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Abstract :

The dispersion equation of gravity waves propagating in a liquid
covered by a film depends on the nature of the liquid-film interaction as
well as on the comportment law of the film.

The study of such effects is important to prevent a gas to be car-
ried to a liquid by a free surface, to approach the problem of moving super-—
ficial oceanic layers as well as to explain the exchanges through cellular
membranes subject to deformations.

Initially the film is a plane horizontal surface and the liquid is
at rest ; small amplitude perturbations propagates through this system and
do not cause viscosity effects in the liquid. The possibility of a slip of
the film on the liquid is admitted. The interaction between the surface wave
and the gas overlaying on the film is neglected and a constant and uniform
pressure for this gas is considered.

Using the linearized theory, we may write the Bernoulli equation
close to the interface ; this development takes in account the flux of impul-
sion from the fluid to the film.

A second linearized relation is obtained between the surface density,
the velocity potential of the fluid and the surface tension.

The knowledge of the comportment law of the film (elastic, visco-
elastic or at constant tension) allows to exprime the superficial tension as
a function of the surface density and of its derivatives with respect to
space and time variables.

The last relation is obtained between the surface density of the
film and the velocity potential of the fluid, using the various possible ex-
change conditions between the film and the fluid (impermeable film, permeable
one with a constant surface density or porous one).

Using solutions of the form f = f el(K'z_wt), we deduce the disper-
sion equation from the three above mentioned coupled relations. The celerity
and the decay coefficient of the wave are then written as functions of either
the pulsation or the wave length.

Caracteristic curves are plotted and interpreted in the following
cases :

- elastic impermeable film

- viscoelastic impermeable film

= permeable film with constant tension and density
= porous film

These curves present two branches in relation with two possible cele—
rities for each frequencie ; a singularity take plane for a great viscoelasti-
city. The existence of these two branches shows the influence of two coupled
phenomena : gravity effect in the liquid with free surface, effect of the
comportment law of the film.



These results are compared with those of different authors who have
studied the general equations or analogous particular configurations although
the exchanges between film and liquid are generally of different natures.

The small perturbations method used in this study will certainly be
very useful in more complex situations involving irreversible phenomena into
the fluid, the film and also during the fluid-film exchanges.

Finally, this study is bounded by the use of the linearized theory.
Consequently, the multiple scale method is planed as an extension of this work.

The following text and figures correspond to the oral communication
presented at the 14th TyTAM Congress (sept. 1976).
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1 = The medium that we are going to considere is made of a film on
the surface of a liquid and of a gas on the top of that film. There is no
exchange between the gas and the other medium.

The film is a material medium. It is supposed to have no thickness
but it will have a surface density and a surface tension. This film is able
to slip on the surface of the liquid staying always in contact with it. That
is to say no cavitatiom.

The studied evolution is supposed to be isotherm.

The caracteristic functions of the medium will be
- first of all, the ones associated to the liquid

P > P 5 ¢ {u=¢x ,v=é,y }
- and then, the ones associated to the film
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2 - Method of small perturbations

We only retain the first order terms.

The perturbations are of small amplitude and bidimensionnal
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3 - Equations of the problem

The first equation used to describe the liquid is the usual Bernoulli's
equation. This equation is linearized. As opposed to a problem of free surface,
we find here a new term. This term (ﬁ—p;)/e related to pressure jump, is due
to the presence of a movement of the film.

The second equation of the liquid is the Laplace's equation ; we assu-
med that the movement is irrotationnal. The film is defined : - by the two compo—
nents of the balance equation of impulsion - the mass conservation - that equation
which describe the fact that the film and the liquid stay in contact - and then
the comportement law.

We define now three possibilities for liquid-film exchanges



1) Impermeable

2) The second exchange condition between liquid and film represent a simple
case of permeability. Probably, this case is realistic only if the surface
density is negligeable ; for example that will be the case of capillarity films.

3) The third condition used represents the flux of mass proportionnal to the

jump of pressure.
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CHARACTERISTICC THICKNESS OF THE FILM:
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4 - Wave equations
The studied perturbations are of following form : f=e'

In particular, they are compatible with the presence of an hori
bottom. This bottom is supposed to be located at an infinite di

the surface.

The dimensionless functions are defined at the bottom

The function T () caracterise the comportment law of the film.
that the caracteristic thickness is included in the definition
functions. In fact, it is possible to show that this thickness
scale of the linearised problem. More exactly, ours equations a

if the wavelength and this thickness have the same order of mag
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5 — Elastic film

We can find solutions with a real expression for AX (2 1is supposed
to be real). We just have to write :

A =1/C
X

where ¢ is the dimensionless celerity of the wave. (This celerity is defined
by the ratio C/CO)'

If the parameter nY is equal to zero, the state of rest is associa-
ted to the natural state of the elastic film (Y0=O). In the opposite case, at

rest, the tension of the film is different of zero.



6 — Wave velocity as a function of pulsation

If the parameter 1 1s greater than one, they are two modes of

propagation and if n

is lower than one, there is only one.



[ — SURFACE LISRE

7 - Wave velocity as a function of wave length

For the large wavelength the upper branch is approximate to the
3 3 2
solution associated to the free surface (C° = A). The lower branch of the
curve is caracterized by a limited speed of propagation. This limited cele-

rity is equal to n? - 1.
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8 = Influence of Yg
The curves C(A) are plotted with different values of the parameter nY.

This parameter is associated to the tension of the film at rest.

Only the second mode is modified for the small wavelength (nY is the
limit of C for zero limit of A )

The perturbation increase with n, and consequently the celerity of the
wave increase too.

The first mode is slightly modified for nY varying from O to 10.
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9 - In the case of a bottom located at a finite distance from the
surface, the solution must be written in the following form :
K vy Ky.y s (K .x- wt)
oo = AV
¢‘ = (¢ e -¢' e ) e

We obtain a wave equation in which appears to depth parameter nh



10 = For n = 1, the wave celerity is varying between 1 and a limit
whitch depends on Ny - This asymptotic value increases with the depth para-
meter nh. For n > 1, the same effect can be observed for each of the two

modes.
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11 - The comportment law of the viscoelastic film that we are going
to considere gives the surface tension Yas a function of 0 and of his time
derivatives. Then, the quantity [ becomes a complex number.

We must introduce a complex wave number and we have :

Ax = + 1 A,

1
c
where A is the dimensionless decay coefficient.

We obtain two equations of degree three in 8 from the separation
of the real and imaginary parts of the wave equation.

We used a numerical and graphical proceeding to solve this system.



12 - If the parameter n 1is greater than unity, they are two modes
of propagation. This figure shows the influence of the viscoelastic coefficient
n, on these two modes and we note the presence of a singularity for

5<nv<10.




13 - This singularity is obvious in the plane (C,A) it is caracteri-

zed by an inversion of the two infinite branches of the curves between n, =5

and Nz = 9.
The other effect of M is the presence of an infinite value of the

wave celerity for A = 0.
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14 - The behaviour of the curves has been studied in the vicinity
of the singular point. The singular value of 7, can be located between

8,74 and 8,75.
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15 - The reduced decay coefficient A is represented here as a function
of reduced wave length A . The curves shows the two modes of propagation which

are obtained for n = 5 and the influence of the viscoelastic parameter 7 .
v
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16 — The
of n, shows the
is a stage during

the intersection.

shape of the three curves obtained for these three values
presence of the singular point. The formation of a

the evolution of the shape and explains the existence of
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17 - In fact, the behaviour in the immediate neighborough of the
singular point is caracterised by the exchange of branches. It is the same

way than a family of hyperbolic curves.

We can also say that this singularity is of saddle type.
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18 - This figure shows the influence of

reduced wave number :

-0

Ax =
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Expanding the scale, we observe the singular evolution.
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20 - Our study of permeable films beging with a very simple theoreti-—
cal case which is defined by the existence of a constant surface density. The

square of the wave celerity is then an homographic function of the wave length.
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21 - We obtain a single mode of propagation which is influenced by
the value of the parameter nY ; therefore by the value of the surface tension

Yo . When § increases, the wave celerity increases for a given value of A.
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22 - A more complex situation is obtained with a porous film, but the
configuration is certainly more realistic than the precedent one.

We have studied in a detailed way the following case caracterized by
a zero surface tension.

This exchange of matter between film and liquid gives a complex wave

number and consequently a decay coefficient.
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23 — This value and the corresponding value of the decay

o

coefficient A are plotted on the figure.



27

I}
A
il s
7/
7
&
s/
P
7
Y 4
4
//
s =10 7
16 il nP o’
o
L
7
,/
7
o
e
¥ 4
7
I/
7
5 : -~
¥ ’
P
P 2
L
’/
7
rd

\_~

= 05
0 1 I
0 5 10 Q

24 - We see here the shapes of the curves

of A with n,s; for a given Q.

A( Q). We observe a growth
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25 - The wave celerity varies from O to <« when the pulsation

grows from O to a limit § =,



26 - The evolution of C

wavelength.

is represented as a function of

reduced
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27 - We also obtain the curves A(A). None of these curves presents

any singularity.
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