graph Wavelet Transform

2.1 Graphs, Frames and Tight Frames

Let G be an undirected weighted graph, with set of vertices V', and weights (w;;); jev satisfying
w;j = wjy; for i, j € V. The size of the graph is the number of nodes n = |V|. The (unnormalized)
graph Laplacian matrix £ € RV*V associated with G is the symmetric matrix defined as £ =
D —W, where W is the matrix of weights with coefficients (wj;); jev, and D the diagonal matrix
with diagonal coefficients D;; = ) jev Wij- A signal f on the graph G is a function f: V — R.

Let § = {r;}icsr be a frame of vectors of RY, that is a family of vectors in RY such that there
exist A, B > 0 satisfying for all f € RV

ANFIE < ST < BIFIE (1)
i€l
The linear map T5 : RV — R! defined for f € RY by Tsf = ({f,7:))ies is called the analysis
operator. The synthesis operator is the adjoint of T§: namely, it is the linear map 75 : R - RY
defined for a vector of coefficients (¢;)icr by T3 (Ci)ier = D jer cimi- As a frame is in particular
a generating family of RV a signal f € RV can be recovered from its coefficients T f with the
help of the synthesis operator.

2.2 Construction of Tight Frames

A frame § is said to be tight if A = B = 1 in Equation (1)—the latter is then termed the
Parseval identity. From now on, the frames considered are supposed to be tight. Let us recall
the generic construction of such a frame (c.f. Kereta et al. (2019) for instance).

Since L is self-adjoint, it admits the spectral decomposition £ =", Ae(x¢, ) xe, where A\; >
A2 > -+ > X\, = 0 denote the (ordered) eigenvalues of the matrix £, and (x¢)i1</<n are the
associated normalized and pairwise orthogonal eigenvectors. Then, for any function p : sp(£) —
R defined on the spectrum sp(£) of matrix £, the functional calculus formula reads p(L£) =
>0 P(Xe){xes-)xe. A finite collection (1););—o,..,s is a finite partition of unity on the compact
[0, M] if 9 [0,M] — [0,1] forall j € J and VA € [0,\1], S7_¢;(A) = 1. Given a finite
partition of unity (¢;);=o,....7, the Parseval identity implies that the following set of vectors is a
tight frame:

3:{\/@(ﬁ)ai,jzo,...,J,iev}.

Also, following Leonardi and Van De Ville (2013); Gobel et al. (2018), a partition of unity can
be easily defined as follows: let w : RT — [0, 1] be some function with support in [0, 1], satisfying
w=1on [0,b7}], for some b > 1, and set

Yo(z) = w(z) and ¥;(z) = wb™z) —wb ) for j=1,...,J, where J= {log)\lJ + 2.

logb

2.3 Discrete SGWT Associated with a Partition of Unity
Let (1;);=0,. s be a partition of unity of [0, \1]. The SGWT of a signal f € RY is given by

Wi = (VoD s (£)f7) € RO,

The adjoint linear transformation W* of W is:
% T
W (ngont - -omy) =D /(L.
Jj=0

The tightness of the underlying frame implies that W*W = Idgv so that a signal f € RY
can be recovered by applying W* to its wavelet coefficients (Wf)i)i=1,.. n(s+1) € R+ (see
Hammond et al. (2011)).
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3 Adaptive Denoising with SGWT

Let f € RV be some signal on a graph G and ¢ be an n-dimensional Gaussian vector distributed
as N'(0,021d). The aim of denoising is to recover the unknown signal f from the observed noisy
version f = f+¢&. Basically, our denoising procedure will consist of three steps: (1) compute the
SGWT transform Wf € R™7+1; (2) apply a given thresholding operator h(-) to the coefficients
w f ; (3) apply the inverse SGWT transform to obtain an estimation f of the original signal.
Here, the main challenge in denoising consists in choosing a suitable thresholding operator with
respect to the noisy signal f and the underlying graph. The performance measure in the sequel
will be the MSE between the original signal f and the denoised signal f: ||f — f||3. First, it is
worth noting that the Parseval identity allows direct optimization in the transformed domain
of wavelet coefficients. Secondly, in practice, obviously the original signal remains unknown.
To overcome this difficulty, the MSE is generally substituted with the Stein’s Unbiased Risk
Estimator which no longer depends on the original signals (see Donoho and Johnstone (1995)
for instance). Nonetheless, contrary to the usual wavelet transform, the white noise £ is mapped
onto a correlated Gaussian noise. In the next section, the SURE is derived taking into account
these correlations.

3.1 The SURE Estimator in the Transformed Domain

By linearity, the denoising Erobleme: f+& is transferred to the denoising problem F=F+=
with Z ~ N(0,02WW*), F = Wf and F = Wf. The spectral decomposition of WW?* reads
WW?* = USU* with U a unitary matrix of R**1D and ¥ = (Id§" 8).

A thresholding process is a map h : R™/+1) — R+ Typically, the map h is a coordinate-
wise or a block shrinkage in applications. The following result extending the SURE’s expression
to correlated noise is based on the Stein’s lemma in Stein (1981) in which A is assumed to be

weakly differentiable. One refers the reader to Stein (1981) for the precise definition.

Theorem 1 (h-SURE). Let h be a weakly differentiable thresholding process for the denoising
problem F' = F + =. Then the theoretical MSE is given by

n(J+1)
E|W(F) = F|? = E | —no” + |W(F) = F|> +2 Y Cov(E;,Z;)d;hi(F) | ,
ij=1

where h; is the i-th component of h.

It is worth noting that Cov(Z;,ZE;) = o?(WW?*);; so that, as soon as the thresholding
process h is specified and the noise variance o2 estimated, the SURE of h defined below can be
completely computed from the noisy observations as in the regular case:

n(J+1)
SURE(h) = —no” + |(F) — F|* +2 ) Cov(E;, E;)d;hi(F).
ij=1

Proof. The theoretical MSE can be rewritten as follows

E|n(F) - F||* = B|a(F) - F||> + E|Z|* + 2E(h(F) - F

m

).

The second term is equal to no? since almost surely |Z[|? = |[U*Z|]? = ||PxU*Z||*> where
K = kerOVW*)* and Py the orthogonal projection onto K. Finally, setting g(x) = h(z) — x,
z € R™HD it remains to compute the last term E(g(F),Z) = E(g(F + E),Z) where F is
deterministic and Z ~ N (0, 2 WW*). A simple computation gives

2

n(J+1) n(J+1)

E(g(F+E),5) = Y E[a(F+E)E]= ) Cov(g(F +5),5).
i=1 i=1
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Then, following Liu (1994), each term in the sum above is given by

n(J+1)
Cov(gi(F +E),E) = —no® + »_ Cov(Z;,E)E[(d;h:)(F + E)),
j=1
since Tr(o2WW?*) = no?. This ends the proof of Theorem 1. O]

3.2 Coordinatewise Thresholding Process

For a coordinatewise thresholding process, the map h is of the form h(z) = (7(zi,:))i=1, .. n(1+1)
where (t;);—1,. n(s+1) are the thresholds. In practice, we may choose 7(x,t) = zmax{l —
t%)2|=#,0} with 8 > 1. The most popular choices are the soft thresholding (8 = 1), the James-
Stein thresholding (8 = 2) and the hard thresholding (8 = 0o). The latter will not be considered
here since it does not lead to a sufficiently regular thresholding process for Theorem 1 to be
applied.

For any 8 € [1,00), the derivative d;h; vanishes whereas

B8

Bihi(F +Z) = 1y, o) (|F]) 7

1+(B-1)

Consequently, the SURE associated with A is given by

n(J+1) 5 2 n(J+1)
SURE(h) = —no? + Z ( P > Z V ()1, 00) (I F])

%

G
|| ] @

The usual expression of the SURE is recovered from the identity above remarking that V[Z;]
are identically equal to o> when the transformed noise is uncorrelated.

Let us notice that the coordinatewise soft thresholding (8 = 1) satisfies an oracle inequality
as shown in Gobel et al. (2018). Similarly to the regular case, it states that up to a log factor,
the soft thresholding estimator can mimic an oracle projection.

3.3 Optimization: Donoho and Johnstone’s Trick

The SURE can be optimized in the same way as in the standard case using the Donoho and

Johnstone’s trick of Donoho and Johnstone (1995) whose the justification is recalled below.
For the sake of simplicity, we first consider the case of the coordinatewise thresholding

process with a uniform threshold: t; = ¢ for all i = 1,...,n(J + 1). Denote by a1,...,a,41)

the absolute values of the noisy wavelet coefficients |E| in the increasing order. The trick comes
from the observation that, on each interval (ag,ar+1), the last term of Equation (2) is non-
decreasing whereas the second term is an increasing function of ¢. Consequently, the SURE hits

its minimum at some value ag+, k* = 1,...,n(J + 1).

If the thresholds t; are no longer uniform but merely tied inside blocks with values t1,...,%,
the same trick is still valid: group the terms in the sums along the different parameters ¢, ...,y
and optimize each partial sum with respect to t, k =1,..., L.

3.4 Block Thresholding Process

In order to take advantage of the localization properties of SGWT and the regularity of the
original signal, we may introduce block thesholding processes similar to Cai (1999).

Consider a partition (By)eer of {1,...,n(J + 1)} and set Hx||QB[ = icB, (z;)%. In this case,
the thesholding process h = (hi)izl,..-,n(JH) reads
8
—L_ 0%, zeR"Wt) and ¢eL:i€ B,.

il

hi(z) = x; max {1 -
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If 7,5 are in different blocks, then 0;h; vanishes. Additionally, if 7, j are in B, but 7 # j then
0hi(F) = Fily, o0 (| Fll ) 8 5 | Fl 5~
g i-L[tg,00) Be)Pty Ly B,

whereas
= = =i - =20 oy —B—2
Ouli(F) = Loy (1F 1) (1= I FII5) + Bt F2NFI %)

Consequently, a straightforward computation leads to

2
SURE(h) = —no +Z< 7 )\FHQBZ

el

B
a L - Bt (.5 FF
+221[te,00)(||FHBe) (1— Hﬁﬂﬁ> E V(z:) + ||F||’§+2 E (Bi,25)FiF}
By

ZEL ZGBZ »JGBZ

Once again, for uncorrelated transformed noise, the usual expression easily follows from the iden-
tity above. Note also that the optimization of the SURE in this case requires more sophisticated
techniques as the divergence term is no longer monotone.

3.5 Correlated Noise in the Graph Domain

The SURE can also be stated in the context of correlated noise at the cost of some prior
information on the covariance structure. More precisely, in the denoising problem f = f 4 ¢
with correlated noise, it is supposed that & ~ N(0,T') for some covariance matrix I'. The
denoising problem reads in the transformed problem as F=F+EwithE~N (0, WI'W*).

Corollary 1. Under the assumption of Theorem 1, the theoretical MSE is given by

n(J+1)
E[|n(F) = FI’] = E| = TtOVIW*) + |W(F) = FI? +2 ) Cov(E;, E))d;hi(F)|,
ij=1

where h; is the i-th component of h.

Let us point out that the parameters selection can be made without computing explic-
itly Tr(WI'W*) since it does not depend on h—even though, the MSE estimate is obviously
shifted by this quantity. Besides, the correlation structure I' is actually hidden in the quanti-
ties Cov(E;,E;), namely, for 1 < 4,j < n(J +1): Cov(E;,Ej) = (WIW*), - Consequently,
computationally speaking, there is no additional burden compared to the Whlte noise case.

Proof. The proof follows the lines of Theorem 1 with E[E] = (WIW*) .1 <i<n(J+1). O

In applications, it is usually reasonable to assume some structure on the covariance matrix I
reflecting the topology of the underlying graph. Typically, the noise on two given vertices may
be correlated if those vertices are close enough in the graph. For example, let & ~ N(0, 0?Id),
we set & = &g+ aW§y where W is the graph matrix of weights and @ > 0 some tuning parameter
describing the global intensity of the correlation. Then, it follows,

[ = o%(Id + 2aW + *WW™). (3)

Other choices are obviously possible.
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3.6 Complexity

Regarding the space complexity, we need to store the frame and the weights appearing in the
SURE for a cost of O(n?(J+1)?). With given Laplacian eigendecomposition, the time complexity
of the optimization of the SURE is (in average) of order O(n(J + 1)log(n(J + 1))) for the
coordinate-wise estimator following [8]. For the block estimator, the use of a grid search is a
limitation.

4 Numerical Results

This section presents the empirical performance of the proposed automatic threshold selection
for different signals defined on different graphs: the Minnesota roads graph (seen as a reference
in many recent studies, see Behjat et al. (2016) and references therein) with synthetic signals and
the Facebook graph with signals from Wang et al. (2016), the Pittsburgh Census Tract graph,
a graph built from a dataset on New York City taxis with a real signal as well as numerical
experiments in the correlated and block cases. All the experiments are conducted with the R
package gasper.

4.1 The Minnesota Roads Graph

The Minnesota roads graph is a planar graph consisting of 2642 vertices and 6606 edges. Each
vertex is described by its (z,y)-coordinates. The function w chosen in the experiments is a
piecewise linear function with support in [0,1] and constant equal to 1 on [0,b7!] with b = 2.
From Ay ~ 6.89, we deduce that the number of scales is J + 1 = 5—see Section 2.

$0.20

) 03 | 0.15
T 02 0.10
" ‘ 01 AL 0.05
1 20.0 .'-'.', — R B S e £0.00

Figure 1: Signals used on the Minnesota graph.

On this graph, two classes of synthetic signals are generated inspired by the methodology
introduced in Behjat et al. (2016). Let us briefly recall the construction: let n € (0,1) and k € N
be two parameters; a signal f,,  is obtained by letting the adjacency matrix W acts on an .4.d.
realization x,, of Bernoulli random variables of parameter 7, in symbols f; , = kan JAF. This
method generates signals with different regularities. This has to be understood in the sense of
the graph topology and not that one given by the embedding space R2. In the experiment, two
signals are generated with parameters n = 0.01,k = 2 and n = 0.001,k = 4 respectively (see
Figure 1 left and right respectively).
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We compare the performance in terms of SNR (computed on the functions after reconstruc-
tion) for different denoising strategies, different noise levels and each synthetic signal f, ;. For
each noise level o = 0.005,0.01,0.02 and o = 0.001, 0.002, 0.004, a sample of N = 10 white Gaus-
sian noise is simulated and a global (G) versus level-dependent (LD) coordinatewise thresholding
are performed with respect to the soft (8 = 1) and James-Stein (5 = 2) thresholding rules. For
each strategy, we compare the average behavior of the SNR for parameter selected with the
oracle (MSE'B =12 obtained by minimizing the MSE using the original signal f) and the SURE
with known o (SUREZ='2). Also, the standard deviation on the sample is provided.

These results are first compared to the classical Wiener filter. More precisely, the Wiener
filter consists of attenuating the Fourier coefficient F(f) of f. Below, we only consider the oracle
linear attenuation F(f)[i]F(f)[i]/(F(f)[i]* + o?). While this estimator is unrealistic since it
depends on f, any Wiener filter has worse performance than this oracle. Table 1 is completed
by the performance of the Wiener filter on each signal. Also, the theoretical value riy¢ of the
oracle risk given in Mallat (2009) is recalled for comparison purpose.

Our methodology is also compared to the so-called graph trend filtering (i.e. for k =0, 1, 2)
introduced in Wang et al. (2016). The graph trend filtering is a regularization method with a
penalty term involving the graph difference operator at a given order (see Wang et al. (2016)).
In the experiments, we make use of the matlab toolbox gtf® provided by the authors of Wang
et al. (2016).

Table 1: Mean SNR performance over N = 10 realizations of the low to high noise levels settings
with corresponding empirical standard deviation. Left panel: fo1,2 and right panel: fy.001,4.

SNRin

16.07£0.13

10.05£0.13

4.03+0.13 || 16.64+0.13

10.62+0.13

4.60£0.13

MSEA=LG
MSEP=2G
SUREZ=1G
SURE/=2G
MSEB:I,LD
MSE’B:2’LD
SUREZ=LLD
SUREZ=2LD
Wiener

Tinf

MSEF=2
MSE*=!
MSE*=0

19.04+0.24
20.07£0.24
18.96+0.27
20.04£0.37
19.10+0.24
20.08+0.24
19.10+0.24
20.01+0.31
17.01+0.13
17.05£0.00
17.35+0.13
18.05+0.14
19.57+£0.17

14.22+0.26
15.60£0.30
14.16+0.29
15.49+0.43
14.28+0.27
15.61+0.29
14.26+0.26
15.51£0.36
11.87+0.15
11.8940.00
11.43+ 0.16
11.98+0.18
13.43+0.23

9.46+0.26
10.69£0.30
9.46+0.26
10.64+0.32
9.58+0.27
10.72£0.30
9.484+0.24
10.61£0.39
7.43+0.16
7.42£0.00
5.684+0.17
6.24+0.18
7.621+0.22

24.67£0.33
26.88+0.29
24.62+0.37
26.73£0.32
24.68+0.34
26.90£0.26
24.51£0.40
26.52+0.32
17.91+0.12
17.96+0.00
19.37+0.14
20.43£0.15
23.38+0.25

19.77£0.36
22.1840.37
19.64+0.48
21.9140.52
19.79£0.36
22.20£0.36
19.5940.46
21.79£0.34
12.86+0.13
12.9140.00
13.65+0.18
14.78+0.18
17.88+0.27

14.79+0.45
17.08£0.67
14.70+0.52
16.88+0.59
14.83+0.46
17.13+0.67
14.69+0.49
16.73£0.60
8.40+0.16
8.46+0.00
8.01+£0.24
9.30+0.27
12.80+0.40

Generally speaking, we observe from Table 1 that our method performs better than the trend
filtering motivating the use of multiscale analysis. This idea is confirmed by the comparison
with the Wiener filter, in particular in the lower SNR regime that is for higher noise levels.
Also, similarly to the regular case, numerical experiments shows that the James-Stein threshold
(B8 = 2) is slightly more efficient than the soft threshold in particular for the global thresholding
process.

Let us point out that there is no fundamental difference in terms of performance between
the global and level dependent thresholding in this experiment. In fact, the level dependent
thresholding always performs at least as good as the global one. Since the additional computa-
tional cost is acceptable, the level dependent thresholding appears to be a good choice without
any further a priori knowledge.

3 Available here: https://sites.cs.ucsb.edu/ yuxiangw/resources.html
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4.2 The Facebook Graph

Here we examined and compare the denoising performance of level dependent SGWT thresh-
olding (LD) against the trend filtering and Laplacian smoothing Smola and Kondor (2003) on
a nonplanar graph considered in Wang et al. (2016): the Facebook graph from the Stanford
Network Analysis Project?. This undirected graph, collected from survey participants using
this Facebook app, is composed of 4039 nodes representing Facebook users, and 88,234 edges
representing friendships (see Leskovec and Mcauley (2012) for more details). For signal f, we
consider the different regularities used in Wang et al. (2016) as well as the same noise levels, for
5 realizations (see (Wang et al., 2016, Section 5.1) for more details). More precisely, we simply
run the scripts provided in the matlab toolbox provided by the authors of Wang et al. (2016).
The results are shown in the Figure 2 (to be compared with (Wang et al., 2016, Figure 5 p.14
and Figure 9 p.27)). With the exception of the dense Poisson case, where all methods provide
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Figure 2: Mean SNR performance over N = 5 realizations on the Facebook graph.

comparable results, LD globally provides better performance than trend filtering (whatever the
value of k), especially at high noise levels where the maximal gain in terms of SNR is greater
than 15dB and exceeds 5dB and 10dB respectively for the 5 highest noise levels for inhomo-
geneous and homogeneous random walk cases. For this graph, the CPU times associated with
trend filtering (for £ = 1 and k = 2) for one type of signal and 5 realizations (and a 51-point

‘http://snap.stanford.edu/data/ego-Facebook.html
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Figure 3: Influence of the number of scales on the denoising performance.

grid search) are of the order of 3 to 4 days (depending on the case), for LD around 25 minutes
(including diagonalization and frame calculation which only need to be calculated once).

The calibration of certain parameters has not been studied. However, the latter can con-
siderably influence the performance of the SGWT. For the homogeneous random walk case, we
examine here the influence of the number of scales retained for the construction of the frame
and controller by b. For b = 5,4, 3, the frame contains respectively 7, 8,9 scales. The results are
shown in Figure 2, where it can be seen that the frame composed of 7 scales produces the best
results. Note that these performances might be improved, for example by making the SURE
depend on the 8 parameter characterizing the threshold rule. The frame considered here has
only one parameter, other more flexible constructions, based on a partition of the unit or other
types of tight frames such as spectrum adapted and/or signal adapted tight frames from Shuman
et al. (2015) and Behjat et al. (2016) could also lead to an improvement.

4.3 Pittsburgh Census Tract Graph

For the sake of completeness, our methodology is also compared to the trend filtering on the
Pittsburgh Census Tract graph considered in Wang et al. (2016) which consists of 402 vertices
and 2382 edges. The very same piecewise linear function w with b = 2 is still used for this graph.
The number of scales is then J+ 1 = 7. For this experiment, only the level dependent threshold
procedure is considered.

We consider the signal and 10 realizations of the noisy signal generated in Wang et al. (2016)

(corresponding to an average noise level of 4.84 + 0.37dB). The resulting SNR for the oracles of
SGWT and fused lasso (i.e. k = 0) are respectively 11.51 4 0.52dB and 9.85 + 0.54dB.

Additionally, we run a comparison with the trend filtering (i.e. for k = 0,1, 2) for the signal
Jnk withn = 0.01 and k = 5 with the different noise levels o = 0.004, o = 0.005 and o = 0.01. A
comparison with another wavelet estimator proposed in Sharpnack et al. (2013) is also provided,
considering two thresholding rules (i.e. “soft” and “hard”). For these 5 competitors we only
report the oracles results.

Even though the SURE no longer depends on the original signal, it does depend on ¢? in
both methodologies. Since in real applications, the noise level remains unknown in general, we
introduce two naive estimators of o. In fact, a straightforward computation shows that for any
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function g : Ry — Ry

E[fTg(0)f] = fTg(L)f + Bl g(L)¢]

so that a biased estimator of o2 is given by

= fTg(L)f +o°Tr g(L),

Q>
—o

o) f
Tr g(L)
As soon as the original signal is reasonably smooth so that f7g(L£)f is negligible compared to

Tr g(£), then 62 is an accurate enough estimation of o2. As a first choice, we choose g(x) = .
Thanks to Dirichlet’s formula, it follows:

2 fTﬁf_ Dijev wis| F(i) —

2 FG)I?
Y7 e g 2Tr L ’

This is nothing but the graph analogue of the Von Neumann estimator of von Neumann (1941)
explaining the terminology Graph Von Neumann estimator (GVN).

A second natural choice is given by g(z) = 1 (z) corresponding to the filter at the finest
scale. The resulting estimator is called High Pass Filter Von Neumann (HPFVN). The value of
the estimator is easily computed from the coefficients as follows:

52 - Tisah VD
2 Trs(L)

Table 2: Mean SNR performance over /N = 10 realizations with fo 15 for the Pittsburgh graph.

o 0.004 0.005 0.01
&1 0.0065 0.0072 0.0113
59 0.0068 0.0074 0.0114
SNRiy, 9.534+0.29  7.604+0.29 1.58-+0.29
MSES=2ED 136540.29 12.2240.34 8.46+0.41
MSEF=2 12.28+0.25 11.05+0.22 8.1440.29
MSEF=1 13.10+0.21 11.78+0.22 8.09+0.36
MSEF=0 12.83+0.23 11.42+0.24 7.5640.46
MSES°ft 11.2240.23  9.62+0.27 5.2240.22
MSEHard 10.2240.28  8.50+0.38 4.03+0.14
SUREZ=2IP 13.3340.37 12.00+£0.30 7.9540.25
SUREB 2LD19.3540.53 11.38+0.62 8.1340.35
SUREB 2D 19124057 11.27+40.54 8.07+0.33

Table 2 summarizes the findings with the nomenclature of Table 1 (where LD stands for
level-dependent (LD) coordinatewise thresholding) of the main document. Lines SURE?1 21 2
stand for the SURE procedure in which the noise level is estimated by the GVN (1) and the
HPFVN (63). HPFVN and GVN provide a very comparable sigma estimate in this setting.
Additionally, a visual comparison of our methodology with the fused lasso is illustrated in
Figure 4 (corresponding to one realization in the context of the third column of the Table 2).
We can see that our approach provides a gain of about 2.5dB compared to the fused lasso.

Again, in these experiments, the multiscale analysis shows better performances than the
trend filtering. Besides, the estimation of ¢ is sufficiently accurate to have a fully data-driven
procedure.
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Figure 4: Typical reconstruction for the Allegheny County example.

To conclude, let us stress that the SGWT is computationally more efficient than the GTF
(k = 1,2). For the latter, on a standard laptop (Intel Core i7@2.7GHz-16Go LP-DDR3@2133MHz),
each 10 realizations consumed about 4h16m cpu time in mean (min:1h45m, max:6h19m) with
the same grid search as for the Pittsburg in Wang et al. (2016). The CPU consumption for
k = 0 is more decent with a mean of 3m for each 10 realizations exploiting the idea and the c++
code of Chambolle and Darbon (2009). Incidentally, this main drawback of GTF was noticed in
Padilla et al. (2018) forcing a preprocessing of the graph using DFS algorithm. The SGWT on
its side consumed 3m for the diagonalization and 42s for each 10 realizations.

4.4 Real Dataset: New York City Taxis

Our methodology has been also tested on a real data fetched from NYC taxis® databases. We
build a graph with 265 vertices consisting of the LocationID (Pick-Up and Drop-Off) and define
Gaussian weights w;; = exp(—Td%j) where d; ; is the mean distance taken on all the trips
between ¢ and j or j and i. The signal f considered is defined upon the variable “total amount”
on which an artificial noise is added. For an average input SNRy, = 5.23 £0.38dB on N = 25

Shttps://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2018-01.csv
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observations, we obtain for the level dependent SURE with § = 2 and ¢ known, an output SNR
of 10.414+0.62dB compared to the performance of the oracle Wiener filter, SNR = 7.50£0.40dB
and the oracle fused lasso, SNR = 5.69 £ 0.43dB.

4.5 Correlated Noise

On the Minnesota roads graph and for the signal f, . of Section 4 with n = 0.01 and k = 2, we
add one realization of a correlated noise with covariance matrix given by (3) where o« = 0.5 is
added leading to a noisy signal with SNR;, = 2.07dB. We run the level-dependent coordinate-
wise thresholding process. The SNR given by the oracle involving the unknown signal f; ;. and
the one given by the SURE estimator adapted to correlated noise are similar: 8.54dB wversus
8.51dB. In this case, the SURE for uncorrelated noise shows very bad performances: we found
4.33 for the corresponding SNR.

The quality of the SURE for uncorrelated noise is closely related to the intensity of the
correlation tuned by the parameter o. As an example, if we choose oo = 0.1, the SURE adapted
to correlated noise still performs very well with an estimated SNR of 10.44dB compared to the
oracle 10.46dB. The SURE for uncorrelated noise is nonetheless not that bad since it estimates
the SNR at 9.78dB.

Consequently, the SURE estimate for uncorrelated noise is robust to small correlations which
is particularly interesting in applications since it can be difficult to estimate the correlation
structure.

4.6 Further Experiments with Block Thresholding

Finally, we report some experimental results in the context of block thresholding in the setting
of Section 4.3. For each scale j = 0,1,...,7, the n wavelet coefficients are split into L blocks
of uniform length (except for the last block that can be shorter). The best performance of
block thresholding is achieved for blocks of size |L| = 47. The SNRj;, = 9.64 £ 0.33dB for
25 realizations. For the oracle global coordinate-wise threshold with 5 = 2, we obtain a SNR
of 11.07 £ 0.33dB compared to the block procedure with a uniform threshold 11.82 4+ 0.40dB.
The block procedure performs better than the coordinate-wise one for a uniform threshold
but is actually worse compared to the level dependent coordinate-wise thresholding process.
The level-dependent method is expected to give better performance, but would require a more
sophisticated optimization algorithm than grid search to be computationally acceptable.

5 Conclusion and Perspectives

In this paper, we have introduced a version of the SURE designed for SGWT, allowing auto-
matic parameter selection in denoising tasks of signals on graphs. Closed-form expressions for
coordinatewise and block SURESs have been provided for a wide range of threshold rules. Finally,
the case of a correlated noise in the graph has also been considered. Many experiments on the
Minnesota graph, the Facebook graph built, the Pittsburgh graph and the NYC taxis graph
from real data are conducted.

For signals of different regularity on those graphs, it has been shown that the SURE pro-
vides an efficient estimate of the theoretical MSE. These experiments also show that multi-scale
analysis is a serious competitor to existing methods. Indeed, the SGWT shows performances
equivalent and sometimes even much better than the GTF, especially at high noise levels.

To be complete, the variance parameter o2 should be estimated. This has been (partially)
addressed in the supplementary material by introducing the two estimators HPFVN and GVN.
The performance of these estimators highly depends on the underlying signal. Further investi-
gations seem to be necessary.
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Theoretically, the coordinatewise soft thresholding in the transformed domain satisfies an
oracle inequality as shown in Goébel et al. (2018). Similarly to the regular case, this oracle
inequality states that the estimator mimics the oracle projection up to a log factor. The proof
relies on the fact that the multivariate risk is expressed as a sum of univariate risks so that
the Donoho’s machinery applies. Using this fact, a maximal inequality for the SURE might be
stated as well.

Regarding, the numerical complexity, the main limitation is the need of a complete reduction
of the Laplacian. In the same vein as Hammond et al. (2011), many of the involved steps might
be numerically optimized using Chebyshev polynomials. Actually, the only problematic step in
the method is the computation of the weights (WW?*); ; appearing in the SURE. However, their
expression in terms of covariance suggests that Monte-Carlo estimation could work. Besides,
the space-time complexity might be reduced taking advantage of the low-rank property of WW*
implying several linear constraints on the weights (precisely n.J). Finally, for the block procedure
to be completely useful, an adapted optimization algorithm should be implemented.

Some questions not addressed in the paper remains open. As already announced in intro-
duction of the paper, the choice of a suitable frame for different graphs and different families of
signals is still an open problem in spite of advances in recent years. Most likely, good choices
of frame should involve a notion of graph limit such as the one introduced for graphons (see
Lovész (2012)) or the more probabilistic Benjamin-Schramm limit introduced in Benjamini and
Schramm (2001). This formal study should also give rise to less nave estimators of the noise
level and above all give recommendations according to the class of signals considered.
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