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In this paper, we consider the scalar reaction-diffusion equations

. We show that the heteroclinic and homoclinic orbits connecting hyperbolic equilibria and hyperbolic periodic orbits are transverse, generically with respect to f . One of the main ingredients of the proof is an accurate study of the singular nodal set of solutions of linear parabolic equations. Our main result is a first step for proving the genericity of Kupka-Smale property, the generic hyperbolicity of periodic orbits remaining unproved.

Introduction

Let d ě 2 and let Ω Ă R d be a bounded domain of class C 2,γ , where 0 ă γ ď 1. Let p ą d be fixed, let X " L p pΩq and let ∆ D : Dp´∆ D q " W 1,p 0 pΩq X W 2,p pΩq ÝÑ X " L p pΩq be the Laplacian operator with homogeneous Dirichlet boundary conditions. Let α P p1{2 `d{2p, 1q, so that X α " Dpp´∆ D q α q ãÑ W 2α,p pΩq is compactly embedded in C 1 pΩq.

We consider the scalar parabolic equation $ & % B t upx, tq " ∆ D upx, tq `f px, upx, tq, ∇upx, tqq, px, tq P Ω ˆp0, `8q upx, tq " 0, px, tq P BΩ ˆp0, `8q upx, 0q " u 0 pxq P X α , (1.1) where f P C 2 pΩ ˆR ˆRd , Rq and upx, tq P R.

The local existence and uniqueness of classical solutions uptq P C 0 pr0, τ q, X α q of Equation (1.1), as well as the continuous dependence of the solutions with respect to the initial data u 0 in X α , are well known (see [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF] for example and Section 2 for more details). Thus, Eq. (1.1) generates a local dynamical system Sptq " S f ptq on X α . This dynamical system contains all the features of a classical finitedimensional system: equilibrium points and periodic orbits, stable and unstable manifolds. . . We recall the definition of these objects, the definition of hyperbolicity and of transversality in Section 3. There, we also present their construction in our framework. Notice that the realizations results of [START_REF] Dancer | Realization of vector fields and dynamics of spatially homogeneous parabolic equations[END_REF] and [START_REF] Poláčik | Imbedding of any vector field in a scalar semilinear parabolic equation[END_REF] show the possible existence of very complicated dynamics for (1.1), such as chaotic dynamics, as soon as d ě 2.

In what follows, for any r ě 2, we denote by C r the space C r pΩ ˆR ˆRd , Rq endowed with the Whitney topology, which is a Baire space (see Appendix A for definitions, including the one of generic subset). In fact, our result still holds if we embed C r with another reasonable topology, but the Whitney one is the most classical. See [START_REF] Golubitsky | Stable mapping and their singularities[END_REF] and Appendix A below for more details.

Our main result is as follows.

Theorem 1.1. Generic transversality of connecting orbits Let r ě 2 and let f 0 P C r . Let C 0 and C 0 be two critical elements of the flow of (1.1), i.e. C 0 are equilibrium points or periodic orbits, C 0 " C 0 being possible.

Assume that both C 0 and C 0 are hyperbolic. Then, there exists a neighborhood O of f 0 in C r and a generic set G Ă O such that: i) there exist two families C ´pf q and C `pf q of critical elements (either equilibrium points or periodic orbits) of the flow of (1.1), depending smoothly of f P O, such that C ˘pf 0 q " C 0 and C ˘pf q is hyperbolic for any f P O.

ii) for any f in the generic set G Ă O, the unstable manifold W u pC ´pf qq and the stable manifold W s pC `pf qq intersect transversally, i.e. W u pC ´pf qq&W s pC `pf qq.

Theorem 1.1 states the generic transversality of connecting orbits, i.e. heteroclinic and homoclinic orbits, between hpyerbolic critical elements (either equilibrium points or periodic orbits). See Figure 1 for an illustration of a typical transversal connecting orbit. This is a first step to obtain the genericity of Kupka-Smale property. Below in this introduction, we recall the historical background and previous results. We discuss about the missing ingredients to obtain the genericity of the whole Kupka-Smale property in Appendix C. If C ˘are hyperbolic, they admit stable and unstable manifolds. Theorem 1.1 states that, the transversality of uptq in this picture is a generic situation in the parabolic equation (1.1). Here C ´is a periodic orbit and C `is an equilibrium point. This situation is robust to perturbation and yields several important qualitative properties of the dynamics. See the third part of this introduction for the historical background and Section 3 for precise definitions.

Notice that we do not need to assume global existence of solutions in Theorem 1.1. Indeed, we consider closed and connecting orbits, which are by definition solutions uptq P X α of (1.1), which are defined for any time t P R and are also uniformly bounded for t P R. So, we do not really care about solutions of Eq. (1.1), which do not exist globally. If one wants that all solutions of (1.1) exist for 0 ď t ď 8, one has to introduce additional hypotheses on f (see [START_REF] Poláčik | Parabolic equations: asymptotic behavior and dynamics on invariant manifolds in Handbook of Dynamical Systems[END_REF] for instance).

We also enhance that our result may apply to settings different from (1.1). Typically, we can choose different boundary conditions or consider systems of parabolic equations. We discuss this kind of straightforward generalizations in Section 7.

Observability of trajectories, unique continuation and singular nodal sets. As in the classical case of generic transversality in ODEs, the proof of Theorem 1.1 consists in finding suitable perturbation of the non-linearity f for breaking the nontransversal orbits. Of course, even if the general patterns and the spirit of the proofs stay the same, working with PDE's instead of ODE's gives rise to several more or less delicate technical problems. For example, for proving generic properties, instead of using Thom's transversality theorem (as in [START_REF] Peixoto | On an approximation theorem of Kupka and Smale[END_REF]), we will apply a Sard-Smale theorem stated in Appendix B. Here, we want to emphasize that, in the case of PDE's, the main new difficulty arises in the construction of appropriate perturbations. When one wants to prove that a property is dense in the set of ODE's of the form 9 yptq " gpyptqq, for each g, one has to construct a particular perturbation εh with small ε such that the flow of 9

yptq " pg `εhqpyptqq satisfies the desired property. The vector field h of the perturbation can be chosen freely and localized, so that his support intersects the trajectory of yptq only in the neighborhood of ypt 0 q. In the case of PDE's, we have to construct a perturbation h of the nonlinearity such that the flow of B t upx, tq " ∆upx, tq `pf `εhqpx, upx, tq, ∇upx, tqq satisfies the desired property. Therefore, the perturbation h of the PDE's is of the form up¨q P X α Þ ÝÑ hp¨, up¨q, ∇up¨qq

Since two distinct functions u 1 and u 2 can take the same value pu 1 px 0 q, ∇u 1 px 0 qq " pu 2 px 0 q, ∇u 2 px 0 qq at a given x 0 P Ω, the perturbations of the form (1.2) are in general "non local" in X α . Given a particular trajectory uptq and a time t 0 , our strategy consists in constructing a perturbation (1.2), whose support, even if it is large, intersects upx, tq only around px 0 , t 0 q, which allows to consider (1.2) as a local perturbation. However, this construction is not straightforward and requires deep properties of the PDE. This problem is close to observability questions: how much information on a solution uptq can we get from the observation at one point x 0 of upx 0 , tq and ∇upx 0 , tq? To be able to prove Theorem 1.1, we will prove in Section 5 results of the following type.

Theorem 1.2. Injectivity properties of connecting orbits Let f P C 8 pΩ ˆR ˆRd , Rq. Let uptq be a heteroclinic or homoclinic orbit connecting two critical elements. Then there exists a dense open set of points px 0 , t 0 q P Ω ˆR such that the curve t Þ Ñ pupx 0 , tq, ∇upx 0 , tqq is one to one at t 0 in the sense that: i) pB t upx 0 , t 0 q, ∇B t upx 0 , t 0 qq ‰ 0,

ii) for all t P R, pupx 0 , tq, ∇px 0 , tqq " pupx 0 , t 0 q, ∇px 0 , t 0 qq ùñ t " t 0 .

The above result is a key property to be able to construct a suitable perturbation of the non-linearity f in the proof of Theorem 1.1. The following result is similar: it shows that the period of a periodic orbit of the parabolic equation may be observed very locally. This result is not required in the proof of our main theorem, but it may be interesting by itself and could be a key step to prove the generic hyperbolicity of periodic orbits (see the discussion of Appendix C).

Theorem 1.3. Pointwise observability of the period of periodic orbits Let f P C 8 pΩ ˆR ˆRd , Rq. Let pptq be a periodic solution of (1.1) with minimal period ω ą 0. Then there exists a dense open set of points px 0 , t 0 q P Ω ˆR such that pppx 0 , tq, ∇ppx 0 , tqq " pppx 0 , t 0 q, ∇ppx 0 , t 0 qq ùñ t P t 0 `Zω .

Notice that in dimension d " 1, the above results are true for all px 0 , t 0 q and not only for a dense subset (see [START_REF] Joly | Generic hyperbolicity of equilibria and periodic orbits of the parabolic equation on the circle[END_REF]).

To obtain these injectivity properties of px, tq Þ ÝÑ px, upx, tq, ∇upx, tqq, where uptq " S f ptqu 0 is a bounded complete trajectory of (1.1), we set vpx, t, τ q " upx, tq ´upx, t `τ q , and remark by using the equation (1.1) that vpx, tq is the solution of a linear parabolic equation with parameter of the form B t vpx, t, τ q " ∆vpx, t, τ q `apx, t, τ qvpx, t, τ q `bpx, t, τ q.∇ x vpx, t, τ q , (1.3) in the domain Ω of R d . The non-injectivity points of the image of px, upx, tq, ∇upx, tqq, px, tq P Ω ˆR, are described by the nodal singular set of (1.3), that is, the set of points px, t, τ q where vpx, t, τ q and ∇ x vpx, t, τ q both vanish. The singular nodal set of solutions of the parabolic equations, with coefficients independent of the parameter τ , have already been studied in [START_REF] Han | Nodal sets of solutions of parabolic equations[END_REF] and in [START_REF] Chen | A strong unique continuation theorem for parabolic equations[END_REF] for example. Here, generalizing an argument of [START_REF] Hardt | Nodal sets for solutions of elliptic equations[END_REF] and applying unique continuations results (recalled in Section 2), we prove the following theorem, see Section 4.

Theorem 1.4. Singular nodal sets for parabolic PDEs with parameter Let I and J be open intervals of R. Let a P C 8 pΩˆI ˆJ, Rq and b P C 8 pΩˆI ˆJ, R d q be bounded coefficients. Let v be a strong solution of (1.3) with Dirichlet boundary conditions. Let r ě 1 and assume that v is of class C r with respect to τ and of class C 8 with respect to x and t. Assume moreover that the null solution is not part of the family, that is that, there are no time t P I and parameter τ P J such that vp., t, τ q " 0.

Then, the set tpx 0 , t 0 q P Ω ˆI | E τ P J such that pvpx 0 , t 0 , τ q, ∇vpx 0 , t 0 , τ qq " p0, 0qu

is generic in Ω ˆI. In other words, the projection of all the singular nodal sets of the family of solutions vp¨, ¨, τ q is negligible in Ω ˆI.

Historical background: the Morse-Smale and Kupka-Smale properties.

The transversality of unstable and stable manifolds stated in Theorem 1.1 is related to the local stability of the qualitative dynamics. In the modeling of phenomena in physics or biology, we often work on approximate systems: some phenomena are neglected, only approximate values of the parameters are known, or we work with a discretized version of the system for simulation by computer. . . Therefore, it is important to know if such small approximations may qualitatively change the dynamics or not. Unfortunately, when perturbing general dynamical systems, drastic changes in the local or global dynamics can occur due for example to bifurcation phenomena. Thus, the common hope is that these bifurcations are rare, that is, that the systems, whose dynamics are robust under perturbations, are dense or generic. Here, we obtain the generic transversality of heteroclinic and homoclinic orbits between critical elements. Roughly, Theorem 1.1 says that if we consider two hyperbolic closed orbits of the flow of the parabolic equation (1.1) and if we observe a connecting orbit between them, then, "almost surely" this connection still remains after small perturbations of the system (numerical computation, changes of the parameters. . . ). Such stability questions have been extensively studied in the case of vector fields or iterations of maps. In 1937, Andronov and Pontrjagin introduced the fundamental notion of structurally stable vectors fields ("systèmes grossiers" or "coarse systems"), that is, vector fields X 0 which have a neighborhood V 0 in the C 1 -topology such that any vector field X in V 0 is topologically equivalent to X 0 . In 1959 ( [START_REF] Smale | On dynamical systems[END_REF]), Smale defined the class of nowadays called Morse-Smale dynamical systems on compact n´dimensional manifolds, that is, systems for which the non-wandering set consists only in a finite number of hyperbolic equilibria and hyperbolic periodic orbits and for which the intersections of the stable and unstable manifolds of equilibria and periodic orbits are all transversal. Peixoto ( [START_REF] Peixoto | Structural stability on two-dimensional manifolds[END_REF]) proved that Morse-Smale vector fields are dense and have structurally stable qualitative dynamics in compact orientable twodimensional manifolds. In 1968, Palis and Smale ([46], [START_REF] Palis | Structural stability theorems[END_REF]) proved the structural stability of the Morse-Smale dynamical systems in any dimension. However, the density of Morse-Smale systems fails in dimension higher than two, due to "Smale horseshoe". In 1963, Smale ([65]) and also Kupka ([41]) introduced the Kupka-Smale vector fields, that is, the vector fields for which all the equilibria and periodic orbits are hyperbolic and the intersections of the stable and unstable manifolds of equilibria and periodic orbits are all transversal. They both show the density of such systems in any dimension (see also [START_REF] Peixoto | On an approximation theorem of Kupka and Smale[END_REF]). The qualitative dynamics of Kupka-Smale systems are locally stable: periodic orbits, the local dynamics around them and their connections move smoothly when a parameter of the equation is changing.

For the partial differential equations (PDE's in short), the history of structural stability and of local stability is more recent. Notice that a trajectory of the dynamical system Sptq generated by such a PDE is of the form t Þ Ñ Sptqu 0 " up¨, tq, where upx, tq is the solution of the PDE with initial data u 0 pxq. In particular, the trajectory moves in a functions space (often a Sobolev space), which is infinite-dimensional. As a generalization of [START_REF] Palis | On Morse-Smale dynamical systems[END_REF] and [START_REF] Palis | Structural stability theorems[END_REF], [START_REF] Hale | An Introduction to Infinite Dimensional Dynamical Systems Applied Mathematical Sciences n o 47[END_REF] and [START_REF] Oliva | Openess and A-stability in Differential Equations and Dynamical Systems[END_REF] proved that Morse-Smale and Kupka-Smale properties are still meaningful in infinite-dimensional systems for the problem of stability of the qualitative dynamics. Therefore, there is a great interest in obtaining generalizations of the above mentioned finite-dimensional generic results. Notice that, if we want to get a meaningful genericity result, we have to allow perturbations only in the same class of PDE's. Typically, the parameter with respect to which the genericity is obtained is the non-linearity f .

The first example of transversality of unstable and stable manifolds for PDE's is due to Henry ([30]) in 1985 for the reaction-diffusion equation in the segment B t u " u xx `f px, u, u x q, px, tq P p0, 1q ˆp0, `8q

(1.4)

with Dirichlet, Neumann or Robin boundary conditions. More strikingly, he obtained the noteworthy property that the stable and unstable manifolds of two hyperbolic equilibria of (1.4) always intersect transversally. A key ingredient for proving this automatic transversality is the use of the non-increase of the "Sturm number" or "zero number" [START_REF] Sturm | Sur une classe d'équations à différences partielles[END_REF] of the solutions of the corresponding linearized parabolic equations. In addition to this automatic transversality, the gradient structure proved in [START_REF] Zelenjak | Stabilization of solutions of boundary value problems for a secondorder parabolic equation with one space variable[END_REF] shows the genericity of Morse-Smale property for the flow of (1.4) with separated boundary conditions. If we consider (1.4) with periodic boundary conditions, that is the parabolic equation on the circle S 1 B t u " u xx `f px, u, u x q, px, tq P S 1 ˆp0, `8q

(1.5) then the gradient structure fails but the flow of (1.5) still has particular properties equivalent to the ones of two-dimensional ODEs, such as the Poincaré-Bendixson property proved in [START_REF] Fiedler | A Poincaré-Bendixson theorem for scalar reaction-diffusion equations[END_REF] (the reader interested in the correspondence between the dynamics of (1.4) and the ones of low-dimensional ODEs may consider the review paper [START_REF] Joly | A striking correspondence between the dynamics generated by the vector fields and by the scalar parabolic equations[END_REF]). In 2008, still using the powerful tool of the "zero number", Czaja and Rocha ( [START_REF] Czaja | Transversality in scalar reaction-diffusion equations on a circle[END_REF]) proved that, for the parabolic equations on the circle (1.5), the stable and unstable manifolds of hyperbolic periodic orbits always intersect transversally.

In 2010, the second and third authors completed the results of Czaja and Rocha. More precisely, they proved in [START_REF] Joly | Generic hyperbolicity of equilibria and periodic orbits of the parabolic equation on the circle[END_REF] that the equilibria and periodic orbits are hyperbolic, generically with respect to the nonlinearity f . They also proved that the stable and unstable manifolds of hyperbolic critical elements C ´and C `intersect transversally, unless both critical elements C ´and C `are equilibria of same Morse index and moreover that, generically with respect to f , such connecting orbits between equilibria with the same Morse index ( [START_REF] Joly | Generic Morse-Smale property for the parabolic equation on the circle[END_REF]) do not exist. Finally, the Poincaré-Bendixson theorem of [START_REF] Fiedler | A Poincaré-Bendixson theorem for scalar reaction-diffusion equations[END_REF] yields that, generically with respect to f , the equation (1.5) is Morse-Smale (see [START_REF] Joly | Generic Morse-Smale property for the parabolic equation on the circle[END_REF]).

Concerning spatial dimension higher than d " 1, the generic transversality of stable and unstable manifolds has been shown in 1997 by the first author and P. Poláčik ([7]) in the case f " f px, uq, that is, for the equation

B t u " ∆u `f px, uq, px, tq P Ω ˆp0, `8q (1.6) 
with Ω Ă R d , d ě 2. As a consequence, since (1.6) is a gradient system, they deduce that, under additional dissipative conditions on the non-linearity, the Morse-Smale property holds for the flow (1.6) generically with respect to f P C 2 . It is noteworthy, as shown by Poláčik ([54]), that this generic transversality property is not true if one considers homogeneous functions f px, uq " f puq only.

We also mention that generic transversality properties have been shown by the authors for various gradient damped wave equations, see [START_REF] Brunovský | Genericity of the Morse-Smale property for damped wave equations[END_REF] and [START_REF] Joly | Generic transversality property for a class of wave equations with variable damping[END_REF].

Due to the realization results of Dancer and Poláčik, [START_REF] Dancer | Realization of vector fields and dynamics of spatially homogeneous parabolic equations[END_REF] and [START_REF] Poláčik | Imbedding of any vector field in a scalar semilinear parabolic equation[END_REF], we know that the dynamics of the flow of the general parabolic equation (1.1) in dimension d ě 2 may be as complicated as chaotic flows. We may only hope to prove the genericity of the Kupka-Smale property and not of the Morse-Smale one. Notice that the flow of (1.1) is not gradient (periodic orbits may exist) and the very particular and helpful "zero number property" of spatial dimension d " 1 fails. In the present paper, we prove the generic transversality property. The generic hyperbolicity of equilibrium points is already proved in [START_REF] Joly | Generic hyperbolicity of equilibria and periodic orbits of the parabolic equation on the circle[END_REF] in any space dimension. Thus, the generic hyperbolicity of periodic orbits is the only remaining step to obtain the genericity of the Kupka-Smale property. Some years ago, in a preliminary draft of this paper, we were convinced to have proved the genericity of the Kupka-Smale property. However, Maxime Percy du Sert pointed to us a gap in the proof of generic hyperbolicity of periodic orbits. We did not manage to fill it. Recently, two of the three authors passed away and we decided to publish the results as obtained together. In particular, we prove the generic transversality only (unlike claimed in [START_REF] Joly | A striking correspondence between the dynamics generated by the vector fields and by the scalar parabolic equations[END_REF]). In Appendix C, we quickly discuss our ideas to obtain the generic hyperbolicity of periodic orbits and indicate where the gap remains.

Plan of the article.

In Section 2, we recall the classical existence and uniqueness properties of the solutions of the scalar parabolic equation and the corresponding linear and linear adjoint equations. We also review unique continuation properties, which are fundamental in this paper. In Section 3, we remind some basic definitions such as hyperbolicity of critical elements and we state the main properties of the dynamical system S f ptq, namely the existence of C 1 immersed finite-codimensional (resp. finite-dimensional) stable (resp. unstable) manifolds of hyperbolic critical elements. Section 4 is devoted to the study of the singular nodal sets and to the proof of Theorem 1.4. In Section 5, we show that Theorem 1.4 leads to one-to-one properties such as Theorems 1.2 and 1.3. Using these tools, in Section 6, we prove Theorem 1.1, i.e. we show the generic transversality of heteroclinic and homoclinic orbits of the parabolic equation (1.1). Section 7 contains discussions about some generalizations of Theorem 1.1. We conclude by two appendices recalling the basic facts about the Whitney topology and Sard-Smale theorems, which will be used in this paper, and one appendix discussing the still open problem of generic hyperbolicity of periodic orbits of (1.1).

Dedication: Very sadly, both Pavol Brunovský and Geneviève Raugel passed away before the publication of this article, respectively in december 2018 and in may 2019. They were still working actively on the manuscript and the present version is exactly the one which have been completed by them. This article is dedicated to their memories.
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2 Some basic results on parabolic PDEs The solutions of the scalar parabolic equation (1.1) exist locally and are unique, see for example [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF] or [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF]. In the whole paper, α belongs to the open interval p 1 2 `d 2p , 1q. We recall that we use the notation f P C r pE, Rq to indicate the regularity of f , i.e. to say that the function f : E Ñ R is of class C r . Where a topology is required (smooth dependences on f etc.), the notation C r pE, Rq refers to the space C r pE, Rq endowed with the Whitney topology (see Appendix A). Proposition 2.1. Let r ě 1 and f P C r pΩ ˆR ˆRd , Rq.

i) For any u 0 P X α , there exists a maximal time T pu 0 q ą 0 such that (1.1) has a unique classical solution S f ptqu 0 " uptq P C 0 pr0, T s, X α q X C 1 pp0, T s, X β q X C 0 pp0, T s, Dp´∆ D qq, for any 0 ď β ă 1 and for any 0 ă T ď T pu 0 q. If T pu 0 q is finite, then }uptq} X α goes to `8 when t ă T pu 0 q tends to T pu 0 q.

Moreover, t Þ Ñ B t uptq is locally Hölder continuous from p0, T s into X β , for 0 ď β ă 1. In particular, up¨q " S f p¨qu 0 belongs to the space C 0 pp0, T s, W 3,p pΩqqX C 1 pp0, T s, W s,p pΩqq, for any s ă 2, and thus belongs to the spaces C 0 pp0, T s, C 2 pΩqqX C 1 pp0, T s, C 1 pΩqq and C 1 pΩˆrτ, T s, Rq, for any 0 ă τ ă T . If, in addition, the first derivatives D u f px, ¨, ¨q and D ∇u f px, ¨, ¨q are Lipschitz-continuous on the bounded sets of Ω ˆR ˆRd , then up¨q belongs to C 1 pp0, T s, W 2,p pΩqq X C 2 pp0, T s, W s,p pΩqq, for any s ă 2 and hence up¨q also belongs to C 2 pΩ ˆrτ, T s, Rq, for any 0 ă τ ă T .

ii) For any u 0 P X α , for any T ă T pu 0 q, there exist a neighborhood U " UpT q of u 0 in X α and a neighborhood V " VpT q of f in C 1 such that, for any v 0 P U and any g P V, vptq " S g ptqv 0 is well defined on r0, T s, depends continuously on v 0 P X α and g P C 1 , and there exists a positive number R " RpT, U, Vq such that ppS g ptqv 0 qpxq, p∇S g ptqv 0 qpxqq belongs to the ball B R d`1 p0, Rq, for all pt, v 0 , g, xq P r0, T s ˆU ˆV ˆΩ.

iii) Moreover, for any u 0 P X α , for any T ă T pu 0 q, the map pt, u 0 q P p0, T s ˆU Þ Ñ S f ptqu 0 P X α is of class C r and, in particular, S f ptq is a local semigroup of class C r . In addition, there exists a neighborhood W of f in the space C r pΩ r´2R, 2Rs ˆr´2R, 2Rs d , Rq such that the map pt, u 0 , gq P p0, T s ˆU ˆW Þ Ñ S g ptqu 0 P X α is of class C r .

Remarks:

1) The statement (i) is a direct consequence of the existence and regularity results given in [31, Chapter 3] and of elliptic regularity properties. We only want to emphasize that, since the solution up¨q " S f p¨qu 0 belongs to C 0 pr0, T s, X α q and that X α is continuously embedded in C 1 pΩq, up¨q automatically belongs to the space C 0 pr0, T q, C 1 pΩqq. Since up¨q is a classical solution and belongs to C 0 pp0, T s, W 2,p pΩqq X C 1 pp0, T s, W 1,p pΩqq, f px, u, ∇uq ´Bt u is in the space C 0 pp0, T s, W 1,p pΩqq and the regularity properties of the elliptic equation

∆ D u " B t u ´f px, u, ∇uq ,
imply that up¨q belongs to the space C 0 pp0, T s, W 3,p pΩqq Ă C 0 pp0, T s, C 2 pΩqq.

2) Statements (ii) and (iii) are also easy consequences of [31, Theorem 3.4.4 and Corollary 3.4.5]. We want to point out that, for any u 0 P X α and any 0 ă T ă T pu 0 q, there exists R 0 ą 0 such that pupx, tq, ∇upx, tqq, for all px, tq P Ω ˆr0, T s is bounded in R d`1 by a positive number R 0 " R 0 pu 0 , T q. Since gpx, upx, tq, ∇upx, tqq depends only on the values of x, upx, tq and ∇upx, tq, we can show, by applying the continuity results of [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF]Section 3.4], that, for any R ą R 0 , for any 0 ă ε ă pR ´R0 q{2, there exists a positive number η such that, for any gp¨, ¨, ¨q P C r pΩ ˆr´R, Rs ˆr´R, Rs d , Rq, η-close to f in the classical norm of C r pΩ ˆr´R, Rs ˆr´R, Rs d , Rq, ppS g ptqu 0 qpxq, p∇S g ptqu 0 qpxqq belongs to the ball B R d`1 p0, R 0 `εq, for all px, tq P Ω ˆr0, T s.

3) Notice that the statement (ii) of Proposition 2.1 implies that the maximal time T pu 0 q is a lower-semi-continuous function of the initial data u 0

As we have already seen, the parabolic equation has a smoothing effect at any finite positive time. If the boundary of the domain Ω was of class C 8 and f belonged to C 8 pΩ ˆR ˆRd , Rq, the solutions of Eq.(1.1) would be in C 8 pΩ ˆrτ, T s, Rq for any 0 ă τ ă T ă T pu 0 q. However, if f P C 8 pΩ ˆR ˆRd , Rq, we can still show that the solutions are regular in the interior of Ω, even if Ω is of class C 2,α only.

In the whole paper, we say that uptq : t P R Þ Ñ uptq is a bounded complete solution (or trajectory) of (1.1) if it is a solution of (1.1), defined for any t P R and bounded in X α , uniformly with respect to t P R.

Since we are only interested in the regularity of the bounded complete solutions of (1.1), we will state a C 8 -regularity result for such solutions. Proposition 2.2. Assume that f belongs to C 8 pΩ ˆR ˆRd , Rq. Then, any bounded complete solution uptq of (1.1) belongs to C 8 pΩ ˆR, Rq. More precisely, for any open set O, such that O Ă Ω, for any R ą 0, any m P N, any k P N, and any q P r1, 8s, there exists a positive constant KpO, R, m, k, qq, such that any bounded complete solution uptq, with sup tPR }uptq} X α ď R, satisfies

sup tPR › › › › d k u dt k ptq › › › › W m,q pOq
ď KpO, R, m, k, qq .

(2.1)

Proof: We will not give all the details of the proof, but will indicate only the main arguments. The proof consists in a recursion argument with respect to k and m.

Let uptq be a bounded complete solution of (1.1) satisfying sup tPR }uptq} X α ď R.

First step: Since f belongs to C 8 pΩˆRˆR d , Rq, by [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF]Corollary 3.4.6], the function t P R Þ Ñ uptq P X α is of class C k , for any k P N and d k u dt k ptq P C 0 pR, X α X W 2,p pΩqq X C 1 pR, X β q, for any β ă 1, is a classical solution of the equation

d dt p d k u dt k q " ∆ d k u dt k `dk dt k pf px, u, ∇uqq . (2.2)
We notice that the term d k dt k pf px, u, ∇uqq can be computed by using the Faa Di Bruno formula [START_REF] Faa Di Bruno | Note sur une nouvelle formule du calcul differentiel Quarterly[END_REF] and its generalization [START_REF] Constantine | A multivariate Faa Di Bruno formula with applications[END_REF] as follows. We introduce the pd `1qdimensional vector wpx, tq " pu, ∇uqpx, tq, that is w 1 " u and w i`1 " B x i u. Using the generalized Faa Di Bruno formula ( [START_REF] Constantine | A multivariate Faa Di Bruno formula with applications[END_REF]), we can write,

d k dt k pf px, upx, tq,∇upx, tqqq " ÿ m j "1,|m|"1 D m w f px, wpx, tqq d k dt k pw j qpx, tq `ÿ 2ď|m|ďk D m w f px, wpx, tqq ÿ ppk,mq k!Π k j"1 " d j dt j w ‰ n j pn j !qr j !s |n j | " ÿ m j "1,|m|"1 D m w f px, wpx, tqq d k dt k pw j qpx, tq `gk px, tq (2.3) 
where ppk, mq " tpn 1 , . . . , n k ; 1 , . . . , k q | Ds P v1, kw, n i " i " 0 for 1 ď i ď n ´su and g k contains only derivatives with respect to t of order less or equal to k ´1. We notice that the estimate (2.1) for k " 0, m " 2 and q " p is a direct consequence of the hypothesis and of Proposition 2.1. Using (2.3), the fact that W 1,p pΩq is an algebra and the bound sup tPR }uptq} X α ď R, one shows by recursion on k that

sup tPR } d k u dt k ptq} W 2,p pΩq ď C 2 pR, kq , (2.4) 
where C 2 pR, kq is a positive constant depending only on R, k (and of f ). Like in the remarks following Proposition 2.1, the elliptic regularity properties allow also to deduce from Eq.(2.2) and from the estimate (2.4) that,

sup tPR } d k u dt k ptq} W 3,p pΩq ď C 3 pR, kq , (2.5) 
where C 3 pR, kq is a positive constant depending only on R, k (and of f ).

Second step: One easily shows, by recursion on n P N (and also k) that,

sup tPR } d k u dt k ptq} W 3`n,p pOq ď C 3`n pO, R, kq . (2.6) 
Indeed, let O j , j " 1, 2, . . . , n `1, be a sequence of regular open sets such that

O Ă O n`1 Ă O n`1 Ă O n Ă . . . Ă O j`1 Ă O j`1 Ă O j . . . Ă O 1 Ă O 1
Ă Ω and ϕ j , j " 1, 2, . . ., be a corresponding sequence of regular functions such that ϕ j pxq P r0, 1s, x P Ω, and ϕ j pxq " 0, for x P ΩzO j and ϕ j pxq " 1, for x P O j`1 . We recall that, by the remarks following Proposition 2.1, one already knows that the estimates (2.5) hold for any k P N. We remark that ϕ 1 u is a solution of the elliptic equation

∆pϕ 1 uq " ϕ 1 du dt `u∆ϕ 1 `2∇u ¨∇ϕ 1 ´ϕ1 f px, u, ∇uq (2.7) 
where ϕ 1 du dt `u∆ϕ 1 `2∇u ¨∇ϕ 1 ´ϕ1 f px, u, ∇uq belongs to W 3´1,p pO 1 q X W 1,p 0 pO 1 q. By the elliptic regularity results, ϕ 1 u belongs to W 3`1,p pO 1 q and sup tPR }ϕ

1 uptq} W 3`1,p pO 1 q ď C 3`1 pO 1 , R, 0, ϕ 1 q , (2.8) 
where C 3`1 pO 1 , R, 0, ϕ 1 q is a positive constant depending only on O 1 , R, ϕ 1 . Likewise, writing the elliptic equality satisfied by ∆pϕ 1 p d k dt k uqq and using the equalities (2.2) and (2.3), one shows, by recursion on k, that d k dt k pϕ 1 uq belongs to W 3`1,p pO 1 q and

sup tPR } d k dt k pϕ 1 uqptq} W 3`1,p pO 1 q ď C 3`1 pO 1 , R, k, ϕ 1 q , (2.9) 
where C 3`1 pO 1 , R, k, ϕ 1 q is a positive constant depending only on O 1 , R, k and ϕ 1 .

We notice that d k dt k pϕ 1 uqpxq " d k dt k upxq, for any x P O 2 . We next assume that d k dt k pϕ j uq belongs to W 3`j,p pO j q and that the estimates (2.8) and (2.9) hold with 1 replaced by j. Remarking that ϕ j`1 u is a solution of the elliptic equation

∆pϕ j`1 uq " ϕ j`1 du dt `u∆ϕ j`1 `2∇u ¨∇ϕ j`1 ´ϕj`1 f px, u, ∇uq (2.10) 
where ϕ j`1 du dt `u∆ϕ j`1 `2∇u¨∇ϕ j`1 ´ϕj`1 f px, u, ∇uq belongs to W 3`j´1,p pO j`1 qX W 1,p 0 pO j`1 q, we at once show that ϕ j`1 u belongs to W 3`j`1,ppO j`1 qXW 1,p 0 pO j`1 q and that the estimate (2.8) holds with 1 replaced by j `1. Likewise, one shows by recursion on k that d k dt k pϕ j`1 uq belongs to W 3`j`1,p pO j`1 q and that the estimate (2.9) holds with 1 replaced by j `1. Thus, we have proved by recursion on n and k that d k dt k puq belongs to W 3`n,p pOq and that the estimates (2.6) are satisfied.

The general estimate (2.1) is a direct consequence of the estimates (2.6) and the classical Sobolev embedding theorem.

The linear and linear adjoint equations

Let 0 ď s ă T and let ap¨q P C 1 pr0, T s, L 8 pΩqq and bp¨q P C 1 pr0, T s, W 1,8 pΩq d q. We consider solutions v of the linear parabolic equation v t px, tq "∆ D vpx, tq `apx, tqvpx, tq `bpx, tq.∇vpx, tq , t ą s, x P Ω, vpx, sq "v s .

(

In what follows, we denote Aptq the operator

Aptq " ∆ D `apx, tq. `bpx, tq.∇ .

Equation (2.11) arises either when one linearizes the parabolic equation (1.1) along a solution u, in which case we have

" apx, tq " f 1 u px, upx, tq, ∇upx, tqq bpx, tq " f 1 ∇u px, upx, tq, ∇upx, tqq (2.12) 
or when one considers the difference vptq " u 2 ptq ´u1 ptq between two solutions u 1 and u 2 of (1.1), in which case we have

# apx, tq " ş 1 0 f 1 u px, pθu 2 `p1 ´θqu 1 qpx, tq, ∇pθu 2 `p1 ´θqu 1 qpx, tqqdθ bpx, tq " ş 1 0 f 1 ∇u px, pθu 2 `p1 ´θqu 1 qpx, tq, ∇pθu 2 `p1 ´θqu 1 qpx, tqqdθ (2.13) 
Notice that, since f belongs to C 2 pΩ ˆR ˆRd , Rq, due to Proposition 2.1, in both cases the coefficients of (2.11) belong to C 1 pp0, T s, W 1,8 pΩqq. Since in what follows, we are mainly applying the results of this section to bounded complete trajectories, we can consider, without loss of generality, that the coefficients of (2.11) belong to C 1 pr0, T s, W 1,8 pΩqq.

Proposition 2.3. Let r P r1, 8q and let v s P L r pΩq. Equation (2.11) has a unique solution vptq " U pt, sqv s P C 0 prs, T s, L r pΩqqXC 1 pps, T s, L r pΩqqXC 0 pps, T s, W 2,r pΩqX W 1,r 0 pΩqq satisfying vpsq " v s . Moreover, v : t P ps, T s Þ Ñ vptq P X α is Hölder continuous and belongs to C 1 pps, T s, L q pΩqq X C 0 pps, T s, W 2,q pΩq X W 1,q 0 pΩqq for any q P r1, `8s. In particular v P C 0 pps, T s, C 1 pΩqq.

Proof: For the existence, uniqueness and regularity of the solution of vptq "

U pt, sqv s in C 0 prs, T s, L r pΩqq X C 1 pps, T s, L r pΩqq X C 0 pps, T s, W 2,r pΩq X W 1,r
0 pΩqq, we refer to [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF]Theorem 7.1.3]. To prove that vptq belongs to any space L q pΩq (and thus to X α ), we will use a bootstrap argument. Assume that v s belongs to L r pΩq and set r " r 0 . By [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF]Theorem 7.1.3], vps `δq P W 2,r 0 pΩq for any δ ą 0. If d ´2r 0 ď 0, then, vps `δq P W 2,r 0 pΩq Ă L q pΩq, for any positive number q ě 1, by the classical Sobolev embedding. If, d ´2r 0 ą 0, again by the Sobolev embedding theorem, vps `δq P W 2,r 0 pΩq Ă L r 1 pΩq, for r 1 " dr 0 {pd ´2r 0 q " r 0 `2r 2 0 {pd ´2r 0 q. We again apply [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF]Theorem 7.1.3] to deduce that vps `2δq P W 2,r 1 pΩq, for any δ ą 0. Again, if d ´2r 1 ą 0, we obtain that vpt `2δq P W 2,r 2 pΩq Ă L r 2 pΩq, for r 2 " dr 1 {pd ´2r 1 q ě r 1 `2r 2 1 {pd ´2r 1 q ě r 0 `2r 2 0 {pd ´2r 0 q `2r 2 1 {pd ´2r 1 q. Clearly, since the increment r Þ Ñ 2r{pd ´2rq is increasing until d ´2r ď 0, after a finite number of steps, we obtain that vptq P L q pΩq. Proposition 2.3 tells that Equation (2.11) generates a family of evolution operators U pt, sq on L p pΩq, which is extended to L r pΩq for any r ě 1.

Let now 1 ă p ă `8, which implies that X " L p pΩq is reflexive. Denote by p the conjugate exponent of p, that is, p ˚" p{pp ´1q; consider the adjoint space X ˚" pL p pΩqq ˚" L p ˚pΩq of X and the adjoint evolution operator U pt, sq ˚: X ˚Ñ X ˚. Let T ą 0; for ψ T P L p ˚pΩq, we define the function ψ : s P r0, T s Þ Ñ ψpsq " U pT, sq ˚ψT .

In general, ψpsq is only a weak ˚solution of the equation

B s ψpx, sq " ´∆D ψpx, sq ´apx, sqψpx, sq `divpbpx, sqψpx, sqq (2.14) 
with px, sq P Ω ˆp0, T q and with final data ψpT q " ψ T in the weak-˚sense. More precisely, s P r0, T q Þ Ñ ψpsq P X ˚is locally Hölder continuous, for each φ P X, xφ, ψpsqy Ñ xφ, ψ T y when s Ñ T ´and, for each φ P DpA ˚q, pφ, ψpsqq is differentiable on r0, T q with B t pφ, ψpsqq " pApsqφ, ψpsqq. Usually, ψpsq " U pT, sq ˚ψT is only a solution of (2.14) in a weak sense. But here, since ap¨q P C 1 pr0, T s, L 8 pΩqq and bp¨q P C 1 pr0, T s, W 1,8 pΩq d q, ψpsq is a strong solution of (2.14), as we shall see in the proposition below. Notice that (2.14) is a parabolic equation solved backwards in time.

Proposition 2.4.

1) With the above notations, ψpsq " U pT, sq ˚ψT belongs to C 1 pr0, T q, X ˚qXC 0 pr0, T q, W 2,p ˚pΩq X W 1,p 0 pΩqq. Moreover, it satisfies (2.14) in the strong sense and ψpsq belongs to C 1 pr0, T q, L q pΩqq X C 0 pr0, T q, W 2,q pΩq X W 1,q 0 pΩqq for any q ě 1. 2) Let ψT P X ˚. For any 0 ă η ă T , ψT´η " U pT, T ´ηq ˚pp´∆ D q α q ˚ψ T is well defined in X ˚. Hence, for s ă T ´η, ψpsq " U pT ´η, sq ˚ψ T ´η " U pT, sq ˚pp´∆ D q α q ˚ψ T belongs to C 1 pr0, T ´ηq, X ˚q X C 0 pr0, T ´ηq, W 2,p ˚pΩq X W 1,p 0 pΩqq and a strong solution of (2.14).

Proof: The first part of the proposition is a direct consequence of [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF]Theorem 7.3.1] on the existence and regularity of solutions for the adjoint equation and on the fact that the coefficients have the regularity ap¨q P C 1 pr0, T s, L 8 pΩqq and bp¨q P C 1 pr0, T s, W 1,8 pΩq d q. The fact that ψpsq belongs to any L q pΩq is proved by recursion as in Proposition 2.3.

To show the second part of the proposition, let ψT P X ˚and let ϕ P X " L p pΩq. By Proposition 2.3, U pT, T ´ηqϕ belongs to X α " Dpp´∆ D q α q and thus x ψT |p´∆ D q α U pT, T ´ηqϕy L p ˚,L p is well defined. Therefore, U pT, T ´ηq ˚pp´∆ D q α q ˚ψ T is well defined and belongs to L p ˚pΩq. To finish, we apply [31, Theorem 7.3.1] (or the first part of the proposition) to the initial data ψ T " U pT, T ´ηq ˚pp´∆ D q α q ˚ψ T .

Unique continuation properties

In this section, we recall some important unique continuation properties satisfied by the linear parabolic equation (2.11). We enhance that these properties will apply to solutions vptq P X α of (2.11) with coefficients given by (2.12) or (2.13). Hence, we may apply it to the difference of two solutions of the nonlinear parabolic equation (1.1). In particular, the unique continuation properties below will have fundamental consequences on the properties of the dynamics of (1.1), such as the injectivity of the flow.

The following result is a direct consequence of the backward uniqueness property stated in [4, Theorem II.1].

Proposition 2.5.

1) Let T ą 0. Let apx, tq P L 8 pΩ ˆp0, T qq and let bpx, tq P L 8 pΩ ˆp0, T qq d . Let vptq P L 2 pp0, T q, H 1 0 pΩqq be a solution of the linear parabolic equation (2.11). Then, vpT q " 0 in Ω if and only if v vanishes identically in p0, T q ˆΩ.

2) Likewise, assume that apx, tq P L 8 pΩ ˆp0, T qq, that bpx, tq P L 8 pΩ ˆp0, T qq d and that D x i bpx, tq P L 8 pΩ ˆp0, T qq d , 0 ď i ď d. Let ψptq P L 2 pp0, T q, H 1 0 pΩqq be a solution of the adjoint linear equation (2.14). Then, ψp0q " 0 in Ω if and only if ψ vanishes identically in p0, T q ˆΩ. Let now u 1 and u 2 be two solutions on the time interval r0, T s of the equation (1.1). We already remarked that vptq " u 2 ptq ´u1 ptq satisfies the linear equation (2.11) with the coefficients a and b given by (2.13). By Proposition 2.1, the coefficients a, b and the function vptq satisfy the regularity assumptions of the above proposition 2.5. Thus, if u 1 pT q " u 2 pT q, then u 1 " u 2 on r0, T s. This leads to state the following corollary.

Corollary 2.6. Let T ą 0. Let u 1 ptq and u 2 ptq be two solutions on the time interval r0, T s of the equation (1.1). If u 1 pT q " u 2 pT q, then u 1 ptq " u 2 ptq, for any t P r0, T s. In other terms, the local dynamical system S f ptq generated by (1.1) has the backward uniqueness property.

The following result is proved in [START_REF] Saut | Unique continuation for some evolution equations[END_REF] and shows that the set of the zeros of the solutions of the linear parabolic equation is a closed set with empty interior. Proposition 2.7. Let T ą 0, a and b be as in Proposition 2.5. We assume that vpx, tq P L 2 pp0, T q, H 2 pΩq X H 1 0 pΩqq is a solution of the linear parabolic equation (2.11). If vpx, tq vanishes on an open non-empty subset of Ω ˆp0, T q, then vpx, tq identically vanishes on Ω ˆp0, T q.

A similar result has been obtained for the strong solutions of the adjoint equation in [START_REF] Fabre | Uniqueness results for Stokes equations and their consequences in linear and non linear control problems[END_REF]Corollary 2.12]. Proposition 2.8. Let T ą 0. Let apx, sq P L 8 pΩ ˆp0, T qq and let bpx, sq P L 8 pΩ p0, T qq d . Let ψpsq P L 2 pp0, T q, H 2 pΩq X H 1 0 pΩqq be a solution of the adjoint equation (2.14). If ψpx, tq vanishes on an open non-empty subset of Ω ˆp0, T q, then ψpx, tq identically vanishes on Ω ˆp0, T q.

In the particular case of smooth solutions of (2.11) (typically if one considers global bounded solutions and a smooth non-linearity f ), we will need stronger properties on the zeros of the solutions in Section 4.

We say that v vanishes to infinite order in both the space and time variables at px 0 , t 0 q if, for any k ě 1, there is a constant C k ą 0, such that, for any px, tq P

Ω ˆr´T, 0s, |vpx, tq| ď C k p|x ´x0 | 2 `|t ´t0 |q k{2 . (2.15)
We shall often apply the following unique continuation result of Escauriaza and Fernández [START_REF] Escauriaza | Unique continuation for parabolic operators[END_REF].

Proposition 2.9. Assume that v P C 0 pp´T, 0s, C 2 pΩqqXC 1 pp´T, 0s, C 1 pΩqq is a solution of (2.11) and satisfies either homogeneous Dirichlet or homogeneous Neumann boundary conditions. Suppose that v vanishes to infinite order at px 0 , 0q in both the space and time variables in the sense of (2.15). Assume moreover that there exists a positive constant K such that for any px, tq P Ω ˆp´T, 0s,

|v t px, tq ´∆vpx, tq| ď Kp|∇vpx, tq| `|vpx, tq|q . (2.16)
Then, vpx, 0q vanishes for any x P Ω and therefore vpx, tq identically vanishes in Ω ˆr´T, 0s.

We say that v vanishes to infinite order in space at px 0 , t 0 q if, for any k ě 1, there is a constant

C k ą 0, such that |vpx, t 0 q| ď C k |x ´x0 | k .
(2.17)

From Proposition 2.9 and [2, Theorem 1], we deduce the following unique continuation result for solutions v P C 0 pp´T, 0s, C 2 pΩqq X C 1 pp´T, 0s, C 1 pΩqq of (2.16), which vanish to infinite order in space. The following result can also be deduced from Proposition 2.9, a simple computation and, a recursion argument when vpx, tq is a C 8 -function in the variables px, tq. Indeed, if for example vpx, t 0 q vanishes to order 2 (resp. 4) in space at px 0 , t 0 q, then, due to the equation (2.11), v t px, t 0 q vanishes to order 0 (resp. 2) in space at px 0 , t 0 q. Moreover, if vpx, t 0 q vanishes to order 4 in space at px 0 , t 0 q, deriving the equation (2.11) with respect to t, one shows that v tt px, tq vanishes at order 0 in space. Finally, continuing the recursion argument on k and on the derivatives with respect to t, one shows that v vanishes to infinite order at px 0 , t 0 q in both the space and time variables in the sense of (2.15)

Proposition 2.10. Assume that v P C 0 pp´T, 0s, C 2 pΩqqXC 1 pp´T, 0s, C 1 pΩqq satisfies the inequality (2.16) and either homogeneous Dirichlet or homogeneous Neumann boundary conditions. Suppose also that v vanishes to infinite order in space at px 0 , 0q, for some x 0 P Ω. Then, vpx, 0q vanishes for any x P Ω and therefore vpx, tq identically vanishes in Ω ˆr´T, 0s.

3 The local infinite-dimensional dynamical system S f ptq

In this section, we recall some basic properties of the local dynamical system S f ptq generated by the parabolic equation (1.1) on X α (if the dependence on f is clear, we simply write Sptq). As we have seen in the introduction, the hyperbolicity of the critical elements (that is, the equilibrium points and periodic orbits) and the transversality of the stable and unstable manifolds play a primordial role. Thus, we will focus on recalling the definitions and main properties of these objects.

Critical elements and hyperbolicity

Let e P X α be an equilibrium point of (1.1). The linearization pD u Sptqeq of the dynamical system Sptq at e is given by the linear semigroup e Let on X α , where L e : Dp∆ D q Þ Ñ L p pΩq is the linear operator defined by

L e v " ∆ D v `f 1 u px, epxq, ∇epxqqv `f 1 ∇u px, epxq, ∇epxqq.∇v .
The operator ´Le is a sectorial operator and a Fredholm operator with compact resolvent. Therefore, the spectrum of L e consists of a sequence of isolated eigenvalues of finite multiplicity, the norms of which converge to infinity. Since the resolvent of L e : X Ñ X is compact, the linear C 0 -semigroup e Let from X into X is compact and its spectrum consists of a sequence of isolated eigenvalues of finite multiplicity converging to 0. By [49, Chapter 2, Theorem 2.4], µ is an eigenvalue of e Le if and only if µ " e λ , where λ is an eigenvalue of L e . Definition 3.1. The equilibrium point e is said simple if 1 does not belong to the spectrum of e Le . The equilibrium point e is hyperbolic if e Le has no spectrum on the unit circle S 1 " tz P C | |z| " 1u.

In the case of the equation (1.1), we may equivalently say that the equilibrium point e is simple if and only if 0 is not an eigenvalue of L e and that it is hyperbolic if and only if L e has no eigenvalue with zero real part.

The Morse index ipeq is the (finite) number of eigenvalues of e Le of norm strictly larger than 1 (counted with their multiplicities) or equivalently the number of eigenvalues of L e with positive real part.

Let pptq be a periodic solution of the scalar parabolic equation (1.1) with period ω ą 0. This periodic solution describes the periodic orbit Γ " tpptq | t P r0, ωqu. The linearization of the dynamical system Sptq along pptq is given by the evolution operator Π f,p pt, sq : v s P X α Þ Ñ vptq P X α , t ě s, where vpτ q solves the nonautonomous equation " B τ vpx, τ q " ∆vpx, τ q `f 1 u px, p, ∇pqvpx, τ q `f 1 ∇u px, p, ∇pq∇vpx, τ q vpx, sq " v s pxq .

(3.1)

The operator Π f,p pω, 0q is called the (corresponding) period map. One remarks that Π f,p pt `ω, tq " Π f,p pt `mω, t `pm ´1qωq for any t ě 0 and any m P N. Notice that B t pptq is a solution of (3.1) and thus that 1 is an eigenvalue of Π f,p pω, 0q with eigenvector B t pp0q. We emphasize that, due to the smoothing properties in finite positive time of the parabolic equation (3.1), the operator Π f,p pt, sq : X α Ñ X α , t ą s, is compact. Therefore, the spectrum of Π f,p pt `ω, tq consists of a sequence of isolated eigenvalues of finite multiplicity, converging to 0. As for the linearized operator e Le at the equilibrium point e, 0 is the only point where the spectrum of Π f,p pt `ω, tq accumulates. Actually, by the backward uniqueness property, 0 is not an eigenvalue neither of e Le , nor of Π f,p pt`ω, tq. By [31, Lemma 7.2.2], the spectrum σpΠ f,p pt `ω, tqq of Π f,p pt `ω, tq is independent of t P r0, `8q. For this reason, the following definition makes sense.

To simplify the notation, when there is no confusion, we will simply write Πpt, sq instead of Π f,p pt, sq. Definition 3.2. A periodic solution pptq of period ω is simple or non-degenerate if the number 1 is a simple (isolated) eigenvalue of Π f,p pω, 0q.

The periodic solution pptq is hyperbolic if Π f,p pω, 0q has no spectrum on the unit circle S 1 except the eigenvalue one, which is simple and isolated.

Since Π f,p pω, 0q is a compact operator, the periodic solution pptq is hyperbolic if and only if 1 is a simple, isolated eigenvalue of Π f,p pω, 0q and is the only eigenvalue on the unit circle.

The Morse index ippq of pp¨q, or the Morse index ipΓq of Γ, is the (finite) number of eigenvalues of Π f,p pω, 0q of norm strictly larger than 1 (counted with their multiplicities).

In what follows, we will sometimes say that the periodic orbit Γ " tpptq | t P r0, ωqu is simple (resp. hyperbolic), instead of saying that pptq is simple (resp. hyperbolic).

A first important consequence of the simplicity property is the persistence of equilibrium points and periodic orbits under perturbations. Theorem 3.3. Let r ě 2 be given and let f 0 P C r .

1) Let e 0 be a simple equilibrium point of (1.1) with f " f 0 . There exist a neighborhood N of f 0 in C r and a neighborhood U of e 0 in X α such that, for any f P N , there exists a unique equilibrium point epf q in U. This equilibrium depends continuously on f P C r . In addition, the eigenvalues of L epf q continuously depend on f P C r .

Moreover, if e 0 is hyperbolic, the neighborhoods N and U can be chosen small enough so that epf q is also hyperbolic and so that the Morse index ipeq is equal to ipe 0 q.

2) Let p 0 ptq be a simple periodic solution with period (resp. minimal period) ω 0 of (1.1) for f " f 0 . There exist a neighborhood N of f 0 in C r , a positive number η and a neighborhood U of Γ 0 " tp 0 ptq | t P r0, ω 0 qu in X α such that, for any f P N , there exists a unique periodic orbit Γpf q " tppf qptq | t P r0, ωpf qqu in U, of period (resp. minimal period) ωpf q with |ωpf q ´ω0 | ď η. The period ωpf q and the periodic orbit Γpf q continuously depend on f . In addition, the eigenvalues of Π f,ppf q pωpf q, 0q continuously depend on f P C r .

Moreover, if f 0 is hyperbolic, the neighborhoods N and U and η ą 0 can be chosen small enough so that the periodic solution ppf qptq is hyperbolic and so that the Morse index ipppf qq is equal to the Morse-index ipp 0 q.

Proof: The first statement about the persistence of simple equilibria e 0 is very classical. Assume that }e 0 } L 8 ď m and }∇e 0 } L 8 ď m. Then, applying the implicit function theorem or the fixed point theorem of strict contraction (see the proof [7, Lemma 4.c.2]), one shows that there exist a neighborhood N 0 of f 0 in C r pΩ r´2m, 2ms ˆr´2m, 2ms d q and a neighborhood U of e 0 in X α such that for any f P N 0 , there exists a unique equilibrium point epf q in U. This equilibrium depends continuously of f P N 0 and, moreover, all the other properties of the first statement hold. Using the restriction mapping R of Section 2.1, we conclude that there exists a neighborhood N of f 0 in C r such that, for any f P N , there exists a unique equilibrium point epf q in U and that all the other properties of the first statement hold.

Let p 0 ptq be a simple periodic solution of period ω 0 ą 0 of (1.1) for f " f 0 . Assume that sup tPr0,ω 0 q }p 0 ptq} L 8 ď m and sup tPr0,ω 0 q }∇p 0 ptq} L 8 ď m. The statement of the persistence of a simple periodic solution p f ptq near p 0 ptq with period ω f close to ω 0 and also of the uniqueness (up to a time translation) of this periodic solution, if f belongs to a small enough neighborhood of f 0 in C r pΩ ˆr´2m, 2ms ˆr´2m, 2ms d q, is a direct consequence of [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF]Theorem 8.3.2]; it is proved by using the method of Poincaré sections and the implicit function theorem or the fixed point theorem of strict contraction (for further results in the case where the perturbations are less regular, see also [START_REF] Hale | A modified Poincaré method for the persistence of periodic orbits and applications[END_REF] and [START_REF] Hale | Persistence of periodic orbits for perturbed dissipative dynamical systems[END_REF]). One concludes like in the proof of the statement 1) by using the restriction mapping R of Section 2.1.

The continuous dependence of the eigenvalues of L epf q or of Π f,ppf q pωpf q, 0q with respect to f P C r is a consequence of the proof of the continuity results of Kato (see [40, Theorems IX.24, IV.31, IV.3.18]) and of the properties of the restriction mapping R. Detailed proofs of continuity of the point spectrum can also be found in [START_REF] Hale | Convergence in gradient-like systems[END_REF]Section 3].

Notice that a periodic solution pptq of period ω can be simple, whereas the same periodic solution pptq, considered as periodic solution of period nω can be nonsimple. This is the case when the spectrum of Π f,p pω, 0q contains a n-th root of 1. Thus, in the statement 2) of Theorem 3.3, when p 0 ptq is a simple periodic solution of period ω 0 of (1.1) for f " f 0 , we do not know if Γpf q " tppf qptq | t P r0, ωpf qqu is the unique periodic orbit of (1.1) in the neighborhood U of Γ 0 if f belongs to N . Indeed,if the spectrum of Π f 0 ,p 0 pω 0 , 0q contains a n-th root of unity, then it is possible that new periodic orbits of period close to nω 0 are created (in the case where n " 2, it is the famous "period-doubling bifurcation").

Of course, when p 0 ptq is hyperbolic, no such new periodic solutions can be created and Γpf q is still isolated in the set of periodic orbits. Hyperbolicity is a notion independent of the chosen period.

Stable and unstable manifolds

We recall that a critical element means either an equilibrium point or a periodic orbit of (1.1). Definition 3.4. Let C be a critical element of (1.1). The global stable and unstable sets of C are respectively defined as

W s pCq " tu 0 P X α | S f ptqu 0 Ý ÝÝÝ Ñ tÑ`8
Cu , W u pCq " tu 0 P X α | @ t ď 0, S f ptqu 0 is well defined and S f ptqu 0 Ý ÝÝÝ Ñ tÑ´8 Cu .

Likewise, if U C is a neighborhood of C in X α , we introduce the local stable and unstable sets of C defined as W s pC, U C q " W s loc pCq " tu 0 P U C | S f ptqu 0 P U C , t ě 0u , W u pC, U C q " W u loc pCq " tu 0 P U C | @ t ď 0, S f ptqu 0 is well defined and stays in U C u.

If we need to specify the dependence with respect to the non-linearity f , we will denote these manifolds as W s pC, U C , f q and W u pC, U C , f q or as W s loc pC, f q and W u loc pC, f q. Let e 0 be an equilibrium point of (1.1) and let pD u Sptqe 0 q " e Le 0 t be the corresponding linearized operator around e 0 . We denote by P u (resp. P s ) the projection in X α onto the space generated by the (generalized) eigenfunctions of e Le 0 corresponding to the eigenvalues with modulus strictly larger than 1 (resp. with modulus strictly smaller than 1). Let X α u " P u pX α q and X α s " P s pX α q. We have seen that, in the case of the parabolic equation (1.1), the Morse index of every hyperbolic equilibrium point is finite, which implies that P u pXq " P u pX α q.

The following theorem states the existence of the local stable and unstable manifolds near hyperbolic equilibrium points. The result is very classical. In the case of a vector field on a finite-dimensional compact manifold, we refer the reader to [START_REF] Abraham | Transversal mappings and flows[END_REF], [START_REF] Palis | Geometric theory of dynamical systems. An introduction[END_REF], [START_REF] Hirsch | Invariant manifolds[END_REF] for example, and in the infinite dimensional case, we refer to [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF], [START_REF] Hale | An Introduction to Infinite Dimensional Dynamical Systems Applied Mathematical Sciences n o 47[END_REF], [START_REF] Hale | Introduction to Functional Differential Equations[END_REF], [START_REF] Chen | Invariant Foliations for C 1 Semigroups in Banach Spaces[END_REF], [START_REF] Ruelle | Elements of Differentiable Dynamics and Bifurcation Theory[END_REF].

Theorem 3.5. Let f 0 be given in C r , r ě 2, and let e 0 be a hyperbolic equilibrium point of S f 0 ptq. Then there is a neighborhood U 0 of e 0 such that the local unstable manifold W u pe 0 , U 0 q (resp. the local stable manifold W s pe 0 , U 0 q) is a C r -submanifold of dimension ipe 0 q (resp. codimension ipe 0 q), which is tangent to X α u (resp. X α s ) at e 0 .

More precisely, there exist a neighborhood U 0 of e 0 in X α , two mappings h u pf 0 q " h 0 u : P u X α Ñ P s X α and h s pf 0 q " h 0 s : P s X α Ñ P u X α of class C r such that h 0 u p0q " 0, Dh 0 u p0q " 0, h 0 s p0q " 0, Dh 0 s p0q " 0 and W u loc pe 0 , f 0 q " W u pe 0 , U 0 , f 0 q " tv P U 0 | v " e 0 `Pu pv ´e0 q `h0 u pP u pv ´e0 qqu W s loc pe 0 , f 0 q " W s pe 0 , U 0 , f 0 q " tv P U 0 | v " e 0 `Ps pv ´e0 q `h0 s pP s pv ´e0 qqu .

(3.2)
Furthermore, the convergence rates to the origin are exponential. More precisely, there are positive constants k 1 , k 2 and constants 0 ă γ 2 ă 1 ă γ 1 , such that,

}S f 0 ptqx} X ď k 1 γ t 1 , @ t ď 0 , @ x P W u pe 0 , U 0 q , }S f 0 ptqx} X ď k 2 γ t
2 , @ t ě 0 , @ x P W s pe 0 , U 0 q .

(3.3)

In addition, the local stable and unstable manifolds "continuously" depend of the nonlinear map f . More precisely, there exists ρ ą 0 and, for any ε ą 0, there is a neighborhood N of f 0 in C r such that, for any f P N , S f ptq has a unique equilibrium point epf q in the ball B X α pe 0 , ρq of center e 0 and radius ρ in X α , and }epf q´e 0 } X α ď ε. Moreover, the corresponding local unstable and local stable manifolds of epf q are given by W u loc pepf q, f q " W u pepf q, U 0 , f q " tv P U 0 | v " epf q `Pu pv ´epf qq `hu pf qpP u pv ´epf qqqu W s loc pepf q, f q " W s loc pepf q, U 0 , f q " tv P U 0 | v " epf q `Ps pv ´epf qq `hs pf qpP s pv ´epf qqqu , where h u pf q : P u X α Ñ P s X α and h s pf q : P s X α Ñ P u X α are maps of class C r such that h u pf qp0q " 0, h s pf qp0q " 0 and }h u pf q ´h0 u } C r ď ε and }h s pf q ´h0 s } C r ď ε. Finally, for any f P N , the above constants k i , γ i are independent of f . Proof: We refer to [31, Theorems 5.2.1. and 5.2.2] for the existence of the local stable and unstable manifolds in the case of a hyperbolic equilibrium point of a parabolic equation. To obtain the last part of the Theorem, that is the smooth dependence with respect to f , we simply use a fixed point theorem with parameter. Indeed, the proof of Theorem 5.2.1 of [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF] consists in constructing the mappings h u and h s as fixed points of suitable contraction mappings. These maps depend smoothly on f and thus remain contractions mappings for f close to f 0 and their fixed points h u pf q and h s pf q depend smoothly on f . Notice that in general Dh u pf qp0q and Dh s pf qp0q do not vanish, but are only small of order ε.

Let ppx, tq be a hyperbolic periodic solution of (1.1) of minimal period ω ą 0, let Γ " tpptq | t P r0, ωqu be the associated orbit and let Πpt, 0q : X α Ñ X α , be the associated evolution operator defined by the linearized equation (3.1). We denote µ i , i P N, the eigenvalues of the period map Πpω, 0q. Since ppx, tq is a hyperbolic periodic solution, the intersection of the spectrum of Πpω, 0q with the unit circle S 1 of C reduces to the eigenvalue 1, which is a simple (isolated) eigenvalue. We recall that, if ppaq, a P r0, ωq, is another point of the periodic orbit, the spectrum of D u pS f pω, 0qppaqq coincides with the one of Πpω, 0q whereas the corresponding eigenfunctions depend on the point ppaq.

We denote P u paq (resp. P c paq, resp. P s paq) the projection in X α onto the space generated by the (generalized) eigenfunctions of D u pS f pω, 0qppaqq corresponding to the eigenvalues with modulus strictly larger than 1 (resp. equal to 1, resp. with modulus strictly smaller than 1).

Since a hyperbolic periodic orbit is a particular case of a normally hyperbolic C 1 manifold, we may apply, for example, the existence results of [START_REF] Bates | Existence and persistence of invariant manifolds for semiflows in Banach space[END_REF], [START_REF] Hirsch | Invariant manifolds[END_REF], [START_REF] Hirsch | Invariant manifolds[END_REF] or [59, Theorem 14.2 and Remark 14.3] and thus, we may state the following theorem. Other methods of proofs are also given in [START_REF] Abraham | Transversal mappings and flows[END_REF], [START_REF] Hirsch | Invariant manifolds[END_REF], [START_REF] Hale | An Introduction to Infinite Dimensional Dynamical Systems Applied Mathematical Sciences n o 47[END_REF], [START_REF] Hale | Introduction to Functional Differential Equations[END_REF] and [START_REF] Palis | Geometric theory of dynamical systems. An introduction[END_REF].

Theorem 3.6. Let f 0 be given in C r , r ě 2, and let Γ 0 " tp 0 ptq | t P r0, ω 0 qu be a hyperbolic periodic orbit of Eq. (1.1) of minimal period ω 0 ą 0.

1) There exists a small neighborhood U Γ 0 of Γ 0 in X α such that the local unstable and stable sets W u loc pΓ 0 q " W u pΓ 0 , U Γ 0 q " tu 0 P X α | S f 0 ptqu 0 P U Γ 0 , @t ď 0u W s loc pΓ 0 q " W s pΓ 0 , U Γ 0 q " tu 0 P X α | S f 0 ptqu 0 P U Γ 0 , @t ě 0u are (embedded) C 1 -submanifolds of X α of dimension ipΓ 0 q `1 and codimension ipΓ 0 q respectively.

2) Moreover, W s loc pΓ 0 q and W u loc pΓ 0 q are fibrated by the local strongly stable (resp. unstable) manifolds at each point p 0 paq P Γ 0 , that is, W s loc pΓ 0 q " Y aPr0,ω 0 q W ss loc pp 0 paqq , W u loc pΓ 0 q " Y aPr0,ω 0 q W su loc pp 0 paqq , where there exist positive constants r0 , κ 0 and κ 0 such that W ss loc pp 0 paqq "tu 0 P X α | }S f 0 ptqu 0 ´p0 pa `tq} X α ă r0 , @t ě 0 , lim tÑ8 e κ 0 t }S f 0 ptqu 0 ´p0 pa `tq} X α " 0u , W su loc pp 0 paqq "tu 0 P X α | }S f 0 ptqu 0 ´p0 pa `tq} X α ă r0 , @t ď 0 , lim tÑ´8 e κ 0 t }S f 0 ptqu 0 ´p0 pa `tq} X α " 0u .

(3.4)

For any a P r0, ω 0 q, W su loc pp 0 paqq (resp. W ss loc pp 0 paqq) is a C r -submanifold of X α of dimension ipΓq (resp. of codimension ipΓq `1) tangent at p 0 paq to P u paqX α (resp. P s paqX α ).

3) Finally, the local stable and unstable manifolds of the periodic orbit continuously depend on the nonlinear map f P C r .

We have seen that the local stable and unstable manifolds are C r graphs over P s X α and P u X α respectively. In general, the global stable and unstable manifolds are not embedded submanifolds of X α .

Adapting the proof of [31, Theorem 6.1.9], one easily shows the following result.

Theorem 3.7. Let f P C r , r ě 2, be given. 1) Let e 0 be a hyperbolic equilibrium point of (1.1). Then, the global unstable set W u pe 0 q (resp. global stable set W s pe 0 q) is an injectively immersed invariant manifold of class C r in X α of dimension (resp. of codimension) ipe 0 q.

2) Likewise, let Γ 0 " tp 0 ptq | t P r0, ω 0 su be a hyperbolic periodic orbit of minimal period ω 0 ą 0. Then, the global unstable set W u pΓ 0 q (resp. global stable set W s pΓ 0 q) is an injectively immersed invariant manifold of class C r in X α of dimension ipΓ 0 q `1 (resp. of codimension ipΓ 0 q).

Proof: We will give the proof in the case of a hyperbolic equilibrium e 0 , since the proof is very similar in the case of a hyperbolic periodic orbit.

Proof for the unstable manifold: For every m P N, we introduce the open set

U 0 pmq " tx P U 0 | S f ptqx is well defined, 0 ď t ď mu ,
where U 0 is the neighborhood of e 0 , in which the local stable and unstable manifolds are given as graphs (see Theorem 3.5). By Proposition 2.1, U 0 pmq is an open subset of U 0 and thus W u loc pe 0 q X U 0 pmq is an open subset of W u loc pe 0 q. We readily check that W u pe 0 q " Y `8 m"0 S f pmqpW u loc pe 0 q X U 0 pmqq .

Moreover, since W u loc pe 0 q is negatively invariant, we have, for any m P N, S f pmqpW u loc pe 0 q X U 0 pmqq Ă S f pm `1qpW u loc pe 0 q X U 0 pm `1qq . By Corollary 2.6, S f pmq is an injective map from U 0 pmq into X α . Moreover, by Proposition 2.5, for any x P U 0 pmq, D u S f ptqx is an injective map from X α into itself, thus S f pmq |U 0 pmq is an injective C r -immersion. By Theorem 3.5, W u loc pe 0 q is the image of an injective C r -map H u from the open ball B R k p0, 1q of center 0 and radius 1 of R k into X α , where k " ipe 0 q. Moreover, the derivative DH u pyq has rank k at each point y P B R k p0, 1q. We recall that H ´1 u pW u loc pe 0 q X U 0 pmqq is an open subset V pk, mq of B R k p0, 1q. It follows that S f pmqW u loc pe 0 q X U 0 pmqq is the image of the injective C r -immersion S f pmq˝H u : V pk, mq Ñ X α and thus is a C r -submanifold of dimension k. Since the invariance is obvious, Statement 1) is proved. Proof for the stable manifold: We first remark that W s pe 0 q " Y `8 m"0 S f pmq ´1pW s loc pe 0 qq .

Moreover, since W s loc pe 0 q is positively invariant, we have, for any m P N, S f pmq ´1pW s loc pe 0 qq Ă S f pm `1q ´1pW s loc pe 0 qq . As a consequence of the property (3.2) in Theorem 3.5, where h 0 s is a C r -map of P s X α into the k-dimensional space P u X α and where Dh 0 s p0q " 0, W s loc pe 0 q is actually represented as the set tv P U 0 | gpvq " 0u, where g : x P U 0 Þ Ñ gpxq P R k is a map of class C r and Dgpvq has constant rank k at every point v P g ´1p0q. By [31, Theorem 7.3.3], DS f pmqu has dense range at every point u P X α at which S f pmqu exists if pDS f pmquq ˚is injective. By Proposition 2.5, the adjoint equation (2.14) also satisfies the backward uniqueness property. Thus DS f pmqu has dense range at every point u P S f p´mqW s loc pe 0 q, which implies that, at every point u P pg ˝Sf pmqq ´1p0q, DpgpS f pmqquq has rank k. In other terms, the mapping v Ñ gpS f pmqvq is a submersion of constant rank k at every point u P pg ˝Sf pmqq ´1p0q. By a theorem on Page 12 of [START_REF] Marsden | Applications of global analysis in mathematical physics[END_REF] for example, pg ˝Sf pmqq ´1p0q is a C r -submanifold of X α of codimension k. Thus, since S f pmq is injective, W s pe 0 q is an injectively immersed manifold of codimension k. Since the invariance is obvious, Statement 2) is proved.

3.3

Transversality of connecting orbits

We use here the above concepts of stable and unstable manifolds of hyperbolic equilibrium points or periodic orbits. The definitions related to Theorem 1.1 are as follows.

Definition 3.8. Let C ˘be two hyperbolic critical elements. We say that W u pC ´q and W s pC `q intersect transversally (or are transverse) and we denote it by W u pC ´q&W s pC `q , if, at each intersection point u 0 P W u pC ´q X W s pC `q, T u 0 W u pC ´q splits, that is, contains a closed complement of T u 0 W s pC `q in X α .

It is important to notice that, in this paper, the complement of T u 0 W s in X α is always closed since T u 0 W u pC ´q is finite-dimensional. Also note that, by definition, manifolds which do not intersect are transverse. Definition 3.9. Let C ´‰ C `be two different hyperbolic critical elements. A trajectory uptq of Sptq is a heteroclinic orbit connecting C ´to C `if uptq P W u pC ´q X W s pC `q.

Let C be a hyperbolic critical element. A trajectory uptq of Sptq is a homoclinic orbit to C if uptq P W u pCq X W s pCq.

A heteroclinic or homoclinic orbit is transverse if the above intersections of stable and unstable manifolds are transverse.

Singular nodal sets for linear parabolic equations with parameter

In this section, we consider a general linear parabolic equation with parameter B t vpx, t, τ q " ∆vpx, t, τ q `apx, t, τ qvpx, t, τ q `bpx, t, τ q.∇ x vpx, t, τ q , (4.1) in a domain Ω of R d . We are interested in the singular nodal set of v, that is the points px, t, τ q where v and ∇ x v both vanish. To this end, we use techniques coming from [START_REF] Hardt | Nodal sets for solutions of elliptic equations[END_REF]. The singular nodal set of solutions of the parabolic equations, with coefficients independent of the parameter τ , has already been studied in [START_REF] Han | Nodal sets of solutions of parabolic equations[END_REF] and in [START_REF] Chen | A strong unique continuation theorem for parabolic equations[END_REF]. Notice that we assume that v is smooth in the variables px, tq P Ω ˆR, but this is not a restriction since this property holds in the applications, that we have in mind (see Section 5).

Theorem 4.1. Let I and J be open intervals of R. Let a P C 8 pΩ ˆI ˆJ, Rq and b P C 8 pΩ ˆI ˆJ, R d q be bounded coefficients. Let v be a strong solution of (4.1) with Dirichlet boundary conditions. Let r ě 1 and assume that v is of class C r with respect to τ and of class C 8 with respect to x and t. Assume moreover that there are no time t P I and no parameter τ P J such that vp., t, τ q " 0. Then, 1) M " tpx, t, τ q P Ω ˆI ˆJ | vpx, t, τ q " 0 , ∇ x vpx, t, τ q " 0u is contained in a countable union of C r ´manifolds of dimension d,

• either parametrized by t, τ and d ´2 components of x,

• or parametrized by τ and d ´1 components of x.

2) the set pT N Sq " tpx 0 , t 0 q P Ω ˆI | Eτ P J such that pvpx 0 , t 0 , τ q, ∇vpx 0 , t 0 , τ qq " p0, 0qu is generic in Ω ˆI.

Proof: We introduce the set M q " tpx, t, τ q PΩ ˆI ˆJ such that for all |α| ď q , D α x vpx, t, τ q " 0, and there exists α, so that |α| " q `1, D α x vpx, t, τ q ‰ 0 u .

By Proposition 2.10, if vpx, t, τ q vanishes at infinite order in x, then vp., t, τ q identically vanishes in Ω. By assumption, this is precluded. Thus, M " Y qě1 M q . And, without loss of generality, we can replace M by M q in Property 1) of Theorem 4.1. Let q ě 1 and px 0 , t 0 , τ 0 q P Ω ˆI ˆJ. Let us first prove that there exists ρ 0,q ą 0 such that Property 1) of Theorem 4.1 holds with Ω ˆI ˆJ replaced by the ball Bppx 0 , t 0 , τ 0 q, ρ 0,q q and M replaced by M q . Assume that px 0 , t 0 , τ 0 q P M q (otherwise the property is trivial). There exists a multi-index β with |β| " q ´1 such that HesspD β

x vpx 0 , t 0 , τ 0 qq ‰ 0. In particular, there exist i, j, 1 ď i, j ď d, such that the derivative D 2

x i x j pD β vpx 0 , t 0 , τ 0 qq ‰ 0. We next consider the D β x derivative of the equation (4.1). Since v vanishes at order |β| `1 at px 0 , t 0 , τ 0 q, we obtain the equality d dt D β vpx 0 , t 0 , τ 0 q " ∆ x pD β vpx 0 , t 0 , τ 0 qq .

Now two cases can occur:

• Either d dt D β vpx 0 , t 0 , τ 0 q " 0 and thus

ř d k"1 B 2 Bx 2 k pD β vpx 0 , t 0 , τ 0 qq " 0. In this case, if B 2
Bx 2 k pD β vpx 0 , t 0 , τ 0 qq " 0 for all k, then there exist i ‰ j, such that D 2

x i x j pD β vpx 0 , t 0 , τ 0 qq ‰ 0. By considering their i th and j th components, we see that ∇ x D x i pD β vpx 0 , t 0 , τ 0 qq and ∇ x D x j pD β vpx 0 , t 0 , τ 0 qq are linearly independent. If, on the contrary, there exists i such that B 2 Bx 2 i pD β vpx 0 , t 0 , τ 0 qq ‰ 0, then there also exists j ‰ i such that

B 2 Bx 2 i pD β vpx 0 , t 0 , τ 0 qq ˆB2 Bx 2 j pD β vpx 0 , t 0 , τ 0 qq ă 0 .
By considering their i th and j th components, we notice again that the vectors ∇ x D x i pD β vpx 0 , t 0 , τ 0 qq and ∇ x D x j pD β vpx 0 , t 0 , τ 0 qq are linearly independent.

To summarize, in all the cases, there exist i and j, such that the vectors ∇ x D x i pD β vpx 0 , t 0 , τ 0 qq and ∇ x D x j pD β vpx 0 , t 0 , τ 0 qq are linearly independent. This implies that there exists ρ 0,q ą 0 such that Bppx 0 , t 0 , τ 0 q, ρ 0,q q X pD x i D β vq ´1p0q X pD x j D β vq ´1p0q is an embedded C r ´submanifold M q px 0 , t 0 , τ 0 q in R d`2 of dimension d which contains all of Bppx 0 , t 0 , τ 0 q, ρ 0,q q X M q . This submanifold can be written as M q px 0 , t 0 , τ 0 q " tpx, t, τ q P Bppx 0 , t 0 , τ 0 q, ρ 0,q q such that px i , x j q " pΦ i ppx k q k‰i,j , t, τ q, Φ j ppx k q k‰i,j , t, τ qqu .

• Or d dt D β vpx 0 , t 0 , τ 0 q ‰ 0, then there exists i such that D 2 x i D β vpx 0 , t 0 , τ 0 q ‰ 0. Notice that, since D x i D β vpx 0 , t 0 , τ 0 q " 0, pD x i , D t qD β vpx 0 , t 0 , τ 0 q and pD x i , D t qpD x i D β vpx 0 , t 0 , τ 0 qq are linearly independent. Thus, there exists ρ 0,q ą 0 such that Bppx 0 , t 0 , τ 0 q, ρ 0,q q X pD x i D β vq ´1p0q X pD β vq ´1p0q is an embedded C r ´submanifold M q px 0 , t 0 , τ 0 q in R d`2 of dimension d, which contains all of Bppx 0 , t 0 , τ 0 q, ρ 0,q q X M q . This submanifold can be written as M q px 0 , t 0 , τ 0 q " px, t, τ q P Bppx 0 , t 0 , τ 0 q, ρ 0,q q such that px i , tq " pΦ i ppx k q k‰i , τ q, Φppx k q k‰i , τ qq ( .

To finish the proof of the first part of Theorem 4.1, notice that, since Ω ˆI ˆJ is separable, for any q ě 1, we can find a countable number of points px n,q , t n,q , τ n,q q ně1 such that Ω ˆI ˆJ " Y n Bppx n,q , t n,q , τ n,q q, ρ n,q q and therefore we have M Ă Y qě1 Y ně1 M n,q with M n,q " M q px n,q , t n,q , τ n,q q. Let P : px, t, τ q Þ Ñ px, tq be the canonical projection. Obviously, pT N Sq is the complementary of P M . To prove the second part of Theorem 4.1, it is thus sufficient to show that the projections of the manifolds M n,q obtained above have an image which is contained in a closed set of empty interior. For any n and q, P |Mn,q is a C r ´(and a fortiori a C 1 ´) map defined from a smooth manifold of dimension d into Ω ˆI Ă R d`1 . By the Sard theorem (see for example [1, page 41]), the set of regular values of this map is an open dense subset of Ω ˆI (without loss of generality, we may restrict the size of Bppx n,q , t n,q , τ n,q q, ρ n,q q in order to prove the openness property). Obviously, the derivative of P |Mn,q is never surjective and thus the regular values of this projection map are not in its image. Hence, P pM n,q q is contained in a closed set of empty interior, and property 2) of Theorem 4.1 follows from the inclusion M Ă Y qě1 Y ně1 M n,q . Corollary 4.2. Assume that the hypotheses of Theorem 4.1 hold. Assume moreover that a and b and v do not depend on τ . Then the set pN Sq " tx 0 P Ω | there does not exist t P I such that pvpx 0 , tq, ∇vpx 0 , tqq " p0, 0qu is generic in Ω.

Proof: Since the problem is now independent of τ , Property 1) of Theorem 4.1 becomes: M " tpx, tq P Ω ˆI | vpx, tq " 0 , ∇ x vpx, tq " 0u is contained in a countable union of manifolds of dimension d ´1, either parametrized by t and d ´2 components of x, or parametrized by d ´1 components of x. Then, Corollary 4.2 follows from a use of the Sard theorem like in the proof of Theorem 4.1. 5

One-to-one properties for global solutions

In this section, we use the properties of the singular nodal sets of the linearized equation (4.1) of Section 4 in order to prove one-to-one properties for bounded complete solutions of the parabolic equation (1.1). We recall that, in Section 2.4, we had deduced the backward uniqueness property of (1.1) from the backward uniqueness property of the linearized parabolic equation (2.11) with coefficients a and b given respectively by (2.12) and (2.13), where u 1 and u 2 are two solutions of (1.1) (see the proposition 2.5 and the corollary 2.6).

Our first result concerns the periodic orbits p. It states that, for almost every point px 0 , t 0 q P Ω ˆR, the value px 0 , ppx 0 , t 0 q, ∇ppx 0 , t 0 qq is not taken twice during a period. Notice that if Ω is the circle S 1 , this property holds for all the points px 0 , t 0 q, see [START_REF] Joly | Generic hyperbolicity of equilibria and periodic orbits of the parabolic equation on the circle[END_REF].

Proposition 5.1. Let f P C 8 pΩ ˆR ˆRd , Rq. Let pptq be a periodic solution of (1.1) with minimal period ω ą 0. Then there exists a dense open set of points px 0 , t 0 q P Ω ˆR such that i) pp t px 0 , t 0 q, ∇p t px 0 , t 0 qq ‰ p0, 0q ii) pppx 0 , t 0 q, ∇ppx 0 , t 0 qq ‰ pppx 0 , tq, ∇ppx 0 , tqq if t R t 0 `Zω Proof: First, since f is of class C 8 and p is a bounded complete solution, Proposition 2.2 implies that p P C 8 pΩ ˆR, Rq. We already noticed that p t satisfies (2.11) with coefficients a and b given by (2.12). Since f and p are of class C 8 , the coefficients a and b are also of class C 8 . Moreover, by Proposition 2.5, there exists no time s such that p t psq " 0. Thus, Corollary 4.2 implies that there is a generic set of points x 0 P Ω such that pp t px 0 , tq, ∇p t px 0 , tqq ‰ p0, 0q, for any t P R.

Next, we set vpx, t, τ q " ppx, tq ´ppx, t `τ q, which solves (2.11) with coefficients given by (2.13). Again, we notice that v, a and b are infinitely differentiable with respect to x, t and τ . Moreover, if there exist t 1 P R and 0 ă τ 1 ă ω so that vp., t 1 , τ 1 q " 0, then by the backward uniqueness property of Corollary 2.6, vp., t, τ 1 q " 0, which means that pptq is periodic of period τ 1 ă ω and contradicts the fact that ω is the minimal period. Thus, we can apply Theorem 4.1 to v with I " R and J " p0, ωq to obtain a generic set of points px 0 , t 0 q P Ω ˆR such that the condition ii) holds. Therefore, both conditions i) and ii) are satisfied in a generic, and a fortiori dense, subset of Ω ˆR.

It remains to prove the openness. We consider the variable t modulo the period ω, that is we work on S " R{pZωq. Let px 0 , t 0 q P Ω ˆS satisfying i) and ii). There is an open neighborhood U of px 0 , t 0 q in which i) holds everywhere in U. Moreover, since i) holds, we may assume that for any px, tq and px, t 1 q in U, t ‰ t 1 , pppx, tq, ∇ppx, tqq ‰ pppx, t 1 q, ∇ppx, t 1 qq. The set of values tpppx 0 , tq, ∇ppx 0 , tqq, px 0 , tq R Uu is compact and does not contain pppx 0 , t 0 q, ∇ppx 0 , t 0 qq due to property ii). Hence, this set of values is at positive distance of the value pppx 0 , t 0 q, ∇ppx 0 , t 0 qq. Therefore, there exists a neighborhood V Ă U of px 0 , t 0 q such that, for any px 1 , t 1 q P V, pppx 1 , t 1 q, ∇ppx 1 , t 1 qq is not contained in tpppx 1 , tq, ∇ppx 1 , tqq, px 1 , tq R Uu. This shows that ii) holds in V and concludes the proof of the proposition.

We also need to separate a periodic orbit from any other (bounded) complete solution.

Proposition 5.2. Let f P C 8 pΩ ˆR ˆRd , Rq. Let pptq be a periodic orbit of (1.1) of minimal period ω or an equilibrium point, in which case we adopt the convention that p is a periodic solution with minimal period ω " 0. Let uptq be a bounded complete solution of (1.1), such that, pptq ‰ upsq, for any pt, sq P R 2 . Then there exists a dense open set of points px 0 , t 0 q P Ω ˆR such that pupx 0 , t 0 q, ∇upx 0 , t 0 qq ‰ pppx 0 , tq, ∇ppx 0 , tqq for all t P R.

Proof: The proof is very similar to the one of Proposition 5.1 and thus the details are left to the reader. We emphasize only a few arguments. Since f is of class C 8 and u, p are bounded complete solutions, Proposition 2.2 implies that p and u belong to the space C 8 pΩ ˆR, Rq. To prove the genericity of the points px 0 , t 0 q P Ω ˆR such that pupx 0 , t 0 q, ∇upx 0 , t 0 qq ‰ pppx 0 , tq, ∇ppx 0 , tqq for all t P R, we apply Theorem 4.1 to vpx, t, τ q " upx, tq ´ppx, t `τ q, with I " J " R. The function v satisfies the hypotheses of Theorem 4.1 and, in particular, due to the assumption of the proposition, there are no times t and τ such that vp., t, τ q " 0. To show the openness of the set of the points px 0 , t 0 q P Ω ˆR such that pupx 0 , t 0 q, ∇upx 0 , t 0 qq ‰ pppx 0 , tq, ∇ppx 0 , tqq for all t P R, one proceeds like in the proof of Proposition 5.1 by using the compactness of the set tpppx 0 , tq, ∇ppx 0 , tqq, t P Ru (but here the proof is even simpler, since we do not need to introduce the quotient S) As a particular case of the previous proposition, notice that we obtain the following result of separation of periodic orbits. In the case where Ω is the circle S 1 , the arguments of [START_REF] Czaja | Transversality in scalar reaction-diffusion equations on a circle[END_REF] show that this property holds for all the points px 0 , t 0 q (and not only for a dense open subset). The generalization to higher dimension is as follows.

Proposition 5.3. Let f P C 8 pΩ ˆR ˆRd , Rq. Let p 1 ptq and p 2 ptq be two periodic solutions of (1.1) of minimal periods ω 1 and ω 2 . Assume that they do not correspond to the same periodic orbit, that is that p 1 ptq ‰ p 2 psq for all pt, sq P R 2 . Then there exists a dense open set of points px 0 , t 0 q P Ω ˆR such that pp 1 px 0 , t 0 q, ∇p 1 px 0 , t 0 qq ‰ pp 2 px 0 , tq, ∇p 2 px 0 , tqq for all t P R.

The main dynamical result of this paper concerns heteroclinic and homoclinic orbits. We will need the following result.

Proposition 5.4. Let f P C 8 pΩ ˆR ˆRd , Rq. Let p ´ptq and p `ptq be two periodic solutions of (1.1) of minimal periods ω ´and ω `respectively. These periodic solutions may coincide or each one may be reduced to an equilibrium point, in which case we adopt the convention that the minimal period ω is equal to 0. Let uptq be a global solution of (1.1) connecting p ´ptq and p `ptq, that is,

uptq ´p˘p tq Ý ÝÝÝÝÝ Ñ tÝÑ˘8 0 .
Then there exists a dense open set of points px 0 , t 0 q P Ω ˆR such that i) pB t upx 0 , t 0 q, ∇B t upx 0 , t 0 qq ‰ p0, 0q ii) pupx 0 , t 0 q, ∇upx 0 , t 0 qq ‰ pupx 0 , tq, ∇upx 0 , tqq @ t ‰ t 0 iii) pupx 0 , t 0 q, ∇upx 0 , t 0 qq ‰ pp ˘px 0 , tq, ∇p ˘px 0 , tqq @ t P R Proof: Once again, the proof is very similar to the one of Proposition 5.1. We apply Theorem 4.1 to vpx, t, τ q " upx, tq ´upx, t `τ q with τ ă 0 and τ ą 0 to prove the density of Property ii); and to vpx, t, τ q " upx, tq ´p˘p x, t `τ q for the density of Property iii). To prove the openness of Properties ii) and iii), we fix a point px 0 , t 0 q such that i)-iii) hold. Due to i), there exists a neighborhood U " Bpx 0 , ρq ˆpt 0 ´δ, t 0 `δq of px 0 , t 0 q such that pupx, tq, ∇upx, tqq is injective in U. Then we use the compactness of tpupx 0 , tq, ∇upx 0 , tqq, t P p´8, t 0 ´δs Y rt 0 `δ, `8qu Y tpp ´px 0 , tq, ∇p ´px 0 , tqq, t P Ru Y tpp `px 0 , tq, ∇p `px 0 , tqq, t P Ru with arguments similar to the ones of the proof of Proposition 5.1.

Generic transversality of connecting orbits

To obtain the transversality of a connecting orbit as stated in Theorem 1.1, we need to show that we can perturb any parabolic semiflow S f ptq to another one, for which the considered stable and unstable manifolds intersect transversally. The construction of a suitable perturbation f `εg of f is the main difficulty in this task. Indeed, the global dynamical framework is classical and well understood in finite dimension. In Section 3, we have seen that the infinite dimension of X α does not really affect this framework. The main novelty in this paper lies in the construction of a suitable perturbation f `εg of f because we will need all the accurate PDE results proved in Sections 4 and 5.

A perturbation to make an orbit transverse

The first step consists in constructing a suitable perturbation g, which acts on a heteroclinic or homoclinic orbit uptq in a localized time interval only. In the following result, the one-to-one properties proved in Section 5 are crucial. Proposition 6.1. Let f P C 8 pΩ ˆR ˆRd , Rq and let uptq be a bounded complete solution connecting p ´ptq to p `ptq where p ˘ptq are two periodic solutions of minimal periods ω ˘. Notice that p ´" p `is possible and that p ˘could be equilibrium points in which case we use the convention ω ˘" 0. Let E be a compact subset of ΩˆRˆR d with non empty interior, let U be an open subset of Ω ˆR and let ψ P C 0 pU, Rq. Assume that there exists px 0 , t 0 q P U such that px 0 , upx 0 , t 0 q, ∇upx 0 , t 0 qq belongs to the interior of E and ψpx 0 , t 0 q ‰ 0.

Then, there exists a function h P C 8 pΩ ˆR ˆRd , Rq such that (i) the function h : Ω ˆR ˆRd Ñ R has a compact support contained in E, (ii) the function h ˝u : px, tq P Ω ˆR Þ ÝÑ hpx, upx, tq, ∇upx, tqq P R has a support contained in U,

(iii) we have ş ΩˆR ψpx, tqhpx, upx, tq, ∇upx, tqq dxdt ‰ 0. Proof: Since ψpx 0 , t 0 q ‰ 0 and px 0 , t 0 q P U, without loss of generality, by choosing U smaller, we may assume that ψ does not vanish in U. We set K "tpx, upx, tq, ∇upx, tqq, px, tq R Uu Y tpx, p ´px, tq, ∇p ´px, tqq, px, tq P Ω ˆRu Y tpx, p `px, tq, ∇p `px, tqq, px, tq P Ω ˆRu . Proposition 5.4 shows that there is a dense open set of points px, tq P U such that px, upx, tq, ∇upx, tqq does not belong to K. Up to perturbing our reference point, we can thus assume in addition that px 0 , upx 0 , t 0 q, ∇upx 0 , t 0 qq does not belongs to K. Notice that px 0 , upx 0 , t 0 q, ∇upx 0 , t 0 qq still belongs to the interior of E if our perturbation is small enough. Since K is compact, px 0 , upx 0 , t 0 q, ∇upx 0 , t 0 qq is in the interior of EzK. Hence, we claim that it is sufficient to choose h non-negative, with compact support in EzK and such that hpx 0 , upx 0 , t 0 q, ∇upx 0 , t 0 qq ą 0.

Property (i) holds by construction. For all px, tq R U, px, upx, tq, ∇upx, tqq P K and thus hpx, upx, tq, ∇upx, tqq " 0, showing (ii). Moreover, ψpx, tqhpx, u, ∇uq is not zero at px 0 , t 0 q and its sign is constant in U. These properties together with (ii) show that (iii) holds.

Űsing this perturbation g, we are able to perturb a non-transversal connecting orbit to a transversal one. Proposition 6.2. Let f 0 P C 8 pΩ ˆR ˆRd , Rq and let N 0 be any small open neighborhood of f 0 in the C r -Whitney topology (r ě 2). Let Γ ˘" tp ˘ptq | t P r0, ω ˘qu be two hyperbolic periodic orbits of minimal periods ω ˘ě 0 of S f 0 ptq, which may be not distinct and may be equilibrium points if ω ˘" 0.

Then there exists a function f P N 0 such that Γ ´and Γ `are still hyperbolic periodic orbits for S f ptq and the unstable manifold W u pΓ ´, f q of Γ ´intersects transversally the local stable manifold W s loc pΓ `, f q " W s loc pΓ `, f 0 q of Γ `.

Proof: We will prove the existence of a function f P N 0 satisfying the properties of Proposition 6.2 by applying the transversal density Theorem B.3 in Appendix B. First, notice that the larger the regularity r is, the more difficult is the result. Thus, without loss of generality we assume r ą dim W u pΓ ´q ´codim W s pΓ `q in the remaining part of the proof.

In what follows, E will be a regular compact subset of ΩˆRˆR d with non-empty interior. We denote by C r 0 pEq the subset of functions g P C r pΩ ˆR ˆRd , Rq, which identically vanish outside E; in fact, we identify C r 0 pEq with the space of functions in C r pE, Rq, for which the first r derivatives vanish on BE. We recall that the topology induced in C r 0 pEq by the Whitney topology coincides with the classical C r topology and thus that C r 0 pEq is actually a Banach space. The proof splits in several steps.

First step: construction of particular neighborhoods By theorems 3.5 and 3.6 and the remarks following both theorems, there exist two neighborhoods Ñ˘o f Γ ˘, for which the local stable and local unstable manifolds W s pΓ ˘, Ñ˘, f 0 q and W u pΓ ˘, Ñ˘, f 0 q of Γ ˘are well defined and such that Ñ´X Ñ`" H if Γ `‰ Γ ´. In the case where Γ `" Γ ´, Ñ`" Ñ´c an be chosen so that W u pΓ `, Ñ`, f 0 q X W s pΓ `, Ñ`, f 0 q " Γ `.

We would like to perturb f 0 to deform the global unstable manifold W u pΓ ´, f 0 q without changing the dynamics in Ñ˘. By construction, the part of W u pΓ ´, f 0 q outside Ñ´Y Ñ`i s a non-empty open subset of W u pΓ ´, f 0 q. The difficulty is that the nonlinearity f sees the phase space X α only through the projections by the evaluation map Ev : px, ϕq P Ω ˆXα Þ ÝÑ px, ϕpxq, ∇ϕpxqq P Ω ˆR ˆRd . (

We need to be sure that for all uptq connecting Γ ´to Γ `, not only uptq goes outside Ñ´Y Ñ`b ut also Evpuptqq goes outside Evp Ñ´Y Ñ`q . The local unstable manifold W u pΓ ´, Ñ´, f 0 q is an embedded finite dimensional manifold and its boundary Σ u

´" BW u pΓ ´, Ñ´, f 0 q is a compact set such that, for all trajectory ũptq belonging to the global unstable manifold W u pΓ ´, f 0 qzΓ ´, there exists a time t0 P R such that ũp t0 q P Σ u

´. Let σ P Σ u ´and consider the trajectory u σ ptq " S f 0 ptqσ, solution of (1.1) with initial data u σ pt " 0q " σ and nonlinearity f " f 0 . For all t ă 0, u σ ptq belongs to the local unstable manifold W u pΓ ´, Ñ´, f 0 q. Moreover, due to Proposition 5.2, there exists px σ , t σ q P Ω ˆRs uch that pu σ px σ , t σ q, ∇u σ px σ , t σ qq ‰ pp ˘px σ , tq, ∇p ˘px σ , tqq for all t P R, or equivalently tpx σ , u σ px σ , t σ q, ∇u σ px σ , t σ qqu X Ev `tx σ u ˆpΓ ´Y Γ `q˘" H .

Since tpx σ , u σ px σ , t σ q, ∇u σ px σ , t σ qu and tx σ u ˆpΓ ´Y Γ `q are compact sets and since Ev is continuous because X α is continuously embedded in C 1 pΩq, we can find r σ ą 0 and ρ σ ą 0 and neighborhoods N σ,˘Ă Ñ˘o f Γ ˘in X α such that

U σ :" B Ω px σ , r σ q ˆBR d`1 ppu σ px σ , t σ q, ∇u σ px σ , t σ qq, ρ σ q
and N σ,˘s atisfy min }ξ 1 ´ξ2 } ΩˆR d`1 | ξ 1 P U σ and ξ 2 P Ev `BΩ px σ , r σ q ˆpN σ,´Y N σ,`q ( ą 0 .

By continuity of Ev and of the flow S f ptq with respect to the initial data and with respect to f " f 0 `g, there are a neighborhood V σ of σ in X α and a neighborhood W σ of 0 in C r such that for any σ 1 P V σ and g P W σ , the trajectory S f 0 `gptqσ 1 has a projection Evptx 0 u ˆSf 0 `gptqσ 1 q contained in U σ for a non-empty open lapse of time.

We can proceed as above for any point σ P Σ u

´. By compactness of Σ u

´, it can be covered by a finite collection V σ 1 ,. . . , V σ N of neighborhoods of points σ 1 ,. . . , σ N . We set N ˘" X n N σn,˘a nd E " Y n U σn . Notice that E is a finite union of closed balls. Thus, C r 0 pEq is a well-defined Banach subspace of C r and we set W r " X n W un X C r 0 pEq. To summarize, our construction satisfies the following properties (see Figure 2):

1. The neighborhoods N ˘are small enough such that the local stable and local unstable manifolds W s pΓ `, N `, f 0 q and W u pΓ ´, N ´, f 0 q are well defined. Moreover, these local manifolds do not intersect if Γ `‰ Γ ´, or have an intersection reduced to Γ if Γ `" Γ ´" Γ.

2. For any f " f 0 `g where g P W r (in particular g is supported in the set E), the flow S f 0 `gptq is equal to the flow of S f 0 ptq in N ˘. In particular, we have

W s pΓ `, N `, f 0 q " W s pΓ `, N `, f 0 `gq and W u pΓ ´, N ´, f 0 q " W u pΓ ´, N
´, f 0 gq and the properties of 1. still hold when f 0 is perturbed to f " f 0 `g.

3.

For any f " f 0 `g where g P W r , for any global trajectory uptq " S f 0 `gptqup0q of the unstable manifold of Γ ´(Γ ´excluded), there exists px 0 , t 0 q P Ω ˆR and r ą 0 such that for all px, tq P B ΩˆR ppx 0 , t 0 q, rq, px, upx, tq, ∇upx, tqq belongs to the interior of E (which is the set where the perturbations g P W r can be constructed) and not in Evptxu ˆN˘q .

Second step: Application of the Sard-Smale transversality Theorem B.3 If f " f 0 `g, where g is close to 0 in C r 0 pEq, then f is close to f 0 in C r (equipped any heteroclinic orbits and does not meet the projections of N ˘A place where the projection of u σ is one-to-one and where it is easier to construct a suitable perturbation h to modify u σ projection intercepts the one of

The trace of the set E whose the space where the nonlinearities f are defined

N ´W u pΓ ´, N ´, f 0 q Γ `NΓ ´uσ ptq σ
Projection of X α by the evaluation Evpx σ , ¨q at the point x σ Figure 2: A figure illustrating the proof of Proposition 6.2. In the phase space, N ȃre small enough to define local dynamics and are disjoints in the heteroclinic case. The nonlinearity sees the dynamics only via the projections Evpx σ , ¨q by evaluating pu σ , ∇u σ q at a point x σ . In the first step, we construct a set E whose projections do not meet the ones of the neighborhoods N ˘of the closed orbits and such that, for all connecting orbit u σ , there is a point x σ such that the evaluation of u σ ptq at this point enters in E for an open lapse of times. The perturbation g of the nonlinearity f 0 will be supported on this set E to be able to modify any connecting orbits without modifying the closed orbits. Moreover, in the final step of our proof, we will also localize the perturbation in the place where the projection of u σ ptq has no self-intersection and where the modification of u σ ptq by a perturbation of the nonlinearity is easier to understand.

with the Whitney topology). Moreover, by construction, for any f " f 0 `g with g P W r , S f ptq has the same dynamics as S f 0 ptq in the neighborhoods N ˘of Γ ˘.

Therefore, Proposition 6.2 holds if we can find a function g P W r Ă C r 0 pEq as close to 0 as wanted such that W u pΓ ´, f 0 `gq intersects W s pΓ `, N `, f 0 q transversally. We recall that we did not assume global existence of solutions and thus the solutions in the unstable manifold may blow up. To overcome this technical problem, for all m ě 1, we introduce the sets

N m
´" tu 0 P N ´{ @g P W r , S f 0 `gptqu 0 is well defined for all t P r0, msu . The global orbit Γ ´is obviously contained in N m ´and we recall that ii) of Proposition 2.1 implies that N m ´is open, in other words N m ´is a neighborhood of Γ ´contained in N ´. Moreover, we have

@g P W r , W u pΓ ´, f 0 `gq " Y mPN S f pmqW u pΓ ´, N m
´, f 0 `gq . To prove Proposition 6.2, it is sufficient to show that for any m P N, there exists a generic subset of functions g P W r such that S f 0 `gpmqW u pΓ ´, N m

´, f 0 q intersects W s pΓ `, N `, f 0 q transversally. Indeed the intersection of all these generic subsets is generic and hence dense in W r and consists in functions f " f 0 `g such that W u pΓ ´, f 0 `gq intersects W s loc pΓ `, f 0 `gq transversally. To show this property, we are going to use the Sard-Smale transversality theorem B.3 in Appendix as follows. Let m ě 1, let M " W u pΓ ´, N m

´, f 0 q, Y " X α and W " W s pΓ `, N `, f 0 q. Let Λ " W r and Λ " C 8 0 pEq X W r . We define the mapping

Φ : ˆM ˆΛ ÝÑ Y pu 0 , gq Þ ÝÑ S f 0 `gpmqu 0 Ṅotice that S f 0 `gpmqW u pΓ ´, N m
´, f 0 q intersects W s pΓ `, N `, f 0 q transversally if and only if Φp., gq intersects W s pΓ `, N `, f 0 q transversally. Thus, due to the above discussions, the conclusion of Theorem B.3 in this framework will complete the proof of Proposition 6.2. Hypothesis i) of Theorem B.3 is a consequence of the assumption r ą dim W u pΓ ´q ´codim W s pΓ `q made at the beginning of this proof and of the regularity of the parabolic flow with respect to the parameters. Thus, Hypothesis ii) is the only assumption which remains to be verified.

Third step: checking Hypothesis ii) of Theorem B.3 Let u 0 P W u pΓ ´, N m
´, f 0 qzΓ ´and f " f 0 `g, where g P W r . If S f pmqu 0 does not belong to W s pΓ `, N `, f 0 q, then ii) is trivially satisfied. If S f pmqu 0 belongs to W s pΓ `, N `, f 0 q, we set uptq " S f ptqu 0 and we remark that, since W s pΓ `, N `, f 0 q " W s pΓ `, N `, f q, uptq is a global solution and uptq P W s pΓ `, N `, f q for all t ě m.

It remains to show that Φ is transversal to W in X α at the point u 0 , we have to compute DΦpu 0 , gq.pv 0 , hq " D u Φpu 0 , gq.v 0 `Dg Φpu 0 , gq.h .

Let us consider the second term and let vptq be the derivative of uptq with respect to a variation h of the nonlinearity g. By differentiating Equation (1.1), we have that v solves B t v " ∆v `hpx, u, ∇uq `f 1 u px, u, ∇uq.v `f 1 ∇u px, u, ∇uq.∇v with vpt " 0q " 0. We denote by U pt, sq the family of evolution operators generated by the equation (2.11) with coefficients given by (2.12), which is the linearization of the nonlinear equation along the trajectory uptq. Using the variation of constants formula, we get D g Φpu 0 , gq.h " ż m 0 U pm, sqhp., up., sq, ∇up., sqq ds . (6.2)

In a similar way, we obtain that D u Φpu 0 , gq.v 0 " U pm, 0qv 0 whose range is the tangent space T upmq W u pΓ ´, f q.

We claim that the image of D g Φpu 0 , gq is dense in X α and we postpone the proof of this density in a final step below. Assuming this property, let us check Hypothesis ii) of Theorem B.3 using Definition B.2. First notice that T upmq W " T upmq W s pΓ `, N `, f q is a closed subspace with finite codimension (see Theorem 3.5). To show that the image of DΦpu 0 , gq contains a closed complementary subspace of T upmq W in X α , it is sufficient to reach a given finite number of independent vectors φ 1 ,. . . , φ p outside T upmq W. This is obviously implied by the density of the image of D g Φpu 0 , gq in X α . Since spanpφ 1 , . . . , φ p q ' T upmq W " X α , we have that T u 0 ,g M ˆΛ " DΦpu 0 , gq ´1pT upmq Wq ' spanpψ 1 , . . . , ψ p q where DΦpu 0 , gq.ψ j " φ j . By continuity, we directly have that DΦpu 0 , gq ´1pT upmq Wq is closed and its complementary space is also closed because of its finite-dimensionality.

Fourth step: the image of D g Φpu 0 , gq is dense in X α The operator p´∆ D q α is a homeomorphism from X α into X. Hence, it is sufficient to show that for any non-zero ψ m P X ˚, there exists h P C 8 0 pEq such that

x ψ m | p´∆ D q α D g Φpu 0 , gq.h y X ˚,X ‰ 0 .

Hence, using the expression of D g Φpu 0 , gq.h given by (6.2), we have to find a function h P C 8 0 pEq such that ż m 0

x U pm, sq ˚pp´∆ D q α q ˚ψm | hp., up., sq, ∇up., sqq y X α,˚, X α ds ‰ 0 . Now, we use Proposition 2.4: ψpsq " U pm, sq ˚pp´∆ D q α q ˚ψm is well defined in X ånd is a solution in C 0 pp0, mq, C 1 pΩqq of (2.14) with a and b as in (2.12). In particular, ψ satisfies the unique continuation property stated in Proposition 2.8: in any open set of Ω ˆp0, mq, there exists px, tq such that ψpx, tq ‰ 0.

By considering the constructions made during the first step (see the third of the properties recalled at the end), we know that there exists a non-empty open set U Ă Ω ˆR such that for all px 0 , t 0 q P U, px 0 , upx 0 , t 0 q, ∇upx 0 , t 0 qq belongs to the interior of the set E and is not in Evptxu ˆN˘q . In particular, upx 0 , t 0 q cannot belongs to N ˘and thus t 0 P p0, mq because we have already noticed that uptq P W s pΓ `, N `, f q for all t ě m and because uptq P W u pΓ ´, N ´, f q for all t ď 0 by definition of Φ and u. We now apply Proposition 6.1, noticing that the unique continuation property for ψ yields the existence of px 0 , t 0 q P U such that ψpx 0 , t 0 q ‰ 0. We obtain a function h P C 8 0 pEq such that ż R ż Ω ψpx, sqhpx, upx, sq, ∇upx, sqq dxds ‰ 0 .

It remains to notice Proposition 6.1 guarantees that h ˝u is supported in U and that the above discussion shows that U Ă Ω ˆp0, mq. Thus, for any ψ m P X ˚, we may replace the domain R ˆΩ by r0, ms ˆΩ in the above integral and, in conclusion, we have obtained h such that

x ψ m | p´∆ D q α D g Φpu 0 , gq.h y X ˚,X " ż m 0

x ψpsq | hp., up., sq, ∇up., sqq y X ˚,X ds ‰ 0 .

which implies that the image of D g Φpu 0 , gq is dense in X α .

6.2

Proof of Theorem 1.1

The proof of our main theorem easily follows from the perturbation result of Proposition 6.2. Let f 0 P C r be given and let C 0 be two hyperbolic critical elements. By Theorems 3.3, 3.5 and 3.7, there exists a neighborhood O of f 0 such that C 0 are associated with two families C ˘pf q of hyperbolic critical elements depending smoothly on f . Moreover, the corresponding local stable and unstable manifolds W u loc pC ´pf qq and W s loc pC `pf qq also depend smoothly on f . Let m P N be given and let W u m pC ´pf qq "tu P X α such that }u} X α ă m and there exists t P r0, ms and u 0 P W u loc pC ´pf qq such that u " S f ptqu 0 u . The set W u m pC ´pf qq is a bounded open subset of the global unstable manifold W u pC ´pf qq and an immersed manifold of X α . Also notice that W u m pC ´pf qq depends smoothly on f . We consider the sets G m " tf P O | W u m pC ´pf qq&W s loc pC `pf qqu . The smooth dependences yield that G m are open subsets of O (see Appendix A to understand what these smooth dependences mean with respect to the Whitney topology). We claim that the sets G m are also dense. Indeed, X α is embedded in C 1 and so its ball tu | }u} X α ď mu provides values px, upxq, ∇upxqq uniformly bounded by some constant Cpmq. For any f P O, we may perturb f to f such that f is of class C 8 in the ball of radius Cpmq and equal to f outside the ball of radius Cpmq `1. In this way, f is as close as wanted to f in the C r Whitney topology. Moreover, any solution u in W u m pC ´p f qq stays in the place where f is a C 8 ´non-linearity. Applying Proposition 6.2, we may perturb f to obtain a non-linearity in G m .

Since the sets G m are open and dense in O, by setting G " X m G m , we obtain the generic set of Theorem 1.1.

7 Further generalizations of the generic transversality stated in Theorem 1.1

Our above arguments are not exactly specific to Equation (1.1). We may easily check the following generalizations.

Other geometries

Dirichlet boundary conditions are not mandatory, we may choose Neumann ones or Robin ones. We may also consider other flat geometries such as Ω being a torus or a cylinder. We may also add coefficients to the Laplacian operator ∆, typically considering the Laplace-Beltrami operator 1 ? g divp ?

gg ij ∇¨q associated to a metric g. However, notice that part of our results, e.g. Theorem 4.1, require smooth coefficients and thus g needs to be smooth. Thus, we may generalize Theorem 1.1 in the case where Ω is a bounded C 8 ´submanifold of R n , as a sphere for example.

Systems of parabolic equations

Instead of considering the scalar parabolic equation (1.1), we consider a system of n parabolic equations as follows. We keep the same space X " L p pΩq, p ą d, and the same ∆ D Laplacian operator with homogeneous Dirichlet boundary conditions. Like in the introduction, we keep α P p1{2 `d{2p, 1q, so that X α " Dpp´∆ D q α ãÑ W 2α,p pΩq is compactly embedded in C 1 pΩq. Let n P N, n ě 1. We consider the system of parabolic equations $ & % U t px, tq " ∆U px, tq `F px, U px, tq, ∇U px, tqq, px, tq P Ω ˆp0, `8q U px, tq " 0, px, tq P BΩ ˆp0, `8q U px, 0q " U 0 pxq P X α n " pX α q n , (

where F " pf 1 , f 2 , . . . , f n q P C r pΩˆR n ˆRnd , R n q, r ě 2, and where U " pu 1 px, tq, u 2 px, tq, . . . , u n px, tqq belongs to R n . As in the case n " 1, the system (7.1) generates a local dynamical system S n ptq " S n,F ptq on X α n . This (local) dynamical system S n,F ptq satisfies all the smoothing properties of Section 2 as well as the dynamical systems properties given in Section 3. The strong unique continuation property of Proposition 2.10 still holds and is proved in [10, Theorem 2.2] (see also [START_REF] Han | Nodal sets of solutions of parabolic equations[END_REF]). The singular nodal sets properties as given in Theorem 4.1 and its Corollary 4.2 are still true and are proved with the same arguments (see also [START_REF] Chen | A strong unique continuation theorem for parabolic equations[END_REF]Theorem 2.3]). These facts allow us to generalize Theorem 1.1 to the system (7.1).

Genericity for other topologies

We have chosen here to consider the genericity in C r by endowing C r pΩ ˆR ˆRd , Rq with the Whitney topology (see the precise definition in Appendix A). Indeed this topology seems to be the most usual one for this kind of question concerning generic dynamics. Moreover, it also seems to be the most delicate topology since it has only a few nice properties (for example the closed sets are not the sequentially closed sets and in particular C r is not a metric space). However, Theorem 1.1 also holds if we endow C r pΩ ˆR ˆRd , Rq with other reasonable topology. We may for example consider C r b pΩ ˆR ˆRd , Rq, the set of bounded C r ´functions on Ω ˆR ˆRd endowed with the supremum C r -norm. We may also extend the previous metric by considering unbounded C r ´functions but defining their neighborhoods with bounded perturbation only (in other words, we may say that if f ´g or one of its r first derivatives is unbounded, then f and g are at infinite distance). In any case, the conclusions of Theorem 1.1 remain valid since, in the proofs, we in fact only consider non-linearities via a bounded set of Ω ˆR ˆRd , where all these topologies are equivalent (see Appendix A).

Some open problems

To conclude, let us mention cases where the generalization is not straightforward and remains an open problem.

We may wonder if Theorem 1.1 is still true for systems of parabolic equations if, instead of considering mappings F px, U, ∇U q in the set C r pΩ ˆRn ˆRnd , R n q, one considers only mappings F px, U q P C r pΩ ˆRn , R n q depending only on x and of the value of U . Since the Hausdorff dimension of the nodal set is, in general, larger by 1 than the dimension of the singular nodal set (see a simple example in [10, Section 9]), the one-to-one properties of global trajectories, as given in Section 5, can be false if F " F px, U q and are no longer consequences of Theorem 4.1 (see [START_REF] Chen | A strong unique continuation theorem for parabolic equations[END_REF]Section 9]).

We can also wonder if one can extend Theorem 1.1 to the case where the Laplacian operator is replaced by a 2m-th order homogeneous elliptic linear operator. In this case, in Equation (1.1), we replace the non-linearity f px, u, ∇uq by a non-linearity f ˚px, u, D x u, D 2

x u, ...., D 2m´1

x uq depending on the values of u, D x u, ....,D 2m´1 x u. If the strong unique continuation property of Proposition 2.10 holds, then, arguing exactly as in the proof of Theorem 4.1, one shows that the statement of this theorem is still true provided we replace the singular nodal set by pT N Sq " tpx 0 , t 0 q P Ω ˆI | there does not exist τ P J such that pv, D x v, D 2 x v, ...., D 2m´1

x vqpx 0 , t 0 , τ q " p0, 0, ...., 0qu

Unfortunately, the strong unique continuation property for the parabolic equation with higher order elliptic operators is not always true (concerning the elliptic equation, see [START_REF] Han | Singular sets of higher order elliptic equations[END_REF] and [START_REF] Pliś | A smooth linear elliptic differential equation without any solution in a sphere[END_REF] for example). For this reason, we cannot state here a generalization of Theorem 1.1 for higher-order parabolic equation.

A Appendix: The Whitney topology

If we want to prove generic properties for the parabolic equation (1.1) with respect to the non-linearity f , we need to equip the space of nonlinear functions f with a topology. Let E Ă R n , n ě 1, by f P C r pE, Rq, we mean that f is r times differentiable in the set E and that these derivatives are continuous. We do not a priori endow C r pE, Rq with any topology and we do not assume that f or its derivatives are bounded.

In this article, we consider E " Ω ˆR ˆRd which is unbounded in R 2d`1 . Since we do not want to exclude unbounded non-linearities, we cannot equip C r pE, Rq with the classical C r -topology.

Definition A.1. For any r P N, we denote by C r " C r pE, Rq the space C r pE, Rq endowed with the Whitney topology, that is the topology generated by the neighborhoods tg P C r pE, Rq | |D i f pyq ´Di gpyq| ď δpyq , @i P t0, 1, . . . , ru , @y P Eu , where f is any function in C r pE, Rq and δ is any positive continuous function.

We emphasize that, if E is bounded, then the Whitney topology coincides with the classical C r -topology and thus C r pE, Rq is a Banach space equipped with the classical norm }f } " sup i"0,1,...,r }f piq } L 8 . However, if E " Ω ˆR ˆRd , the neighborhoods of a function f in the Whitney topology cannot be generated by a countable number of them. As a consequence, this topology is not metrizable and open or closed sets cannot be characterized by sequences. In order to give an idea about the uncountable conditions imposed by the Whitney topology, we recall that a sequence of functions pf n q converges to a function f in the Whitney topology if and only if there is a compact set K Ă E such that f n " f in EzK for any n P N, but for a finite number of them, and such that pf n q converges to f in the space C r pK, Rq, equipped with the classical topology of uniform convergence of the functions together with their derivatives up to order r. This means that the Whitney topology imposes an uncountable number of conditions of proximity outside compact sets and thus a sequence has to be constant there in order to be convergent.

As already written in Section 7, we could have chosen a simpler topology, but the Whitney topology seems to be the most usual one. In order to overcome several technical problems due to this topology, we make more precise some arguments in this appendix. We omit the corresponding problems during the main proofs of this paper to avoid too heavy proofs. However, if all the technical details are written, the interested reader will notice that we easily deal with the fact that the Whitney topology does not generate a Banach space as follows.

Genericity and Baire property: The main purpose of this paper is to obtain the genericity of the transversality of heteroclinic and homoclinic orbits. The notion of generic sets, that are sets containing a countable intersection of dense open sets, is important because it provides a nice notion of large subset. However, the acceptance of this notion is mainly related to the Baire property, that is the fact that the countable intersection of generic sets is generic. A space satisfying the Baire property is called a Baire space. Complete spaces, and in particular Banach ones, are Baire spaces. But when E is unbounded, C r pE, Rq with its Whitney topology is even not metrizable. Thus, it is important to emphasize that it is at least a Baire space, implying that the genericity is still a meaningful concept (see [START_REF] Golubitsky | Stable mapping and their singularities[END_REF] or [START_REF] Hirsch | Differential topology[END_REF] for example).

Smooth dependences, open or dense subsets and other abuses of notations: When E is unbounded, since C r pE, Rq is not metrizable, we can speak about continuous dependence on f P C r pE, Rq but not about smooth dependence, even not about derivatives with respect to f . We sometimes use the following abuse of notation. Consider K a compact subset of E and define P as the canonical projection from C r pE, Rq onto C r pK, Rq, that is P f :" f |K is the restriction of f to K. Now, as already noticed, C r pK, Rq endowed with the Whitney topology is equivalent to the Banach space C r pK, Rq endowed with the classical C r ´norm. Consider a function Φ depending on f via the values in K only. We may thus associate with Φ defined in C r pE, Rq a function Φ defined in C r pK, Rq and then it is relevant to say that Φ depends smoothly on P f . In this case, we may use an abuse of notations by saying that Φ depends smoothly on f instead of saying that Φ depends smoothly on P f (notice that, rigorously, we should not even say that P f depends smoothly on f ).

At this point, it is important to notice that, the restriction operator

P : C r pE, Rq Ñ C r pK, Rq with K Ă E compact and E Ă R n
is continuous, open and surjective. Continuity is clear and surjectivity follows from the Whitney extension theorem (see [START_REF] Abraham | Transversal mappings and flows[END_REF]), or a simpler result if r " 0 or K is a regular subdomain for which the extension is easily constructed. Openness follows from the following argument: consider g P C r pK, Rq close to 0, extend g to f P C r pE, Rq and truncate f by multiplying it by a smooth function χ with 0 ď χ ď 1, χ |K " 1 and χ " 0 outside a small neighborhood of K. This provides a function χf P C r pE, Rq with P pχf q " g and χf as close to 0 in C r pE, Rq as wanted as soon as g is small enough. Thus, the image by P of any neighborhood of 0 contains a neighborhood of 0.

The surjectivity of P enables to define the above functional Φ in C r pK, Rq because to each function g P C r pK, Rq indeed corresponds a class of equivalence of functions f P C r pE, Rq with P f " g. Notice that the above tricks have already been widely used in previous articles (see [START_REF] Brunovský | The Morse-Smale structure of a generic reactiondiffusion equation in higher space dimension[END_REF] for instance). Finally, for a further study of the Whitney topology and the comparison with the weak topology, we refer the reader to [START_REF] Golubitsky | Stable mapping and their singularities[END_REF] or [START_REF] Hirsch | Differential topology[END_REF] for example.

B Appendix: Sard Theorem and Sard-Smale transversality theorems

The Sard theorem ( [START_REF] Sard | The measure of the critical values of differentiable maps[END_REF]) and the transversality theory (which goes back to Thom [START_REF] Thom | Les singularités des applications différentiables[END_REF]) are very useful tools for proving the genericity of a given property in finite dimension. In [START_REF] Smale | An Infinite Dimensional Version of Sard's Theorem[END_REF], Smale has shown how to use Fredholm theory to generalize the transversality theorems to infinite-dimensional Banach spaces. There exist different version of this kind of transversality theorems (often called Sard-Smale theorems or Thom theorems) with slight changes in the hypotheses, depending on the framework, in which they are used. We recall here the general framework and the version used in this paper. Let M and N be two differentiable Banach manifolds and let f : M ÝÑ N be a differentiable map. We say that x P M is a regular point of f if Df pxq : T x M Ñ T f pxq N is surjective and its kernel splits (that is, has a closed complement in T x M). A point y P N is a regular value of f if any x P M such that f pxq " y is a regular point of f . The points of N which are not regular values are said critical values. The classical theorem of Sard is as follows.

Theorem B.1. If U is an open set of R p and if f : U ÝÑ R q is of class C s with s ą maxpp ´q, 0q, then, the set of critical values of f in R q is of Lebesgue measure zero.

Using Fredholm operators and a Lyapounov-Schmidt method, Smale has generalized Sard Theorem to infinite-dimensional spaces (for introduction to Fredholm operators, see [START_REF] Bonic | Linear functional analysis[END_REF] for example). As a consequence of Smale theorem in [START_REF] Smale | An Infinite Dimensional Version of Sard's Theorem[END_REF], many versions of Sard-Smale theorems can be obtained, see [START_REF] Abraham | Transversal mappings and flows[END_REF] and [START_REF] Henry | Perturbation of the Boundary for Boundary Value Problems of Partial Differential Operators, with editorial assistance from Jack Hale and Antonio Luiz Pereira[END_REF] for examples. The versions involving a functional formulation have been used since the pioneer work of Robbin [START_REF] Robbin | Algebraic Kupka-Smale theory in Dynamical systems and turbulence[END_REF] and are very useful in the PDE context where the geometrical arguments may be too difficult to perform, see Theorem B.4 below and [START_REF] Brunovský | The Morse-Smale structure of a generic reactiondiffusion equation in higher space dimension[END_REF][START_REF] Brunovský | Genericity of the Morse-Smale property for damped wave equations[END_REF][START_REF] Joly | Generic transversality property for a class of wave equations with variable damping[END_REF][START_REF] Joly | Generic hyperbolicity of equilibria and periodic orbits of the parabolic equation on the circle[END_REF][START_REF] Joly | Generic Morse-Smale property for the parabolic equation on the circle[END_REF]. In this article, the transversality of connecting orbits may be proved with a more geometrical version of Sard-Smale theorems. Indeed, we only need to perturb an unstable manifold, which is finite-dimensional, and we may do it far from the periodic orbit, so that the basic framework does not depend on the parameter (see Section 6). This kind of geometrical setting is more difficult to use if we want to prove generic hyperbolicity as discussed in Appendix C below.

We recall the following definition (see [START_REF] Abraham | Transversal mappings and flows[END_REF] for more details).

Definition B.2. Let M and N be two C 1 Banach manifolds and let f P C 1 pM, N q.

Let W be a C 1 submanifold of N . The function f is said to be transversal to W at a point x P M if either f pxq R W or f pxq P N and i) D x f ´1pT f pxq Wq is a closed subspace of T x M which admits a closed complementary space, ii) D x f pT x Mq contains a closed complement to T f pxq W in T f pxq N .

We need in this article a slight improvement of Theorem 19.1 of [START_REF] Abraham | Transversal mappings and flows[END_REF]. The idea of replacing the condition on Λ by a condition on a dense subset Λ only has been already used in [START_REF] Brunovský | The Morse-Smale structure of a generic reactiondiffusion equation in higher space dimension[END_REF][START_REF] Brunovský | Genericity of the Morse-Smale property for damped wave equations[END_REF][START_REF] Joly | Generic transversality property for a class of wave equations with variable damping[END_REF] for example.

Theorem B.3. Let r ě 1. Let M be a C r separable manifold of dimension n. Let W be a C r manifold of codimension m in a Banach space Y . Let Λ be an open subset of a separable Banach space and let Λ be a dense subset of Λ. Let Φ P C r pM ˆΛ, Y q. Assume that i) r ą n ´m, ii) Φ is transversal to W at any point px, λq P M ˆΛ. Then, there is a generic set of parameters λ P Λ such that the map x Þ Ñ Φpx, λq is everywhere transversal to W.

Proof: Theorem B.3 is proved as Theorem 19.1 of [START_REF] Abraham | Transversal mappings and flows[END_REF]. The only difference is that hypothesis ii) is assumed here only for a dense set of parameters λ. To obtain this improvement from the classical version where ii) is assumed everywhere, we argue as follows. Since M is separable and finite dimensional, we can find a countable sequence of open subsets pM k q such that M " YM k and M k is contained in M and is compact. Let λ 0 P Λ. Let pλ p q be a sequence converging to λ 0 . Assume that there is a point x p P M k such that Φ is not transversal to W at px p , λ p q. By the compactness property, one may assume that px p q converges to x 0 P M k . Since Φ is C 1 , Φ is not transversal to W at px 0 , λ 0 q which is absurd. Thus, there exists a neighborhood U of λ 0 such that ii) holds for any px, λq P M k ˆU. By applying [START_REF] Abraham | Transversal mappings and flows[END_REF]Theorem 19.1], we obtain a generic subset U k Ă U such that for any λ P U k , the map x Þ Ñ Φpx, λq is transversal to W for any x P M k . Since Λ is dense in Λ, we have a generic subset Ũk Ă Λ such that for any λ P Ũk , the map x Þ Ñ Φpx, λq is transversal to W for any x P M k . The generic set of parameters appearing in the conclusion of Theorem B.3 is then X k Ũk . W For brief discussions in Appendix C and for the curious reader, we finish by a brief recall of one of the simplest version of Sard-Smale theorem with a functional formulation (see for example [START_REF] Henry | Perturbation of the Boundary for Boundary Value Problems of Partial Differential Operators, with editorial assistance from Jack Hale and Antonio Luiz Pereira[END_REF] for other versions or proofs). Let us recall that a continuous linear map f : E ÝÑ F between two Banach spaces is a Fredholm map if its image is closed and if the dimension of its kernel and the codimension of its image are finite.

ΦpM, λq

Theorem B.4. Let k ě 1 and let M, N and Λ be three C k Banach manifolds. Let y P N and let Φ P C k pM ˆΛ, N q. Assume that: i) for any px, λq P Φ ´1ptyuq, D x Φpx, λq : T x M Ñ T y N is a Fredholm map of index i strictly less than k, ii) for any px, λq P Φ ´1ptyuq, DΦpx, λq : T x M ˆTλ Λ Ñ T y N is surjective, iii) M is separable. Then, there is a generic set of parameters λ P Λ such that for all x P M such that px, λq P Φ ´1ptyuq, D x Φpx, λq is surjective.

As in Theorem B.3, a similar result holds if Λ is replaced by a dense subset Λ Ă Λ and if Λ is separable (see [START_REF] Brunovský | The Morse-Smale structure of a generic reactiondiffusion equation in higher space dimension[END_REF]).

C Appendix: discussion about proving the generic hyperbolicity of periodic orbits

The purpose of this section is unusual. To obtain the genericity of the Kupka-Smale property for the parabolic equation (1.1), it remains to prove the genericity of hyperbolicity of equilibrium points and periodic orbits. The generic hyperbolicity of equilibrium points is proved in [START_REF] Joly | Generic hyperbolicity of equilibria and periodic orbits of the parabolic equation on the circle[END_REF]. We tried to obtain the generic hyperbolicity of periodic orbits but failed to get a complete proof. In this section, we would like to present some ideas and to point out where there is still a gap in the proof. Maybe this discussion could inspire a motivated reader.

The first proofs of generic hyperbolicity of periodic orbits appeared in [START_REF] Kupka | Contribution à la théorie des champs génériques[END_REF][START_REF] Smale | Stable manifolds for differential equations and diffeomorphisms[END_REF]. Peixoto in [START_REF] Peixoto | On an approximation theorem of Kupka and Smale[END_REF] introduced a nice recursion argument, which has been modified in [START_REF] Abraham | Transversal mappings and flows[END_REF] and [START_REF] Mallet-Paret | Generic periodic solutions of functional differential equations[END_REF]. Basically, the recursion is as follows. We introduce the sets G 1 pKq " tf P C r | any equilibrium point e of (1.1) with }e} X α ď K is hyperbolicu G 3{2 pA, Kq " tf P G 1 pKq | any non-constant periodic solution pptq of (1.1) with period T P p0, As such that sup tPR }pptq} X α ď K is non-degenerateu . and G 2 pA, Kq "tf P G 1 pKq | any non-constant periodic solution pptq of (1.1) with period T P p0, As such that sup tPR }pptq} X α ď K is hyperbolicu .

The slightly strange above notation comes from the fact that G 1 and G 2 are the sets originally introduced by Peixoto, whereas the set G 3{2 has been introduced later.

We know from the arguments of the second part of Section 3 of [START_REF] Joly | Generic hyperbolicity of equilibria and periodic orbits of the parabolic equation on the circle[END_REF] that G 1 pKq is a dense open subset of C r . The idea of the recursion argument is that there exists ε ą 0 small enough, such that G 2 pε, Kq " G 1 pKq due to the absence of periodic orbits of small period. Then, the method of Peixoto would consist in proving, like in [START_REF] Mallet-Paret | Generic periodic solutions of functional differential equations[END_REF], that G 2 pA, Kq X G 3{2 p3A{2, Kq is dense in G 2 pA, Kq and that G 2 p3A{2, Kq is dense in G 3{2 p3A{2, Kq. By this way, we obtain a chain of dense inclusions . . . G 2 p9ε{4, Kq Ă dense G 3{2 p9ε{4, Kq Ă dense G 2 p3ε{2, Kq Ă dense G 3{2 p3ε{2, Kq Ă dense G 2 pε, Kq " G 1 pKq which shows the density of the hyperbolicity of periodic orbits in G 1 . The openness of these sets is rather simple and similar to the finite-dimensional case considered in [START_REF] Peixoto | On an approximation theorem of Kupka and Smale[END_REF]. This scheme of proof has been exactly performed in [START_REF] Mallet-Paret | Generic periodic solutions of functional differential equations[END_REF] and in [START_REF] Abraham | Transversal mappings and flows[END_REF]. The difficulty lies in the proofs of density.

We claim that the following density holds.

Proposition C.1. For any positive A and K, G 3{2 p3A{2, Kq X G 2 pA, Kq is dense in G 2 pA, Kq.

Proof: We give here very brief arguments since this proposition is only an auxiliary result in the whole proof of generic hyperbolicity, which is unfortunately not yet completed.

The proof of Proposition C.1 is very similar to the one of Proposition 6.2. We apply a suitable version of Sard-Smale theorem (similar to Theorem B.4) to the map Φ : pT, u 0 , gq Þ ÝÑ S f 0 `gpT qu 0 ´u0 .

As usual, the main difficulty is to obtain a surjectivity as required by Hypothesis ii) of Theorem B.4. We skip the details, but simply notice that checking this property is very similar to the end of the proof of Proposition 6.2: we have to find for any solution ϕ ˚of the adjoint equation along a periodic orbit p, a perturbation g of f such that ż Ω ż T 0 gpx, ppx, sq, ∇ppx, sqqϕ ˚px, sqdsdx ‰ 0 . This is achieved by constructing a function as in Proposition 6.1 by using Proposition 5.1. The proof of the genericity of the Kupka-Smale property would be obtained if we could prove the following result.

Conjecture C.2. For any A ą 0 and K, G 2 p3A{2, Kq is dense in G 3{2 p3A{2, Kq X G 2 pA, Kq.

To prove this conjecture, we only need to know how to make hyperbolic a given simple periodic orbit in the following sense.

Conjecture C.3. Let f P C 8 pΩ ˆR ˆRd , Rq and let N be any small open neighborhood of f in C r . Let p be a simple periodic solution of (1.1) with minimal period ω ą 0 and such that sup tPr0,ωs }pptq} X α ď K, where K ą 0. Then, there exists a function f P N such that p is a hyperbolic periodic solution of (1.1) with non-linearity f .

Once again, the usual strategy would be to apply a Sard-Smale theorem (similar to Theorem B.4) to an appropriate functional Φ and then to check a surjectivity hypothesis as ii) of Theorem B.3. If we try the most natural way, we will have to find a perturbation g of f satisfying Re ż ω 0 ż Ω pD u g, D ∇u gqpx, ppx, tq, ∇ppx, tqq . ψ ˚px, tqpφ, ∇φqpx, tq dxdt ‰ 0 (C. [START_REF] Abraham | Transversal mappings and flows[END_REF] where p is the considered simple periodic orbit, φ a solution of the linearized equation associated to an eigenvalue λ with modulus |λ| " 1 and ψ ˚a solution of the adjoint equation. Notice in (C.1) the presence of the real part Re since the spectrum of a periodic orbit has complex eigenvalues. To obtain this perturbation g, we may use a construction as follows.

Proposition C.4. Let f P C 8 pΩ ˆR ˆRd , Rq and let p P C 8 pΩ ˆR, Rq be a periodic solution of (1.1) with minimal period ω. Let V P C 8 pΩ ˆr0, ωs, R d`1 q be a function, which is not everywhere colinear to pp t px, tq, ∇p t px, tqq. Then, there exists a function g P C 8 pΩ ˆR ˆRd , Rq such that i) gpx, ppx, tq, ∇ppx, tqq " 0 @px, tq P Ω ˆR, ii) ż ω 0 ż Ω pD u g, D ∇u gqpx, ppx, tq, ∇ppx, tqq.V px, tq dxdt ‰ 0 . would be very strange and holds surely in very rare cases only (remember that we may break potential symmetries by perturbing f ), we found no rigorous argument to avoid it.

We finish with a statement of non-colinearity which could be inspiring. Assume that pv 1 , ∇v 1 q is colinear to pv 2 , ∇v 2 q at each points px, tq, meaning that there exists real values αpx, tq and βpx, tq such that for all px, tq P Ω ˆI, αpx, tqpv 1 , ∇v 1 qpx, tq `βpx, tqpv 2 , ∇v 2 qpx, tq " 0. (C.3)

Then v 1 and v 2 are colinear to v 2 as solutions, that is that (C.3) holds with real constants α and β.

Proof: If v i " 0 for i " 1 or i " 2 the conclusion is trivial. By the unique continuation properties of Section 2, up to choose I and Ω smaller, we may thus assume that pv i , ∇v i q are not zero and thus that αpx, tq and βpx, tq are smooth nonzero functions. Moreover, we may fix the normalization α 2 px, tq `β2 px, tq " 1. Fix px 0 , t 0 q and set pα, βq " pαpx 0 , t 0 q, βpx 0 , t 0 qq. We notice that the value pα, βq is taken by pαpx, tq, βpx, tqq in a submanifold M of dimension d 1 ě d of Ω ˆI because the possible values of the function lie in the circle S 1 which is one-dimensional. The function w " αv 1 `βv 2 is also a solution of (C.2) and by construction pw, ∇wq vanishes in the submanifold M of dimension d 1 . We now apply Theorem 4.1 with families independent of τ P J " R. The singular nodal set of wpx, t, τ q is M ˆJ of dimension d 1 `1 ě d `1. Thus w " 0 which concludes the proof.
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 1 Figure 1: A typical transversal heteroclinic orbit connecting a periodic orbit C ánd an equilibrium point C `.If C ˘are hyperbolic, they admit stable and unstable manifolds. Theorem 1.1 states that, the transversality of uptq in this picture is a generic situation in the parabolic equation (1.1). Here C ´is a periodic orbit and C `is an equilibrium point. This situation is robust to perturbation and yields several important qualitative properties of the dynamics. See the third part of this introduction for the historical background and Section 3 for precise definitions.
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 1 Local existence and regularity results of the parabolic equation (1.1)

Figure 3 :

 3 Figure 3: The geometric idea behind Sard-Smale theorems as Theorem B.3: if perturbing the parameter λ provides enough freedom, a non-transversal intersection between ΦpM, λq and W is generically perturbed into either an empty, and thus transversal, intersection or a non-empty transversal intersection.

Proposition C. 5 .

 5 Let I be an open interval of R and Ω and open subset of R d . Let a P C 8 pΩ ˆI, Rq and b P C 8 pΩ ˆI, R d q be bounded coefficients. Let v 1 and v 2 be two solutions of the real equation B t vpx, tq " ∆vpx, tq `apx, tqvpx, tq `bpx, tq.∇ x vpx, tq . (C.2)

  The openness is useful to show that a property is open in C r pE, Rq if this property depends on the value of f in K only: if the property is open in C r pK, Rq with the above abuse of notation, then it is open in C r pE, Rq. Together, these properties show that, with the abuse of notation, if a property is open and dense (resp. generic) in C r pK, Rq then it is open and dense (resp. generic) in C r pE, Rq.

Proof: To simplify the notations, we denote by U the variable pu, ∇uq P R d`1 and we set P px, tq " pppx, tq, ∇ppx, tqq P R d` 1 .

By assumption, there is an open set U with U Ă Ω ˆp0, ωq such that V is never colinear to P t on U. Notice that, in particular P t px, tq ‰ 0 for all px, tq P U. Due to Proposition 5.1, restricting U, we can assume that, for all px 0 , t 0 q P U, the map px, tq P Ω ˆr0, ωq Þ Ñ px, P px, tqq P Ω ˆRd`1 reaches the value px 0 , P px 0 , t 0 qq at px 0 , t 0 q only. Let px 0 , t 0 q P U. We complete pP t , V q to a basis of R d`1 : let W 1 ,...,W d´1 be d ´1 vectors of R d`1 such that (P t px 0 , t 0 q, V px 0 , t 0 q, W 1 , . . ., W d´1 ) is a basis of R d`1 . Restricting again U, we can assume that

Up to choosing V smaller, the local inversion theorem shows that h is a C 8 -diffeomorphism into its image. We recall that for all px 0 , t 0 q P U, the map Ω ˆr0, ωq Q px, tq Þ Ñ px, P px, tqq P Ω ˆRd`1 takes the value px 0 , P px 0 , t 0 qq at px 0 , t 0 q only. Due to the compactness of the graph of this map, we can restrict W such that px, P px, tqq belongs to hpVq if and only if px, tq belongs to U. Let χ P C 8 pΩ ˆRd`1 , Rq be a function with compact support in V, which will be made more precise later. We set θpx, t, τ, s 1 , . . . , , s d´1 q " χpx, t, τ, s 1 , . . . , , s d´1 qτ . We define the function g : hpVq Ñ R by gpx, u, ∇uq " gpx, U q " θ ˝h´1 px, U q. We can extend g by 0 outside hpVq to obtain a function in C 8 pΩ ˆRd`1 q. By construction, for all px, tq R U, gpx, P px, tqq " 0 and D U gpx, P px, tqq " 0. Moreover, for all px, tq P U, gpx, P px, tqq " θpx, t, 0, 0, ..., 0q " 0 and B U gpx, P px, tqq.V px, tq " Dθph ´1px, P px, tqqq. `BU h ´1px, P px, tqq.V px, tq " Dθpx, t, 0, ..., 0q. `BU h ´1phpx, t, 0, ..., 0qq.B τ hpx, t, 0, ..., 0q " Dθpx, t, 0, ..., 0q.B τ ph ´1 ˝hqpx, t, 0, ..., 0q " B τ θpx, t, 0, ..., 0q " χpx, t, 0, ..., 0q Thus, Property i) of Proposition C.4 holds and moreover

Therefore, we can easily choose χ such that Property ii) of Proposition C.4 also holds.

The final problem lies in checking that the real part of ψ ˚px, tqpφ, ∇φq in (C.1) is not everywhere colinear to pp t , ∇p t q. This is true if we only consider real functions (see Proposition C.5 below), but we consider here complex solutions ψ ˚and φ and thus the real part of ψ ˚pφ, ∇φq correspond to a combination of two real solutions of the linearized equation: the real and the imaginary parts of φ. Even if this colinearity