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Abstract

This paper is devoted to adaptive signal denoising in the context of Graph Signal Pro-
cessing (GSP) using Spectral Graph Wavelet Transform (SGWT). This issue is addressed
via a data-driven thresholding process in the transformed domain by optimizing the pa-
rameters in the sense of the Mean Square Error (MSE) using the Stein’s Unbiased Risk
Estimator (SURE). The SGWT considered is built upon a partition of unity making the
transform semi-orthogonal so that the optimization can be performed in the transformed
domain. However, since the SGWT is over-complete, the SURE needs to be adapted to
the context of correlated noise. Two thresholding strategies called coordinatewise and block
thresholding process are investigated. For each of them, the SURE is derived for a whole
family of elementary thresholding functions among which the soft threshold and the James-
Stein threshold. To provide a fully data-driven method, a noise variance estimator derived
from the Von Neumann estimator in the Gaussian model is adapted to the graph setting.

1 Introduction

The emerging field of Graph Signal Processing (GSP) aims to bridge the gap between signal
processing and spectral graph theory (see for instance Chung and Graham (1997); Belkin and
Niyogi (2008) and references therein). One objective is to generalize fundamental analysis op-
erations from regular grid signals to irregular structures as graphs. An extensive literature on
GSP exists, in particular we refer the reader to Shuman et al. (2013) for an introduction to this
field and Ortega et al. (2018) for an overview of recent developments, challenges and applica-
tions. In this context, the authors of Coifman and Lafon (2006); Gavish et al. (2010); Hammond
et al. (2011) have developed wavelet transforms on graphs. More specifically, in Hammond et al.
(2011) a fairly general construction of a frame enjoying the usual properties of standard wavelets
is developed: each vector of the frame is localized both in the graph domain and the spectral
domain. The transform associated with this frame is named Spectral Graph Wavelet Transform
(SGWT). Many studies based on SGWT (or some variants) explore the denoising performance
of this approach using different strategies Onuki et al. (2016); Deutsch et al. (2016); Irion and
Saito (2017); Dong et al. (2016); Göbel et al. (2018); Leonardi and Van De Ville (2013); Onuki
et al. (2016) from signal adapted tight frames to regularization method.

The denoising approach chosen in this paper involves several thresholding processes in the
transformed domain of the wavelet coefficients. Actually, this can be seen as an extension to
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SGWT of the methodology of Donoho and Johnstone (1995); Cai (1999). With this approach,
the main challenge is the efficient calibration of the parameters minimizing the MSE risk in a
complete data-driven way. Recently, in the setting of discrete wavelets transform on a regular
grid — the so-called regular case — the Stein’s unbiased risk estimate (SURE) has proven to be
a powerful tool for signal/image restoration Luisier et al. (2007); Pesquet et al. (2009); Vaiter
et al. (2013). Based on the Stein’s lemma, this estimator acts as a proxy for the MSE which
cannot be computed in practice since the original signal is unknown.

In this paper, the SURE is explicitly computed for a wide family of thresholding processes
in Theorem 1. Let us point out that contrary to the regular wavelet transform, the SGWT is no
longer orthogonal so that a white Gaussian noise in the graph domain is transformed in a cor-
related noise. Consequently, the divergence term of the resulting SURE involves the covariance
of the transformed noise making the numerical evaluation less simple than in the regular case.
Afterward, the SURE is specified to the case of coordinatewise and block thresholding. The lat-
ter is inspired by image denoising problems for which a Stein risk estimator has been proposed
in Peyré et al. (2011) to tune both the block-sparsity structure and the threshold. A similar
selection strategy has been developed by Navarro et al. (2013) in the context of deconvolution.

A key parameter in the calculation of the SURE and more generally in standard denoising
methods is the noise level which is unknown for real data. In the regular case of wavelet-based
denoising methods, the Median Absolute Deviation (MAD) estimator Donoho and Johnstone
(1995) (calculated on the finest decomposition scale) is often the preferred method. However,
the MAD is not directly applicable for SGWT since the transformed noise is correlated. We
propose here to extend the estimator developed in von Neumann (1941) in the graph setting.

Note that in Onuki et al. (2016) a regularization method is proposed for which the regu-
larization parameter is also selected optimizing an MSE proxy based on a similar argument.
Nonetheless, beyond the fact that the philosophy is different (regularization versus threshold-
ing), one stress that the empirical risk bias is explicitly determined while the MSE estimation
in Onuki et al. (2016) is only validated numerically. Furthermore, our approach makes full use
of the multiscale analysis property of the SGWT that can be interpreted as a multiple filter
denoising. Note also that the authors of Onuki et al. (2016) do not address the problem of noise
variance estimation.

The paper is organized as follows. Section 2 introduces the notation and briefly reviews the
notions of tight frame and SGWT of (Hammond et al., 2011). Section 3 is devoted to denoising
and the SURE estimator for generic thresholding process in the context of correlated work is
derived. Then, the SURE is specified in the cases of coordinatewise and block thresholding
processes. Finally, an estimator of the noise variance along with its performance is presented.
Section 4 discusses numerical results.

2 Spectral Graph Wavelet Transform

2.1 Graphs, Frames and Tight Frames

Let G be an undirected weighted graph, with set of vertices V , and weights (wij)i,j∈V satisfying
wij = wji for i, j ∈ V . The size of the graph is the number of nodes n = |V |. The (unnormalized)
graph Laplacian matrix L ∈ RV×V associated with G is the symmetric matrix defined as L =
D−W , where W is the matrix of weights with coefficients (wij)i,j∈V , and D the diagonal matrix
with diagonal coefficients Dii =

∑
j∈V wij . A signal f on the graph G is a function f : V → R.

Let F = {ri}i∈I be a frame of vectors of RV , that is a family of vectors in RV such that there
exist A,B > 0 satisfying for all f ∈ RV

A‖f‖22 ≤
∑
i∈I
|〈f, ri〉|2 ≤ B‖f‖22. (1)
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The linear map TF : RV → RI defined for f ∈ RV by TFf = (〈f, ri〉)i∈I is called the analysis
operator. The synthesis operator is the adjoint of TF: namely, it is the linear map T ∗F : RI → RV
defined for a vector of coefficients (ci)i∈I by T ∗F (ci)i∈I =

∑
i∈I ciri. As a frame is in particular

a generating family of RV , a signal f ∈ RV can be recovered from its coefficients TFf with the
help of the synthesis operator.

2.2 Construction of Tight Frames

A frame F is said to be tight if A = B = 1 in Equation (1) — the latter is then termed the
Parseval identity. From now on, the frames considered are supposed to be tight. Let us recall
the generic construction of such a frame (c.f. Kereta et al. (2019) for instance).

Since L is self-adjoint, it admits the spectral decomposition

L =
∑
`

λ`〈χ`, ·〉χ`,

where λ1 ≥ λ2 ≥ · · · ≥ λn = 0 denote the (ordered) eigenvalues of the matrix L, and (χ`)1≤`≤n
are the associated normalized and pairwise orthogonal eigenvectors. Then, for any function
ρ : sp(L)→ R defined on the spectrum sp(L) of matrix L, the functional calculus formula reads

ρ(L) =
∑
`

ρ(λ`)〈χ`, ·〉χ`.

A finite collection (ψj)j=0,...,J is a finite partition of unity on the compact [0, λ1] if

ψj : [0, λ1]→ [0, 1] for all j ∈ J and ∀λ ∈ [0, λ1],
J∑
j=0

ψj(λ) = 1.

Given a finite partition of unity (ψj)j=0,...,J , the Parseval identity implies that the following set
of vectors is a tight frame:

F =
{√

ψj(L)δi, j = 0, . . . , J, i ∈ V
}
.

Also, following Leonardi and Van De Ville (2013); Göbel et al. (2018), a partition of unity
can be easily defined as follows: let ω : R+ → [0, 1] be some function with support in [0, 1],
satisfying ω ≡ 1 on [0, b−1] and set

ψ0(x) = ω(x) and ψj(x) = ω(b−jx)− ω(b−j+1x) for j = 1, . . . , J, where J =

⌊
log λ1
log b

⌋
+ 2.

2.3 Discrete SGWT Associated with a Partition of Unity

Let (ψj)j=0,...,J be a partition of unity of [0, λ1]. The discrete SGWT of a signal f ∈ RV is
defined as follows:

Wf =
(√

ψ0(L)fT ,
√
ψ1(L)fT , . . . ,

√
ψJ(L)fT

)T
∈ Rn(J+1).

The adjoint linear transformation W∗ of W is:

W∗
(
ηT0 , η

T
1 , . . . , η

T
J

)T
=
∑
j≥0

√
ψj(L)ηj .

The tightness of the underlying frame implies that W∗W = IdRV so that a signal f ∈ RV
can be recovered by applying W∗ to its wavelet coefficients ((Wf)i)i=1,...,n(J+1) ∈ Rn(J+1) (see
Hammond et al. (2011) for the details).
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3 Adaptive Denoising with SGWT

Let f ∈ RV be some signal on a graph G and ξ be an n-dimensional Gaussian vector distributed
as N (0, σ2Id). The aim of denoising is to recover the unknown signal f from the observed noisy
version f̃ = f + ξ.

Basically, denoising consists of three steps: (1) compute the SWGT transformW f̃ ∈ Rn(J+1);
(2) apply a given thresholding operator h(·) to the coefficientsW f̃ ; (3) apply the inverse SGWT
transform to obtain an estimation f̂ of the original signal.

The main challenge in denoising consists in choosing a suitable thresholding operator with
respect to the noisy signal f̃ and the underlying graph. The performance measures in the sequel
will be the MSE between the original signal f and the denoised signal f̂ : ‖f − f̂‖22. First, it is
worth noting that the Parseval identity allows direct optimization in the transformed domain
of wavelet coefficients. Secondly, in practice, obviously the original signal remains unknown.
To overcome this difficulty, the MSE is generally substituted with the Stein’s Unbiased Risk
Estimator which no longer depends on the original signals (see Donoho and Johnstone (1995)
for instance). Nonetheless, contrary to the usual wavelet transform, the white noise ξ is mapped
onto a correlated Gaussian noise. In the next section, the SURE is derived taking into account
these correlations.

3.1 The SURE Estimator for Correlated Noise

By linearity, the denoising problem f̃ = f + ξ is transferred to the denoising problem F̃ = F +Ξ
with Ξ ∼ N (0, σ2WW∗), F̃ = W f̃ and F = Wf . The spectral decomposition of WW∗ reads
WW∗ = UΣU∗ with U a unitary matrix of Rn(J+1) and Σ =

(
IdRn 0
0 0

)
.

A thresholding process is a map h : Rn(J+1) → Rn(J+1). Typically, the map h is a coordinate-
wise or a block shrinkage in applications. The following result extending the SURE’s expression
to correlated noise is based on the Stein’s lemma in Stein (1981) in which h is assumed to be
weakly differentiable. One refer the reader to Stein (1981) for the precise definition.

Theorem 1 (h-SURE). Let h be a weakly differentiable thresholding process for the denoising
problem F̃ = F + Ξ. Then the theoretical MSE is given by

E‖h(F̃ )− F‖2 = E

−nσ2 + ‖h(F̃ )− F̃‖2 + 2

n(J+1)∑
i,j=1

Cov(Ξi,Ξj)∂jhi(F̃ )

 ,
where hi is the i-th component of h.

It is worth noting that Cov(Ξi,Ξj) = σ2(WW∗)i,j so that, as soon as the thresholding
process h is specified and the noise variance σ2 estimated, the SURE of h defined below can be
completely computed from the noisy observations as in the regular case:

SURE(h) = −nσ2 + ‖h(F̃ )− F̃‖2 + 2

n(J+1)∑
i,j=1

Cov(Ξi,Ξj)∂jhi(F̃ ).

Proof. The theoretical MSE can be rewritten as follows

E‖h(F̃ )− F‖2 = E‖h(F̃ )− F̃‖2 + E‖Ξ‖2 + 2E〈h(F̃ )− F̃ ,Ξ〉.

The second term is equal to nσ2 since almost surely ‖Ξ‖2 = ‖U∗Ξ‖2 = ‖PKU∗Ξ‖2 where
K = ker(WW∗)⊥ and PK the orthogonal projection onto K. Finally, setting g(x) = h(x) − x,
x ∈ Rn(J+1), it remains to compute the last term E〈g(F̃ ),Ξ〉 = E〈g(F + Ξ),Ξ〉 where F is
deterministic and Ξ ∼ N (0, σ2WW∗). A simple computation gives

E〈g(F + Ξ),Ξ〉 =

n(J+1)∑
i=1

E[gi(F + Ξ)Ξi] =

n(J+1)∑
i=1

Cov(gi(F + Ξ),Ξi).
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Then, following Liu (1994), each term in the sum above are given by

Cov(gi(F + Ξ),Ξi) =

n(J+1)∑
j=1

Cov(Ξi,Ξj)E[(∂jhi)(F + Ξ)]− nσ2,

since Tr(σ2WW∗) = nσ2. This ends the proof of Theorem 1.

3.2 Coordinatewise Thresholding Process

For a coordinatewise thresholding process, the map h is of the form h(x) = (τ(xi, ti))i=1,...,n(J+1)

where (ti)i=1,...,n(J+1) are the thresholds. In practice, we may choose τ(x, t) = xmax{1 −
tβ|x|−β, 0} with β ≥ 1. The most popular choices are the soft thresholding (β = 1), the James-
Stein thresholding (β = 2) and the hard thresholding (β =∞). The latter will not be considered
here since it does not lead to a sufficiently regular thresholding process for Theorem 1 to be
applied.

For any β ∈ [1,∞), the derivative ∂jhi vanishes whereas

∂ihi(F + Ξ) = 1[ti,∞)(|F̃i|)

[
1 + (β − 1)

tβ

|F̃i|β

]
.

Consequently, the SURE associated with h is given by

SURE(h) = −nσ2 +

n(J+1)∑
i=1

F̃ 2
i

(
1 ∧

tβi

|F̃i|β

)2

+ 2

n(J+1)∑
i=1

V(Ξi)1[ti,∞)(|F̃i|)

[
1 + (β − 1)

tβi

|F̃i|β

]
. (2)

The usual expression of the SURE is recovered from the identity above remarking that V[Ξi]
are identically equal to σ2 when the transformed noise is uncorrelated.

3.3 Optimization: Donoho and Johnstone’s Trick

The SURE can be optimized in the same way as in the standard case using the Donoho and
Johnstone’s trick of Donoho and Johnstone (1995) whose the justification is recalled below.

For the sake of simplicity, we first consider the case of the coordinatewise thresholding
process with a uniform threshold: ti = t for all i = 1, . . . , n(J + 1). Denote by a1, . . . , an(J+1)

the absolute values of the noisy wavelet coefficients |F̃i| in the increasing order. The trick comes
from the observation that, on each interval (ak, ak+1), the last term of Equation (2) is non-
decreasing whereas the second term is an increasing function of t. Consequently, the SURE hits
its minimum at some value ak∗ , k

∗ = 1, . . . , n(J + 1).
If the thresholds ti are no longer uniform but merely tied inside blocks with values t1, . . . , tL,

the same trick is still valid: group the terms in the sums along the different parameters t1, . . . , tL
and optimize each partial sum with respect to tk, k = 1, . . . , L.

3.4 Block Thresholding Process

In order to take advantage of the localization properties of SGWT and the regularity of the
original signal, we may introduce block thesholding processes similar to Cai (1999).

Consider a partition (B`)`∈L of {1, . . . , n(J + 1)} and set ‖x‖2B` =
∑

i∈B`(xi)
2. In this case,

the thesholding process h = (hi)i=1,...,n(J+1) reads

hi(x) = xi max

{
1−

tβ`

‖x‖βB`
, 0

}
, x ∈ Rn(J+1), and ` ∈ L : i ∈ B`.
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If i, j are in different blocks, then ∂jhi vanishes. Additionally, if i, j are in B` but i 6= j then

∂jhi(F̃ ) = F̃i1[t`,∞)(‖F̃‖B`)βt
β
` F̃j‖F̃‖

−β−2
B`

,

whereas
∂ihi(F̃ ) = 1[t`,∞)(‖F̃‖B`)

(
1− tβ` ‖F̃‖

−β
B`

+ βtβ` F̃
2
i ‖F̃‖

−β−2
B`

)
.

Consequently, a straightforward computation leads to

SURE(h) = −nσ2 +
∑
`∈L

(
1 ∧

tβ`

‖F̃‖βB`

)2

‖F̃‖2B`

+ 2
∑
`∈L

1[t`,∞)(‖F̃‖B`)

(1−
tβ`

‖F̃‖βB`

)∑
i∈B`

V(Ξi) +
βtβ`

‖F̃‖β+2
B`

∑
i,j∈B`

Cov(Ξi,Ξj)F̃iF̃j



Once again, for uncorrelated transformed noise, the usual expression easily follows from
the identity above. Note also that the optimization of the SURE in this case requires more
sophisticated technics as the divergence term is no longer monotone.

3.5 Estimation of σ2 Von Neumann’s Estimator

Even though the SURE no longer depends on the original signal, it is needed to have an estimate
of σ2. A straightforward computation gives

E[f̃TLf̃ ] = fTLf + E[ξTLξ] = fTLf + σ2Tr L.

A biased estimator of σ2 is given by

σ̂2 =
f̃TLf̃
Tr L

=

∑
i,j∈V wij |f̃(i)− f̃(j)|2

2 Tr L
.

and is nothing but the graph analogue of the Von Neumann estimator of von Neumann (1941).
As soon as the original signal is reasonably smooth so that fTLf is negligible compared to
σ2Tr L, then σ̂2 is an accurate enough estimation of σ2.

4 Numerical Results

This section presents the empirical performance of the proposed automatic threshold selection
for signals defined on the Minnesota roads graph. The latter is considered as a reference in many
recent studies (see Behjat et al. (2016) and references therein). This graph is planar and consists
of 2642 vertices and 6606 edges. Each vertex is described by its (x, y)-coordinates. The function
ω chosen in the experiments is a piecewise linear function with support in [0, 1] and constant
equal to 1 on [0, b−1] with b = 2. From λ1 ≈ 6.89, we deduce the number of scales is J + 1 = 5
— see Section 2. For all the results presented below, the sine function is considered: namely,
for a vertex v ∈ V described by its coordinates (vx, vy) ∈ R2, f(v) = sin(vx). The smoothness
modulus fTLf of f is approximately equal to 12.63 whereas the trace Tr L = 6614.

First, the restoration quality and the efficiency of the proposed method can be assessed
visually in Figure 1 which shows the original, the noisy (with σ = 0.1) and the restored signals
at the optimally chosen level-dependent thresholds in the coordinatewise level-dependent setting.
The resulting input and output Signal to Noise Ratio (SNR) are respectively SNRin ≈ 17.59
dB and the output SNRout ≈ 23.60 dB whereas σ̂ ≈ 0.111. The bottom panel also provides
a representation of the coefficients at each scale excluding the coarcest scale for a convenient
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Figure 1: Typical reconstruction from a single simulation with σ = 0.1.

rendering. Each of them is separated by a vertical dashed line. Also, the value of the optimal
level-dependent thresholds are represented in Figure 1(f). We observe that the value of the
optimal threshold varies from one scale to another, therefore minimizing the SURE scale by
scale improves noise reduction performance. We also note that the number of coefficients after
thresholding provides a sparse representation (for the four finest scales, only 428 among 10568
are kept).

Secondly, we compare the performance in terms of SNR (computed on the functions af-
ter reconstruction) for different denoising strategies and different noise levels for the same sine
function. For each noise levels σ = 0.025, 0.1, 0.4, a sample of N = 25 white Gaussian noise is
simulated and a global (G) versus level-dependent (LD) coordinatewise thresholding are per-
formed with respect the soft (β = 1) and James-Stein (β = 2) thresholding rules. For each of the
four combinations of methodologies, we compare the average behavior of the SNR for parameter
selected with the oracle (MSEβ=1,2 obtained by minimizing the MSE using the original signal f),

the SURE with known σ (SUREβ=1,2
σ ) and the SURE with estimated σ̂ (SUREβ=1,2

σ̂ ). Also, the
standard deviation on the sample is provided. All the measurements are synthetized in Table 1.

Generally speaking, we observe that the level-depend method performs better than a uniform
threshold. Similarly to the regular case, numerical experiments shows that the James-Stein
threshold (β = 2) is slightly more efficient than the soft threshold in particular in the global
thresholding process. Also, while the SURE with known σ2 provides a reliable estimate of the
MSE for arbitrary noise levels (see Figure 2 for an illustration with σ = 0.1), the quality of
the SURE with unknown noise level depends highly on the estimation of σ̂2. This comes from
the bias of the estimation. Typically it is required for the smoothness modulus fTLf to be
negligible compared to σ2Tr L. This phenomenon is clearly illustrated in the experiments for
σ = 0.025: the performance of the SURE with estimated σ̂ falls quite sharply.

Finally, we report some experimental results in the context of block thresholding. For each
scale j = 0, 1, . . . , 4, the n wavelet coefficients are split into L blocks of uniform length (except
for the last block that can be shorter). The same sample of noisy signal as above is used for
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Table 1: Comparison of mean SNR performance for each coordinatewise procedure over N =
25 realizations of the low to high noise levels settings with corresponding empirical standard
deviation.

σ = 0.025 σ = 0.1 σ = 0.4
σ̂ = 0.050± 0.0004 σ̂ = 0.109± 0.0015 σ̂ = 0.401± 0.0074

SNRin = 29.71± 0.11 SNRin = 17.66± 0.11 SNRin = 5.64± 0.14
G LD G LD G LD

MSEβ=1 31.12 ±0.14 32.07 ±0.13 20.20 ±0.17 23.31 ±0.25 8.69 ±0.16 12.71 ±0.26

SUREβ=1
σ 31.09 ±0.13 32.05 ±0.13 20.19 ±0.18 23.28 ±0.23 8.67 ±0.15 12.66 ±0.24

SUREβ=1
σ̂ 28.26 ±0.26 29.52 ±0.17 20.13 ±0.21 23.25 ±0.26 8.67 ±0.15 12.66 ±0.25

MSEβ=2 32.06 ±0.13 32.12 ±0.13 22.30 ±0.24 23.31 ±0.25 9.48 ±0.2 12.68 ±0.26

SUREβ=2
σ 32.03 ±0.16 32.06 ±0.15 22.29 ±0.24 23.27 ±0.24 9.45 ±0.2 12.63 ±0.26

SUREβ=2
σ̂ 29.77 ±0.29 29.67 ±0.16 22.15 ±0.27 23.26 ±0.25 9.46 ±0.2 12.63 ±0.26
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Figure 2: MSE risk and its SURE estimates as a function of the threshold parameter (σ = 0.1).

an easier comparison. The chosen cardinalities |L| take values in {25, 50, 75, 100}. In these
experiments, a uniform threshold is optimized using a 2000 points grid search. The average
SNRs along with their standard deviation are summarized in Table 2.

Table 2: Comparison of mean SNR performance for each blockwise procedure over N = 25
realizations with σ = 0.1 and their corresponding empirical standard deviation.

|L| = 25 |L| = 50 |L| = 75 |L| = 100

MSEβ=1 21.38±0.20 21.36±0.20 21.34±0.20 21.32±0.20

SUREβ=1
σ 21.38±0.20 21.35±0.20 21.33±0.20 21.30±0.20

SUREβ=1
σ̂ 21.24±0.21 21.22±0.21 21.21±0.22 21.18±0.20

MSEβ=2 23.29±0.19 23.28±0.19 23.27±0.19 23.27±0.19

SUREβ=2
σ 23.27±0.19 23.27±0.19 23.25±0.20 23.25±0.20

SUREβ=2
σ̂ 23.21±0.18 23.21±0.16 23.20±0.18 23.20±0.18

These experiments show better performance compared to the coordinatewise with a global
threshold whereas results are comparable with the level-dependent James-Stein thresholding.
It is worth noting that the number of blocks in each scale does not seem to have a significant
influence on the results. It is expected that the level-dependent method to give better perfor-
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mance but it would require a more sophisticated optimization algorithm than grid seach to be
computationally acceptable.

5 Conclusion and Perspectives

We have introduced a version of the SURE designed for SGWT, allowing automatic parameter
selection in denoising tasks of signals on large graphs. Closed-form expressions for coordinatewise
and block SUREs have been provided for a wide range of threshold rules and a graph analogue of
Von Neumann estimator has been proposed for the parameter selection to be fully data-driven.
Many experiments on the large baseline Minnesota graph has been conducted. For smooth
functions on the graph, performances are comparable with those of an oracle knowing both the
signal and the noise level. This shows that our blind parameter selection provides the missing
piece to apply SGWT based denoising in practice.

In this work, the numerical complexity of the methodology has not been discussed. In
the same vein as Hammond et al. (2011), many of the involved steps might be numerically
optimized using Chebyshev polynomials. Actually, the only problematic step in the method is
the computation of the weights (WW∗)i,j appearing in the SURE. The space-time complexity
might be reduced taking advantage of the low-rank property of WW∗ implying several linear
constraints on the weights (precisely nJ).

As shown in experiments, the quality of the noise estimation is crucial. For denoising with
standard wavelets, the noise σ2 is generally estimated by the Median Absolute Deviation (MAD).
Basically, the idea is that the wavelet coefficients at the finest scale mainly encode the noise if
the original signal is sufficiently regular. Consequently, the singular points are considered as
outliers and swept out whereas the noise is estimated on the remaining coefficients. In our case,
the noise is not only correlated but also degenerated since the rank of ψJ(L) is nothing but the
number of eigenvalues of L in the support of ψJ . Still, the MAD should be adaptable to our
framework and might perform better in the case of small noise level.

References

Behjat, H., Richter, U., Van De Ville, D., and Sörnmo, L. (2016). Signal-adapted tight frames
on graphs. IEEE Trans. Signal Process., 64(22):6017–6029.

Belkin, M. and Niyogi, P. (2008). Towards a theoretical foundation for laplacian-based manifold
methods. Journal of Computer and System Sciences, 74(8):1289–1308.

Cai, T. T. (1999). Adaptive wavelet estimation: a block thresholding and oracle inequality
approach. Ann. Statist., 27(3):898–924.

Chung, F. R. and Graham, F. C. (1997). Spectral graph theory. Number 92. American Mathe-
matical Soc.

Coifman, R. R. and Lafon, S. (2006). Diffusion maps. Applied and computational harmonic
analysis, 21(1):5–30.

Deutsch, S., Ortega, A., and Medioni, G. (2016). Manifold denoising based on spectral graph
wavelets. In Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International
Conference on, pages 4673–4677. IEEE.

Dong, B., Jiang, Q., Liu, C., and Shen, Z. (2016). Multiscale representation of surfaces by
tight wavelet frames with applications to denoising. Applied and Computational Harmonic
Analysis, 41(2):561 – 589. Sparse Representations with Applications in Imaging Science, Data
Analysis, and Beyond, Part II.



10 B. de Loynes, F. Navarro and B. Olivier

Donoho, D. L. and Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet
shrinkage. Journal of the american statistical association, 90(432):1200–1224.

Gavish, M., Nadler, B., and Coifman, R. R. (2010). Multiscale wavelets on trees, graphs and
high dimensional data: Theory and applications to semi supervised learning. In ICML, pages
367–374.
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