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Abstract

In this paper, we consider the scalar reaction-diffusion equations
oru = Au + f(z,u, Vu)

on a bounded domain Q — R? of class C?7. We show that the heteroclinic and
homoclinic orbits connecting hyperbolic equilibria and hyperbolic periodic or-
bits are transverse, generically with respect to f. One of the main ingredients
of the proof is an accurate study of the singular nodal set of solutions of linear
parabolic equations. Our main result is a first step for proving the genericity
of Kupka-Smale property, the generic hyperbolicity of periodic orbits remain-
ing unproved.

KEY WORDS: transversality, parabolic PDE, Kupka-Smale property, singular
nodal set, unique continuation.
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1 Introduction

Let d > 2 and let Q < R? be a bounded domain of class C?>7, where 0 < v < 1. Let
p > d be fixed, let X = LP(Q2) and let

Ap : D(=Ap) = WyP(Q) nW?P(Q) — X = LP(Q)
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be the Laplacian operator with homogeneous Dirichlet boundary conditions. Let
a€ (1/2+d/2p,1), so that X* = D((—Ap)®) — W?*P(Q) is compactly embedded
in C1(Q).

We consider the scalar parabolic equation

ou(z,t) = Apu(z,t) + f(z,u(z,t), Vu(z,t)),  (z,t) € Q x (0,+0)
u(z,t) =0, (x,t) € 0Q x (0,400) (1.1)
u(z,0) = ug(x) € X,

where f e C?(Q x R x R4 R) and u(z,t) € R.

The local existence and uniqueness of classical solutions u(t) € C°([0,7), X*) of
Equation (1.1), as well as the continuous dependence of the solutions with respect
to the initial data uy in X®, are well known (see [31] for example and Section 2
for more details). Thus, Eq. (1.1) generates a local dynamical system S(t) =
S¢(t) on X*. This dynamical system contains all the features of a classical finite-
dimensional system: equilibrium points and periodic orbits, stable and unstable
manifolds. .. We recall the definition of these objects, the definition of hyperbolicity
and of transversality in Section 3. There, we also present their construction in our
framework. Notice that the realizations results of [14] and [53] show the possible
existence of very complicated dynamics for (1.1), such as chaotic dynamics, as soon
as d > 2.

In what follows, for any r > 2, we denote by € the space C"(Q x R x R% R)
endowed with the Whitney topology, which is a Baire space (see Appendix A for
definitions, including the one of generic subset). In fact, our result still holds if
we embed C” with another reasonable topology, but the Whitney one is the most
classical. See [19] and Appendix A below for more details.

Our main result is as follows.

Theorem 1.1. Generic transversality of connecting orbits

Let r = 2 and let fo € €. Let Cy and Ci be two critical elements of the flow of

(1.1), d.e. Ca—” are equilibrium points or periodic orbits, Cy = Cg being possible.
Assume that both Cy and C§ are hyperbolic. Then, there exists a neighborhood

O of fo in € and a generic set & < O such that:

i) there exist two families C(f) and C*(f) of critical elements (either equilibrium
points or periodic orbits) of the flow of (1.1), depending smoothly of f € O, such
that C*(fy) = Ci and CE(f) is hyperbolic for any f € O.

i) for any f in the generic set & < O, the unstable manifold W*(C~(f)) and the
stable manifold W*(C*(f)) intersect transversally, i.e. W*(C~(f))hW?*(C*(f)).

Theorem 1.1 states the generic transversality of connecting orbits, i.e. hetero-
clinic and homoclinic orbits, between hpyerbolic critical elements (either equilibrium
points or periodic orbits). See Figure 1 for an illustration of a typical transversal
connecting orbit. This is a first step to obtain the genericity of Kupka-Smale prop-
erty. Below in this introduction, we recall the historical background and previous
results. We discuss about the missing ingredients to obtain the genericity of the
whole Kupka-Smale property in Appendix C.



Figure 1: A typical transversal heteroclinic orbit connecting a periodic orbit C~
and an equilibrium point C*. If C* are hyperbolic, they admit stable and unstable
manifolds. Theorem 1.1 states that, the transversality of u(t) in this picture is
a generic situation in the parabolic equation (1.1). Here C~ is a periodic orbit
and C* is an equilibrium point. This situation is robust to perturbation and yields
several important qualitative properties of the dynamics. See the third part of this
introduction for the historical background and Section 3 for precise definitions.

Notice that we do not need to assume global existence of solutions in Theorem
1.1. Indeed, we consider closed and connecting orbits, which are by definition solu-
tions u(t) € X of (1.1), which are defined for any time ¢ € R and are also uniformly
bounded for t € R. So, we do not really care about solutions of Eq. (1.1), which do
not exist globally. If one wants that all solutions of (1.1) exist for 0 < ¢ < o0, one
has to introduce additional hypotheses on f (see [55] for instance).

We also enhance that our result may apply to settings different from (1.1). Typ-
ically, we can choose different boundary conditions or consider systems of parabolic
equations. We discuss this kind of straightforward generalizations in Section 7.

Observability of trajectories, unique continuation and singular nodal sets.

As in the classical case of generic transversality in ODEs, the proof of Theorem 1.1
consists in finding suitable perturbation of the non-linearity f for breaking the non-
transversal orbits. Of course, even if the general patterns and the spirit of the proofs
stay the same, working with PDE’s instead of ODE’s gives rise to several more
or less delicate technical problems. For example, for proving generic properties,
instead of using Thom’s transversality theorem (as in [51]), we will apply a Sard-
Smale theorem stated in Appendix B. Here, we want to emphasize that, in the
case of PDE’s, the main new difficulty arises in the construction of appropriate
perturbations. When one wants to prove that a property is dense in the set of ODE’s
of the form () = g(y(t)), for each g, one has to construct a particular perturbation
eh with small € such that the flow of y(t) = (g + €h)(y(t)) satisfies the desired
property. The vector field h of the perturbation can be chosen freely and localized,
so that his support intersects the trajectory of y(¢) only in the neighborhood of
y(tp). In the case of PDE’s, we have to construct a perturbation h of the non-
linearity such that the flow of duu(x,t) = Au(z,t) + (f + eh)(z, u(x,t), Vu(z,t))
satisfies the desired property. Therefore, the perturbation h of the PDE’s is of the



form

u(-) e X* — h(-,u(-), Vu(-)) (1.2)

Since two distinct functions u; and uy can take the same value (u(xg), Vug(z9)) =
(uz(xg), Vug(zo)) at a given zq € €, the perturbations of the form (1.2) are in
general “non local” in X®. Given a particular trajectory u(t) and a time tq, our
strategy consists in constructing a perturbation (1.2), whose support, even if it is
large, intersects u(x,t) only around (zg, o), which allows to consider (1.2) as a local
perturbation. However, this construction is not straightforward and requires deep
properties of the PDE. This problem is close to observability questions: how much
information on a solution u(t) can we get from the observation at one point zq of
u(zo,t) and Vu(zg,t)?

To be able to prove Theorem 1.1, we will prove in Section 5 results of the following
type.

Theorem 1.2. Injectivity properties of connecting orbits

Let f e C*(Q2 xR x R4 R). Let u(t) be a heteroclinic or homoclinic orbit connecting
two critical elements. Then there exists a dense open set of points (zg,t9) € Q x R
such that the curve t — (u(xo,t), Vu(zo,t)) is one to one at ty in the sense that:

i) (Oyu(wo, to), Voyu(xo, to)) # 0,
i) for allt € R, (u(xo,t), V(zo,1t)) = (u(zo, o), V(z0,t0)) = t = to.

The above result is a key property to be able to construct a suitable perturbation
of the non-linearity f in the proof of Theorem 1.1. The following result is similar: it
shows that the period of a periodic orbit of the parabolic equation may be observed
very locally. This result is not required in the proof of our main theorem, but it may
be interesting by itself and could be a key step to prove the generic hyperbolicity of
periodic orbits (see the discussion of Appendix C).

Theorem 1.3. Pointwise observability of the period of periodic orbits
Let f € C°(Q x R x RER). Let p(t) be a periodic solution of (1.1) with minimal
period w > 0. Then there exists a dense open set of points (xg,t9) € 2 x R such that

(p(x(]?t)’ Vp(l‘o,t)) = (p(x07t0)7 Vp(l’o,to)) - tety+ Zw .

Notice that in dimension d = 1, the above results are true for all (zg, ty) and not
only for a dense subset (see [37]).

To obtain these injectivity properties of (z,t) — (z,u(z,t), Vu(z,t)), where
u(t) = Sy(t)ug is a bounded complete trajectory of (1.1), we set

v(x,t,7) = u(x,t) —u(x, t + 1),

and remark by using the equation (1.1) that wv(z,t) is the solution of a linear
parabolic equation with parameter of the form

o(z,t,7) = Av(x,t,7) + alz, t,7)v(z, t,7) + b(x,t,7).Vo(x, t, ), (1.3)

in the domain Q of R%. The non-injectivity points of the image of (z, u(x,t), Vu(z,t)),
(x,t) € Q x R, are described by the nodal singular set of (1.3), that is, the set of
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points (x,t,7) where v(z,t,7) and V,v(x,t,7) both vanish. The singular nodal set
of solutions of the parabolic equations, with coefficients independent of the param-
eter 7, have already been studied in [28] and in [10] for example. Here, generalizing
an argument of [29] and applying unique continuations results (recalled in Section
2), we prove the following theorem, see Section 4.

Theorem 1.4. Singular nodal sets for parabolic PDEs with parameter
Let I and J be open intervals of R. Leta € C*(QxIxJ,R) andbe C*(QxIx J,RY)
be bounded coefficients. Let v be a strong solution of (1.3) with Dirichlet boundary
conditions. Let r = 1 and assume that v is of class C" with respect to T and of
class C* with respect to x and t. Assume moreover that the null solution is not part
of the family, that is that, there are no time t € I and parameter T € J such that
v(.,t,7)=0.
Then, the set

{(z0,t0) € QX x I | A1 e J such that (v(zo, to, 7), Vo(zg,to, 7)) = (0,0)}

18 generic in ) x 1. In other words, the projection of all the singular nodal sets of
the family of solutions v(-,-,T) is negligible in Q x I.

Historical background: the Morse-Smale and Kupka-Smale properties.

The transversality of unstable and stable manifolds stated in Theorem 1.1 is related
to the local stability of the qualitative dynamics. In the modeling of phenomena
in physics or biology, we often work on approximate systems: some phenomena are
neglected, only approximate values of the parameters are known, or we work with
a discretized version of the system for simulation by computer... Therefore, it is
important to know if such small approximations may qualitatively change the dy-
namics or not. Unfortunately, when perturbing general dynamical systems, drastic
changes in the local or global dynamics can occur due for example to bifurcation
phenomena. Thus, the common hope is that these bifurcations are rare, that is,
that the systems, whose dynamics are robust under perturbations, are dense or
generic. Here, we obtain the generic transversality of heteroclinic and homoclinic
orbits between critical elements. Roughly, Theorem 1.1 says that if we consider
two hyperbolic closed orbits of the flow of the parabolic equation (1.1) and if we
observe a connecting orbit between them, then, “almost surely” this connection still
remains after small perturbations of the system (numerical computation, changes of
the parameters. . . ).

Such stability questions have been extensively studied in the case of vector fields
or iterations of maps. In 1937, Andronov and Pontrjagin introduced the fundamental
notion of structurally stable vectors fields ( “systémes grossiers” or “coarse systems” ),
that is, vector fields X, which have a neighborhood Vj in the C!-topology such that
any vector field X in Vj is topologically equivalent to Xy. In 1959 ([63]), Smale
defined the class of nowadays called Morse-Smale dynamical systems on compact
n—dimensional manifolds, that is, systems for which the non-wandering set consists
only in a finite number of hyperbolic equilibria and hyperbolic periodic orbits and for
which the intersections of the stable and unstable manifolds of equilibria and periodic
orbits are all transversal. Peixoto ([50]) proved that Morse-Smale vector fields are
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dense and have structurally stable qualitative dynamics in compact orientable two-
dimensional manifolds. In 1968, Palis and Smale ([46], [48]) proved the structural
stability of the Morse-Smale dynamical systems in any dimension. However, the
density of Morse-Smale systems fails in dimension higher than two, due to “Smale
horseshoe”. In 1963, Smale ([65]) and also Kupka ([41]) introduced the Kupka-
Smale vector fields, that is, the vector fields for which all the equilibria and periodic
orbits are hyperbolic and the intersections of the stable and unstable manifolds of
equilibria and periodic orbits are all transversal. They both show the density of such
systems in any dimension (see also [51]). The qualitative dynamics of Kupka-Smale
systems are locally stable: periodic orbits, the local dynamics around them and their
connections move smoothly when a parameter of the equation is changing.

For the partial differential equations (PDE’s in short), the history of structural
stability and of local stability is more recent. Notice that a trajectory of the dynam-
ical system S(t) generated by such a PDE is of the form ¢t — S(t)up = u(-,t), where
u(z,t) is the solution of the PDE with initial data ug(z). In particular, the trajectory
moves in a functions space (often a Sobolev space), which is infinite-dimensional.
As a generalization of [46] and [48], [26] and [45] proved that Morse-Smale and
Kupka-Smale properties are still meaningful in infinite-dimensional systems for the
problem of stability of the qualitative dynamics. Therefore, there is a great inter-
est in obtaining generalizations of the above mentioned finite-dimensional generic
results. Notice that, if we want to get a meaningful genericity result, we have to
allow perturbations only in the same class of PDE’s. Typically, the parameter with
respect to which the genericity is obtained is the non-linearity f.

The first example of transversality of unstable and stable manifolds for PDE’s is
due to Henry ([30]) in 1985 for the reaction-diffusion equation in the segment

Ol = Uy + f(z,u,u,), (x,t)€(0,1) x (0,+0) (1.4)

with Dirichlet, Neumann or Robin boundary conditions. More strikingly, he ob-
tained the noteworthy property that the stable and unstable manifolds of two hyper-
bolic equilibria of (1.4) always intersect transversally. A key ingredient for proving
this automatic transversality is the use of the non-increase of the “Sturm number” or
“zero number” [69] of the solutions of the corresponding linearized parabolic equa-
tions. In addition to this automatic transversality, the gradient structure proved in
[72] shows the genericity of Morse-Smale property for the flow of (1.4) with separated
boundary conditions.

If we consider (1.4) with periodic boundary conditions, that is the parabolic
equation on the circle S!

Ol = Ugy + f(z,u,uy), (z,t) e S* x (0, +0) (1.5)

then the gradient structure fails but the flow of (1.5) still has particular properties
equivalent to the ones of two-dimensional ODEs, such as the Poincaré-Bendixson
property proved in [18] (the reader interested in the correspondence between the
dynamics of (1.4) and the ones of low-dimensional ODEs may consider the review
paper [39]). In 2008, still using the powerful tool of the “zero number”, Czaja and
Rocha ([13]) proved that, for the parabolic equations on the circle (1.5), the stable
and unstable manifolds of hyperbolic periodic orbits always intersect transversally.



In 2010, the second and third authors completed the results of Czaja and Rocha.
More precisely, they proved in [37] that the equilibria and periodic orbits are hyper-
bolic, generically with respect to the nonlinearity f. They also proved that the stable
and unstable manifolds of hyperbolic critical elements C~ and C* intersect transver-
sally, unless both critical elements C~ and C* are equilibria of same Morse index
and moreover that, generically with respect to f, such connecting orbits between
equilibria with the same Morse index ([38]) do not exist. Finally, the Poincaré-
Bendixson theorem of [18] yields that, generically with respect to f, the equation
(1.5) is Morse-Smale (see [38]).

Concerning spatial dimension higher than d = 1, the generic transversality of
stable and unstable manifolds has been shown in 1997 by the first author and P.
Polécik ([7]) in the case f = f(z,u), that is, for the equation

ow = Au+ f(z,u), (z,t)eQx(0,+0) (1.6)

with Q = R, d > 2. As a consequence, since (1.6) is a gradient system, they deduce
that, under additional dissipative conditions on the non-linearity, the Morse-Smale
property holds for the flow (1.6) generically with respect to f € C?. Tt is noteworthy,
as shown by Polacik ([54]), that this generic transversality property is not true if
one considers homogeneous functions f(z,u) = f(u) only.

We also mention that generic transversality properties have been shown by the
authors for various gradient damped wave equations, see [8] and [36].

Due to the realization results of Dancer and Polécik, [14] and [53], we know that
the dynamics of the flow of the general parabolic equation (1.1) in dimension d > 2
may be as complicated as chaotic flows. We may only hope to prove the genericity
of the Kupka-Smale property and not of the Morse-Smale one. Notice that the
flow of (1.1) is not gradient (periodic orbits may exist) and the very particular and
helpful “zero number property” of spatial dimension d = 1 fails. In the present
paper, we prove the generic transversality property. The generic hyperbolicity of
equilibrium points is already proved in [37] in any space dimension. Thus, the
generic hyperbolicity of periodic orbits is the only remaining step to obtain the
genericity of the Kupka-Smale property.

Some years ago, in a preliminary draft of this paper, we were convinced to have
proved the genericity of the Kupka-Smale property. However, Maxime Percy du
Sert pointed to us a gap in the proof of generic hyperbolicity of periodic orbits.
We did not manage to fill it. Recently, two of the three authors passed away and
we decided to publish the results as obtained together. In particular, we prove
the generic transversality only (unlike claimed in [39]). In Appendix C, we quickly
discuss our ideas to obtain the generic hyperbolicity of periodic orbits and indicate
where the gap remains.

Plan of the article.

In Section 2, we recall the classical existence and uniqueness properties of the solu-
tions of the scalar parabolic equation and the corresponding linear and linear adjoint
equations. We also review unique continuation properties, which are fundamental
in this paper. In Section 3, we remind some basic definitions such as hyperbolicity
of critical elements and we state the main properties of the dynamical system S¢(t),
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namely the existence of C! immersed finite-codimensional (resp. finite-dimensional)
stable (resp. unstable) manifolds of hyperbolic critical elements. Section 4 is devoted
to the study of the singular nodal sets and to the proof of Theorem 1.4. In Section 5,
we show that Theorem 1.4 leads to one-to-one properties such as Theorems 1.2 and
1.3. Using these tools, in Section 6, we prove Theorem 1.1, i.e. we show the generic
transversality of heteroclinic and homoclinic orbits of the parabolic equation (1.1).
Section 7 contains discussions about some generalizations of Theorem 1.1. We con-
clude by two appendices recalling the basic facts about the Whitney topology and
Sard-Smale theorems, which will be used in this paper, and one appendix discussing
the still open problem of generic hyperbolicity of periodic orbits of (1.1).

Dedication: Very sadly, both Pavol Brunovsky and Genevieve Raugel passed away
before the publication of this article, respectively in december 2018 and in may
2019. They were still working actively on the manuscript and the present version
is exactly the one which have been completed by them. This article is dedicated to
their memories.

Acknowledgement: The last two authors have been funded by the research project
ISDEEC ANR-16-CE40-0013.

2 Some basic results on parabolic PDEs

2.1 Local existence and regularity results of the parabolic
equation (1.1)

The solutions of the scalar parabolic equation (1.1) exist locally and are unique, see
for example [49] or [31]. In the whole paper, o belongs to the open interval (%4—2%, 1).
We recall that we use the notation f € C"(E,R) to indicate the regularity of f, i.e.
to say that the function f : E — R is of class C". Where a topology is required
(smooth dependences on f etc.), the notation €"(E, R) refers to the space C"(E,R)
endowed with the Whitney topology (see Appendix A).

Proposition 2.1. Let r > 1 and f € C"(Q x R x R4 R).

i) For any uy € X%, there exists a mazimal time T(ug) > 0 such that (1.1) has
a unique classical solution S;(t)uy = u(t) € C°([0,T],X*) n CY((0,T], X*?) n
C°((0,T], D(=Ap)), for any 0 < B < 1 and for any 0 < T < T(uo). If T(uo) is
finite, then |u(t)|xa goes to +o0 when t < T(ug) tends to T (ug).

Moreover, t +— duu(t) is locally Hélder continuous from (0,T] into XP, for
0 < B < 1. In particular, u(-) = Sy(-)ug belongs to the space C°((0,T], W3P(Q2)) N
CY((0,T], W=P(R)), for any s < 2, and thus belongs to the spaces C°((0,T],C*(Q))n
CY((0,T],CH(Q)) and C*(QAx[7,T],R), for any 0 < 7 < T. If, in addition, the first
derivatives D, f(x,-,-) and Dy, f(z,-,-) are Lipschitz-continuous on the bounded
sets of Q x R x R, then u(-) belongs to C*((0,T], W P(Q)) n C2((0, T], W*P(£2)),
for any s < 2 and hence u(-) also belongs to C*(Q x [7,T],R), for any0 <7 <T.

ii) For any ug € X%, for any T < T(ug), there exist a neighborhood U = U(T)
of ug in X and a neighborhood V = V(T) of f in €' such that, for any vo € U
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and any g € V, v(t) = S,(t)vy is well defined on [0,T], depends continuously on
vo € X* and g € €', and there erists a positive number R = R(T,U,V) such that
((Sy(t)vo)(x), (VSy(t)vo)(z)) belongs to the ball Bra+1(0, R), for all (t,vy,g,x) €
[0, T] xU x V x Q.

iii) Moreover, for any ug € X<, for any T < T(ug), the map (t,up) € (0,T] xU —
Se(t)ug € X is of class C" and, in particular, S¢(t) is a local semigroup of
class C". In addition, there exists a neighborhood W of f in the space € (Q x
[-2R,2R] x [-2R,2R]|%R) such that the map (t,up,g) € (0,T] x U x W
Sy(t)ug € X is of class C".

Remarks:

1)

The statement (i) is a direct consequence of the existence and regularity re-
sults given in [31, Chapter 3] and of elliptic regularity properties. We only want
to emphasize that, since the solution u(-) = S;(-)ug belongs to C°([0,T], X*)
and that X is continuously embedded in C!(Q), u(-) automatically belongs
to the space C°([0,T),C'(Q)). Since u(-) is a classical solution and belongs
to C°((0,T],W??(Q)) n C*((0,T], W'?(Q)), f(x,u,Vu) — dwu is in the space
C°((0,T], WtP(Q)) and the regularity properties of the elliptic equation

Apu = du — f(x,u,Vu) ,

imply that u(-) belongs to the space C°((0,T], W3P(Q)) = C°((0,T],C?(2)).

Statements (ii) and (iii) are also easy consequences of [31, Theorem 3.4.4 and
Corollary 3.4.5]. We want to point out that, for any uy € X* and any 0 <
T < T(ug), there exists Ry > 0 such that (u(z,t), Vu(x,t)), for all (z,t) €
Q x [0,7] is bounded in R%¥! by a positive number Ry = Ro(ug,T). Since
g(x,u(z,t), Vu(z,t)) depends only on the values of =, u(z,t) and Vu(z,t), we
can show, by applying the continuity results of [31, Section 3.4], that, for any
R > Ry, for any 0 < ¢ < (R — Ry)/2, there exists a positive number 1 such that,
for any g(-,-,-) € C"(Q x [~ R, R] x [~ R, R]?,R), n-close to f in the classical norm
of € (Q x [-R, R] x [-R, R4, R), ((S,(t)u)(x), (VS,(t)up)(z)) belongs to the
ball Bra+1(0, Ry + ¢€), for all (z,t) € Q x [0, 7).

Notice that the statement (ii) of Proposition 2.1 implies that the maximal time
T'(ug) is a lower-semi-continuous function of the initial data ug

As we have already seen, the parabolic equation has a smoothing effect at any

finite positive time. If the boundary of the domain 2 was of class C* and f belonged
to C*(Q x R x R% R), the solutions of Eq.(1.1) would be in C*(Q x [, T],R) for
any 0 <7 < T < T(ug). However, if f € C*(Q2 x R x R% R), we can still show that
the solutions are regular in the interior of €, even if  is of class C*“ only.

In the whole paper, we say that u(t) : t € R — wu(t) is a bounded complete solution

(or trajectory) of (1.1) if it is a solution of (1.1), defined for any ¢t € R and bounded
in X%, uniformly with respect to t € R.

Since we are only interested in the regularity of the bounded complete solutions

of (1.1), we will state a C*-regularity result for such solutions.



Proposition 2.2. Assume that f belongs to C*(Q x R x R4, R). Then, any bounded
complete solution u(t) of (1.1) belongs to C*(2 x R,R). More precisely, for any
open set O, such that O < Q, for any R > 0, any m € N, any k € N, and any

€ [1,00], there exists a positive constant K (O, R, m,k,q), such that any bounded
complete solution u(t), with sup,cg ||u(t)|xe < R, satisfies

dk

sup diF

teR

0| <KORmk), 1)
Wwm.a(0)

Proof: We will not give all the details of the proof, but will indicate only the main
arguments. The proof consists in a recursion argument with respect to £ and m.
Let u(t) be a bounded complete solution of (1.1) satisfying sup,.g ||u(t)|x= < R.

First step: Since f belongs to C*(Q2xRxR? R), by [31 Corollary 3.4.6], the function
teRw— u(t) e X is of class C*, for any k € N and fh}j( ) € COUR, X n W?2P(Q)) N
CYHR, XP), for any 3 < 1, is a classical solution of the equation

d  d*u d*u dF
—(— ) =A— 1+ \V4 ) 2.2
We notice that the term d; (f(xz,u, Vu)) can be computed by using the Faa Di
Bruno formula [16] and its generalization [9] as follows. We introduce the (d + 1)-
dimensional vector w(zx,t) = (u, Vu)(x,t), that is w; = u and w;; = J,,u. Using
the generalized Faa Di Bruno formula ([9]), we can write,

d* - d*
%(f(x,u(x,t),Vu(x,t))) = Z Dw f(I,w(fE,t))%

m;=1,|m|=1

(w;) (2, 1)
[a5w]”

+ > DI f(zw(x, ) D KM o gl]w

2<|m|<k p(k,m)
= Z D f(x, w(x, t))%(wj)(x, t) + gr(z,t) (2.3)

m;=1,|m|=1

where p(k,m) = {(n1,...,nk; l1,...,0) [Is € [1,k], n;=¢;=0for 1 <i<n-—s}
and g, contains only derivatives with respect to t of order less or equal to k—1.
We notice that the estimate (2.1) for £k = 0, m = 2 and ¢ = p is a direct
consequence of the hypothesis and of Proposition 2.1. Using (2.3), the fact that
WP(Q) is an algebra and the bound sup, |u(t)|x« < R, one shows by recursion

on k that
dFu
sup |27 Ollw2) < Co(R K) (2.4)

where Cy(R, k) is a positive constant depending only on R, k (and of f). Like in
the remarks following Proposition 2.1, the elliptic regularity properties allow also to
deduce from Eq.(2.2) and from the estimate (2.4) that,

d*u
sup | Ollwar@) < C3(R, k), (2.5)
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where C5(R, k) is a positive constant depending only on R, k (and of f).

Second step: One easily shows, by recursion on n € N (and also k) that,

dFu
up | O lsses0) < Coin O, RE) (2.6

Indeed, let O;, j = 1,2,...,n + 1, be a sequence of regular open sets such that
O c Opt1 € Opp1 €O, < ... € O c@H cOj...c O c O; < Q and D55
j =1,2,..., bea corresponding sequence of regular functions such that ¢;(z) € [0, 1],
z €, and p;(x) =0, for x € Q\O; and ;(z) = 1, for v € O;,;. We recall that, by
the remarks following Proposition 2.1, one already knows that the estimates (2.5)
hold for any k € N. We remark that ¢ju is a solution of the elliptic equation

du
A(pru) = Pt ulApy +2Vu -V, — o1 f(x,u, Vu) (2.7)
where 1% + uAp; +2Vu - Vi, — 1 f(2,u, Vu) belongs to W31#(01) n Wy *(0y).
By the elliptic regularity results, o u belongs to W31 (0y) and

Suﬂlg H%U( )||W3+1P 01) < C341(01, R, 0, <P1) ) (2.8)
te

where C5,1(01, R,0, 1) is a positive constant depending only on Oy, R, ¢;. Like-
wise, writing the elliptic equality satisfied by A(gpl(j; u)) and using the equalities
(2.2) and (2.3), one shows, by recursion on k, that <x ~(p1u) belongs to W3HLr(Oy)
and
dk
sup H dtk (golu) (t)”w3+1,p(ol) < 03+1(01, R, ]{3, Q01> 5 (29)

where C3,1(01, R, k, 1) is a positive constant depending only on Oy, R, k and ;.
We notice that 5@,@ (pru)(x) = j;u( ), for any x € Os.

We next assume that ik( u) belongs to W3%7?(0;) and that the estimates
(2.8) and (2.9) hold with 1 replaced by j. Remarking that ¢;;;u is a solution of the
elliptic equation

du
A(QOjJrlu) = (,0j+1$ + uA(ijrl + 2Vu - V(,Oj+1 - Q0j+1f(13, u, VU) (210)

where 1% +ulp;i1+2Vu- Vo1 — @i f(z,u, Vu) belongs to W3 =1r(0;,1) N
W7 (0j41), we at once show that ¢;,1u belongs to W3+i+1.p(0j+1)n Wy P(0541) and that
the estimate (2.8) holds with 1 replaced by j + 1. Likewise, one shows by recursion
on k that L (¢, u) belongs to W3+12(0,,,) and that the estimate (2.9) holds

with 1 replaced by j + 1. Thus, we have proved by recursion on n and k that dtk( w)
belongs to W3*™P(O) and that the estimates (2.6) are satisfied.

The general estimate (2.1) is a direct consequence of the estimates (2.6) and the
classical Sobolev embedding theorem. O
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2.2 The linear and linear adjoint equations

Let 0 < s < T and let a(-) € C}([0,T], L*(2)) and b(:) € C1([0, T], WH*(Q)4). We
consider solutions v of the linear parabolic equation

v (z,t) =Apv(z,t) + alz, t)v(z, t) + b(z,t).Vou(z,t) , t>s,xeQ, (2.11)
v(z,s) =v, . '

In what follows, we denote A(t) the operator
A(t) = Ap + a(z,t). + b(z,t).V .

Equation (2.11) arises either when one linearizes the parabolic equation (1.1) along
a solution u, in which case we have

{ a(x,t) = f;(m7u<x7t)7 Vu(x,t)) (2.12)

b(z,t) = f&,(x,u(z,t), Vu(z,t))

or when one considers the difference v(t) = us(t) — u1(t) between two solutions wu;
and ug of (1.1), in which case we have

{ = § Al (s (1= B)u)(.0). Y (Bus + (1= Q). ) o1
b(x,t) 0 fVu( (Ous + (1 — Q)ug)(x,t), V(Ous + (1 — Q)uqy)(x,t))do

Notice that, since f belongs to C2(Q x R x R% R), due to Proposition 2.1, in both
cases the coefficients of (2.11) belong to C*((0,T], W*(Q)). Since in what follows,
we are mainly applying the results of this section to bounded complete trajectories,

we can consider, without loss of generality, that the coefficients of (2.11) belong to
CH([0,T], Wt*(Q)).

Proposition 2.3. Let r € [1,0) and let vy € L"(S2). Equation (2.11) has a unique
solution v(t) = U(t, s)vs € CO([s, T], L"(2)) nC*((s, T], L"(2)) nC°((s, T], W*"(2) n
Wy (Q)) satisfying v(s) = vs. Moreover, v : t € (s,T] — v(t) € X* is Holder
continuous and belongs to C*((s,T], LY(Q)) n C°((s,T], W24(Q) n Wy 4(Q)) for any
qe[1,+x]. In particular v e C°((s,T],C1(Q)).

Proof: For the existence, uniqueness and regularity of the solution of v(t) =
U(t,s)vs in CO([s,T], L"(Q)) n C (s, T], L"(Q)) A C°((s, T], W27 (Q) n W, (Q)), we
refer to [31, Theorem 7.1.3]. To prove that v(t) belongs to any space L(Q2) (and
thus to X®), we will use a bootstrap argument. Assume that v, belongs to L"(12)
and set r = ro. By [31, Theorem 7.1.3], v(s + §) € W?™(Q) for any § > 0. If
d — 2rg < 0, then, v(s + ) € W?™(Q) < L4(Q), for any positive number ¢ > 1, by
the classical Sobolev embedding. If, d — 2ry > 0, again by the Sobolev embedding
theorem, v(s + ) € W2(Q) < L™(Q), for r; = dro/(d — 2r¢) = 1o + 2r3/(d — 2ry).
We again apply [31, Theorem 7.1.3] to deduce that v(s + 26) € W2 (Q), for any
§ > 0. Again, if d — 2r; > 0, we obtain that v(t + 2§) € W2™2(Q) < L™(Q), for
ro = dri/(d—2ry) =1y +2r2/(d—2r1) = 1o+ 2r2/(d — 2r¢) + 202 /(d — 2ry). Clearly,
since the increment r — 2r/(d — 2r) is increasing until d — 2r < 0, after a finite
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number of steps, we obtain that v(t) € LI(). D

Proposition 2.3 tells that Equation (2.11) generates a family of evolution opera-
tors U(t,s) on LP(€2), which is extended to L"(2) for any r > 1.

Let now 1 < p < +00, which implies that X = L?(Q) is reflexive. Denote by p*
the conjugate exponent of p, that is, p* = p/(p—1); consider the adjoint space X* =
(LP(Q))* = LP* () of X and the adjoint evolution operator U(t, s)* : X* — X*. Let
T > 0; for ¢y € LP*(2), we define the function ¢ : s € [0, T] = 1(s) = U(T, 5)*1r.

In general, ¥(s) is only a weak* solution of the equation
2(3,5) = —Apt(, 5) — alz, $)6(z, 5) + div(b(z, $)$(z, 5)) (2.14)

with (z,s) € Q x (0,T) and with final data )(T") = 17 in the weak-= sense. More
precisely, s € [0,T) — 1(s) € X* is locally Holder continuous, for each ¢ € X,
(P, 1(s)) — {(p,¥r) when s — T~ and, for each ¢ € D(A*), (¢, (s)) is differentiable
on [0,T) with dy(¢, ¥ (s)) = (A(s)¢, ¥(s)).

Usually, ¥(s) = U(T,s)*r is only a solution of (2.14) in a weak sense. But
here, since a(-) € C1([0,T], L*(Q2)) and b(-) € C1([0, T], WL*(2)9), 4(s) is a strong
solution of (2.14), as we shall see in the proposition below. Notice that (2.14) is a
parabolic equation solved backwards in time.

Proposition 2.4.
1) With the above notations, 1 (s) = U(T, s)*irp belongs to C*([0,T), X*)nC°([0,T),
W2 (Q) A WIP*(Q)). Moreover, it satisfies (2.14) in the strong sense and ¥)(s)
belongs to C'([0,T), LI(2)) n ([0, T), W249(Q) n W U(Q)) for any q > 1.

2) Let Ur € X*. For any 0 < n < T, Q/NJT_n = U(T,T - n)*((—AD)a)*&T
is well defined in X*. Hence, for s < T —mn, ¥(s) = U(T —n,s)"dr_, =
U(T ) ((~Ap)*)*dr belongs to CH([0,T — 1), X*) A CO([0, T — 5), W2 (©) r

W (Q)) and a strong solution of (2.14).

Proof: The first part of the proposition is a direct consequence of [31, Theorem
7.3.1] on the existence and regularity of solutions for the adjoint equation and on
the fact that the coefficients have the regularity a(-) € C*([0,T], L*(Q)) and b(-) €
CYH([0,T], Wh*(Q)9). The fact that ¥(s) belongs to any L?(f) is proved by recursion
as in Proposition 2.3.

To show the second part of the proposition, let QZJT e X* and let p € X =
LP(2). By Proposition 2.3, U(T,T — n)¢ belongs to X* = D((—Ap)*) and thus
(| (—=Ap)*U(T, T—n)@) L+ 1» is well defined. Therefore, U(T), T—n)*((=Ap)*)*
is well defined and belongs to LP*(Q). To finish, we apply [31, Theorem 7.3.1] (or
the first part of the proposition) to the initial data ¢y = U(T, T —n)*((—Ap)®)*ir.

[m]

2.3 Unique continuation properties

In this section, we recall some important unique continuation properties satisfied by
the linear parabolic equation (2.11). We enhance that these properties will apply to
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solutions v(t) € X of (2.11) with coefficients given by (2.12) or (2.13). Hence, we
may apply it to the difference of two solutions of the nonlinear parabolic equation
(1.1). In particular, the unique continuation properties below will have fundamental
consequences on the properties of the dynamics of (1.1), such as the injectivity of
the flow.

The following result is a direct consequence of the backward uniqueness property
stated in [4, Theorem II.1].

Proposition 2.5.
1) Let T > 0. Let a(z,t) € L®(Q x (0,T)) and let b(x,t) € L*(Q x (0,T))<.
Let v(t) € L*((0,T), H} () be a solution of the linear parabolic equation (2.11).
Then, v(T) = 0 in Q if and only if v vanishes identically in (0,T") x .

2) Likewise, assume that a(x,t) € L®(Q x (0,T)), that b(z,t) € L=(Q x (0,7T))?
and that D,b(x,t) € L(Q x (0,7))%, 0 <i < d. Let ¥(t) € L*((0,T), H}(2)) be
a solution of the adjoint linear equation (2.14). Then, 1¥(0) = 0 in Q if and only
if ¥ vanishes identically in (0,T") x €.

Let now u; and up be two solutions on the time interval [0,7"] of the equation
(1.1). We already remarked that v(t) = us(t) — uy(t) satisfies the linear equation
(2.11) with the coefficients a and b given by (2.13). By Proposition 2.1, the coef-
ficients a, b and the function v(t) satisfy the regularity assumptions of the above
proposition 2.5. Thus, if u1(T") = us(T), then u; = uy on [0, T]. This leads to state
the following corollary.

Corollary 2.6. Let T > 0. Let uy(t) and us(t) be two solutions on the time interval
[0, T] of the equation (1.1). If uy(T) = us(T), then ui(t) = us(t), for any t € [0,T].
In other terms, the local dynamical system S¢(t) generated by (1.1) has the backward
uniqueness property.

The following result is proved in [62] and shows that the set of the zeros of the
solutions of the linear parabolic equation is a closed set with empty interior.

Proposition 2.7. Let T' > 0, a and b be as in Proposition 2.5. We assume that
v(z,t) € L*((0,T), H*(Q) n H}(Q)) is a solution of the linear parabolic equation
(2.11). If v(x,t) vanishes on an open non-empty subset of Q x (0,T), then v(x,t)
identically vanishes on € x (0,T).

A similar result has been obtained for the strong solutions of the adjoint equation
in [17, Corollary 2.12].

Proposition 2.8. Let T > 0. Let a(z,s) € L*(Q x (0,T)) and let b(x,s) € L™ (£ x
(0,7))% Let (s) € L2((0,T), H*(Q) n H}(2)) be a solution of the adjoint equation
(2.14). If ¥(x,t) vanishes on an open non-empty subset of Q x (0,T), then ¥ (x,t)
identically vanishes on Q x (0,T).

In the particular case of smooth solutions of (2.11) (typically if one considers
global bounded solutions and a smooth non-linearity f), we will need stronger prop-
erties on the zeros of the solutions in Section 4.
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We say that v vanishes to infinite order in both the space and time variables
at (zo,to) if, for any k > 1, there is a constant Cj > 0, such that, for any (z,t) €
Q x [-T,0],

lv(z, )| < Cr(|z — x0|* + |t — to|)k/2 . (2.15)
We shall often apply the following unique continuation result of Escauriaza and
Fernandez [15].

Proposition 2.9. Assume that v e C°((—T,0],C*())nC'((—T,0],C*(Q)) is a solu-
tion of (2.11) and satisfies either homogeneous Dirichlet or homogeneous Neumann
boundary conditions. Suppose that v vanishes to infinite order at (xq,0) in both the
space and time variables in the sense of (2.15). Assume moreover that there exists
a positive constant K such that for any (x,t) € Q x (=T,0],

lvog(z,t) — Av(z, t)| < K(|Vou(z, t)| + |v(z,t)]) . (2.16)

Then, v(x,0) vanishes for any x €  and therefore v(x,t) identically vanishes in

Q x [-T,0].

We say that v vanishes to infinite order in space at (zg,%p) if, for any k£ > 1,
there is a constant C > 0, such that

[0(x, t)| < Ckl — xol* . (2.17)

From Proposition 2.9 and [2, Theorem 1], we deduce the following unique continua-
tion result for solutions v € CO((—T,0],C%(Q)) n C((—T,0],C*(Q)) of (2.16), which
vanish to infinite order in space. The following result can also be deduced from
Proposition 2.9, a simple computation and, a recursion argument when v(z,t) is a
C*-function in the variables (z,t). Indeed, if for example v(z,ty) vanishes to order
2 (resp. 4) in space at (zo, 1), then, due to the equation (2.11), v,(x,to) vanishes
to order 0 (resp. 2) in space at (xg,ty). Moreover, if v(z,ty) vanishes to order 4
in space at (xg,tg), deriving the equation (2.11) with respect to ¢, one shows that
vy (z,t) vanishes at order 0 in space. Finally, continuing the recursion argument on
k and on the derivatives with respect to ¢, one shows that v vanishes to infinite order
at (o, 1) in both the space and time variables in the sense of (2.15)

Proposition 2.10. Assume thatv € C°((—T,0],C?(Q))nC*((~T,0],C1(Q)) satisfies
the inequality (2.16) and either homogeneous Dirichlet or homogeneous Neumann
boundary conditions. Suppose also that v vanishes to infinite order in space at
(20,0), for some xg € Q. Then, v(z,0) vanishes for any x € Q0 and therefore v(x,t)
identically vanishes in Q x [=T,0].

3 The local infinite-dimensional dynamical sys-
tem S(1)

In this section, we recall some basic properties of the local dynamical system S(¢)
generated by the parabolic equation (1.1) on X* (if the dependence on f is clear,
we simply write S(¢)). As we have seen in the introduction, the hyperbolicity of
the critical elements (that is, the equilibrium points and periodic orbits) and the
transversality of the stable and unstable manifolds play a primordial role. Thus, we
will focus on recalling the definitions and main properties of these objects.
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3.1 Critical elements and hyperbolicity

Let e € X be an equilibrium point of (1.1). The linearization (D,S(t)e) of the
dynamical system S(t) at e is given by the linear semigroup e’ on X, where
L. : D(Ap) — LP(Q) is the linear operator defined by

Lov = Apv + f(z,e(x), Ve(z))v + fo,(z,e(x), Ve(x)).Vu .

The operator —L, is a sectorial operator and a Fredholm operator with compact
resolvent. Therefore, the spectrum of L. consists of a sequence of isolated eigenvalues
of finite multiplicity, the norms of which converge to infinity. Since the resolvent of
L. : X — X is compact, the linear Cy-semigroup e’<! from X into X is compact
and its spectrum consists of a sequence of isolated eigenvalues of finite multiplicity
converging to 0. By [49, Chapter 2, Theorem 2.4], i is an eigenvalue of e if and
only if 1 = e*, where \ is an eigenvalue of L..

Definition 3.1. The equilibrium point e is said simple if 1 does not belong to the
spectrum of e*<. The equilibrium point e is hyperbolic if el has no spectrum on
the unit circle S' ={z e C | |z| = 1}.

In the case of the equation (1.1), we may equivalently say that the equilibrium
point e 1s simple if and only if 0 is not an eigenvalue of L. and that it is hyperbolic
if and only if L. has no eigenvalue with zero real part.

The Morse index i(e) is the (finite) number of eigenvalues of e of norm
strictly larger than 1 (counted with their multiplicities) or equivalently the number
of eigenvalues of L. with positive real part.

Let p(t) be a periodic solution of the scalar parabolic equation (1.1) with period
w > 0. This periodic solution describes the periodic orbit I' = {p(¢) |t € [0,w)}.
The linearization of the dynamical system S(t) along p(t) is given by the evolution
operator Il;,(t,s) : vy € X* — v(t) € X® t > s, where v(7) solves the non-
autonomous equation

{ o-v(x, 1) = Av(z,7) + fl(z,p, VD)v(2,7) + f&, (2,0, V)VU(2,7T) (3.1)

v(z,s) = vg(x) .

The operator II;,(w,0) is called the (corresponding) period map. One remarks
that Iy, (t +w,t) = Iy, (¢t +mw,t+ (m —1)w) for any ¢t > 0 and any m € N. Notice
that dyp(t) is a solution of (3.1) and thus that 1 is an eigenvalue of Iy, (w, 0) with
eigenvector dyp(0). We emphasize that, due to the smoothing properties in finite
positive time of the parabolic equation (3.1), the operator Il ,(¢,s) : X* — X©,
t > s, is compact. Therefore, the spectrum of I, (¢t + w,t) consists of a sequence
of isolated eigenvalues of finite multiplicity, converging to 0. As for the linearized
operator e at the equilibrium point e, 0 is the only point where the spectrum of
I, (t + w,t) accumulates. Actually, by the backward uniqueness property, 0 is not
an eigenvalue neither of e’<, nor of I1; ,(t+w, t). By [31, Lemma 7.2.2], the spectrum
oIl ,(t + w,t)) of IIf,(t + w,t) is independent of ¢ € [0, +0). For this reason, the
following definition makes sense.

To simplify the notation, when there is no confusion, we will simply write I1(¢, s)
instead of Il (¢, s).
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Definition 3.2. A periodic solution p(t) of period w is simple or non-degenerate
if the number 1 is a simple (isolated) eigenvalue of Iy, (w, 0).

The periodic solution p(t) is hyperbolic if Il ,(w,0) has no spectrum on the
unit circle St except the eigenvalue one, which is simple and isolated.

Since Iy, (w,0) is a compact operator, the periodic solution p(t) is hyperbolic if
and only if 1 is a simple, isolated eigenvalue of I1s,(w,0) and is the only eigenvalue
on the unit circle.

The Morse index i(p) of p(-), or the Morse index i(I") of T, is the (finite)
number of eigenvalues of I ,(w, 0) of norm strictly larger than 1 (counted with their
multiplicities).

In what follows, we will sometimes say that the periodic orbit T' = {p(t) |t €
[0,w)} is simple (resp. hyperbolic), instead of saying that p(t) is simple (resp.
hyperbolic).

A first important consequence of the simplicity property is the persistence of
equilibrium points and periodic orbits under perturbations.

Theorem 3.3. Let r > 2 be given and let fy € €.

1) Let eq be a simple equilibrium point of (1.1) with f = fo. There exist a neigh-
borhood N of fo in € and a neighborhood U of ey in X such that, for any f € N,
there exists a unique equilibrium point e(f) in U. This equilibrium depends con-
tinuously on f € €. In addition, the eigenvalues of L.y continuously depend on
fecr.

Moreover, if ey is hyperbolic, the neighborhoods N and U can be chosen small
enough so that e(f) is also hyperbolic and so that the Morse index i(e) is equal
to i(eg).

2) Let po(t) be a simple periodic solution with period (resp. minimal period) wy of
(1.1) for f = fo. There exist a neighborhood N of fo in €, a positive number
n and a neighborhood U of Ty = {po(t)|t € [0,wo)} in X such that, for any
f €N, there exists a unique periodic orbit T'(f) = {p(f)(t) |t € [0,w(f))} in U,
of period (resp. minimal period) w(f) with |w(f) —wo| < n. The period w(f) and
the periodic orbit T'(f) continuously depend on f. In addition, the eigenvalues of
) (w(f),0) continuously depend on f e €.

Moreover, if fo is hyperbolic, the neighborhoods N and U andn > 0 can be chosen
small enough so that the periodic solution p(f)(t) is hyperbolic and so that the
Morse index i(p(f)) is equal to the Morse-indez i(py).

Proof: The first statement about the persistence of simple equilibria ey is very
classical. Assume that [leg] > < m and |Veg|r» < m. Then, applying the implicit
function theorem or the fixed point theorem of strict contraction (see the proof
[7, Lemma 4.c.2]), one shows that there exist a neighborhood Ny of f; in C"(2 x
[—2m, 2m] x [-2m,2m]?) and a neighborhood U of ¢y in X® such that for any
f € Ny, there exists a unique equilibrium point e(f) in &. This equilibrium depends
continuously of f € Ny and, moreover, all the other properties of the first statement
hold. Using the restriction mapping R of Section 2.1, we conclude that there exists
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a neighborhood N of f; in €" such that, for any f € N, there exists a unique
equilibrium point e(f) in & and that all the other properties of the first statement
hold.

Let po(t) be a simple periodic solution of period wy > 0 of (1.1) for f = f;. As-
sume that supcpg ) [Po(t)|ze < m and sup,cpo ., |VPo(t)|r» < m. The statement
of the persistence of a simple periodic solution p(t) near py(t) with period wy close
to wp and also of the uniqueness (up to a time translation) of this periodic solution, if
f belongs to a small enough neighborhood of fy in C"(2 x [—2m, 2m] x [—2m, 2m]?),
is a direct consequence of [31, Theorem 8.3.2]; it is proved by using the method of
Poincaré sections and the implicit function theorem or the fixed point theorem of
strict contraction (for further results in the case where the perturbations are less
regular, see also [23] and [24]). One concludes like in the proof of the statement 1)
by using the restriction mapping R of Section 2.1.

The continuous dependence of the eigenvalues of Le(sy or of Iy, (w(f),0) with
respect to f € €" is a consequence of the proof of the continuity results of Kato
(see [40, Theorems 1X.24, IV.31, IV.3.18]) and of the properties of the restriction
mapping R. Detailed proofs of continuity of the point spectrum can also be found
in [22, Section 3]. 0

Notice that a periodic solution p(t) of period w can be simple, whereas the same
periodic solution p(t), considered as periodic solution of period nw can be non-
simple. This is the case when the spectrum of I, (w, 0) contains a n-th root of 1.
Thus, in the statement 2) of Theorem 3.3, when pg(t) is a simple periodic solution
of period wy of (1.1) for f = fy, we do not know if T'(f) = {p(f)(t) |t € [0,w(f))}
is the unique periodic orbit of (1.1) in the neighborhood U of T'y if f belongs to
N. Indeed,if the spectrum of Iy, ,, (wo,0) contains a n-th root of unity, then it is
possible that new periodic orbits of period close to nwy are created (in the case
where n = 2, it is the famous “period-doubling bifurcation”).

Of course, when py(t) is hyperbolic, no such new periodic solutions can be created
and ['(f) is still isolated in the set of periodic orbits. Hyperbolicity is a notion
independent of the chosen period.

3.2 Stable and unstable manifolds

We recall that a critical element means either an equilibrium point or a periodic
orbit of (1.1).

Definition 3.4. Let C be a critical element of (1.1). The global stable and
unstable sets of C are respectively defined as

WS(C) = {U() e X | Sf(t)Uo ?—»:g) C} s
WHC) = {upe X*|Vt <0, Se(t)ug is well defined and Sy(t)ug — C}.
——00

Likewise, if Ue is a neighborhood of C in X<, we introduce the local stable and
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unstable sets of C defined as

WS(C, Uc) = I/VISOC<C) = {uo € Uc | Sf(t)UO € Uc,t = 0} ,
W (C,Ue) = Wi (C) = {ug e Uc |Vt <0, Se(t)ug is well defined and stays in Uc}.

If we need to specify the dependence with respect to the non-linearity f, we
will denote these manifolds as W*(C, Ue, f) and W*(C, U, f) or as W} _(C, f) and
Wise(C, f).

Let ey be an equilibrium point of (1.1) and let (D,S(t)eg) = eF«o! be the corre-
sponding linearized operator around ey. We denote by P, (resp. Ps) the projection
in X onto the space generated by the (generalized) eigenfunctions of el< corre-
sponding to the eigenvalues with modulus strictly larger than 1 (resp. with modulus
strictly smaller than 1). Let X = P,(X®) and X = P;(X*). We have seen that,
in the case of the parabolic equation (1.1), the Morse index of every hyperbolic
equilibrium point is finite, which implies that P,(X) = P,(X?).

The following theorem states the existence of the local stable and unstable man-
ifolds near hyperbolic equilibrium points. The result is very classical. In the case
of a vector field on a finite-dimensional compact manifold, we refer the reader to
[1], [47], [35] for example, and in the infinite dimensional case, we refer to [31], [26],
[25], [11], [59].

Theorem 3.5. Let fy be given in €, r = 2, and let ey be a hyperbolic equilibrium
point of Sy, (t). Then there is a neighborhood Uy of ey such that the local unstable
manifold W"(eo, Up) (resp. the local stable manifold W*(eq, Uy)) is a C"-submanifold
of dimension i(ey) (resp. codimension i(eg)), which is tangent to X& (resp. X&) at
€.

More precisely, there exist a neighborhood Uy of ey in X*, two mappings h,(fo) =
hY . P, X* — P,X* and hs(fo) = hY : P,X* — P,X“ of class C" such that h2(0) = 0,
DR2(0) = 0, h2(0) = 0, Dh2(0) = 0 and

Wige(€o, fo) = W*(eo, Uo, fo)
={velUy|v=-ey+ P,(v—re) +h(P.,(v—e))}

Wite(eo, fo) = W?(eo, Uo, fo)
={velU|v=ey+ P(v—ey) +h(Pv—ep))}. (3.2)

Furthermore, the convergence rates to the origin are exponential. More precisely,
there are positive constants ki, ko and constants 0 < v < 1 < 71, such that,

s Ve Wu<€0, Uo) s

Sy (t < 0
< 0, YaxeW?(eyU) .

155 ()] x

In addition, the local stable and unstable manifolds “continuously” depend of the
nonlinear map f. More precisely, there exists p > 0 and, for any € > 0, there is a
neighborhood N of fo in € such that, for any f € N, S¢(t) has a unique equilibrium
point e(f) in the ball Bxa(eg, p) of center eq and radius p in X<, and |e(f)—eg|xa <
e. Moreover, the corresponding local unstable and local stable manifolds of e(f) are
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given by

Wige(e(f), f) = W*(e(f), U, f)

= {velo|v=ce(f)+ Pu(v—re(f) + hu(f)(Pulv —e(f)))}
Wise(e(f), f) = Wige(e(f), U, f)

={velolv=e(f) + P(v—e(f) + hs(F)(Ps(v —e(f))}

where hy(f) : P,X* — P,X* and hs(f) : P,X* — P, X% are maps of class C" such
that hy(f)(0) = 0, hs(f)(0) = 0 and |ho(f) — B2|ler < & and |ho(f) — ROer < e.
Finally, for any f € N, the above constants k;, ~; are independent of f.

Proof: We refer to [31, Theorems 5.2.1. and 5.2.2] for the existence of the local sta-
ble and unstable manifolds in the case of a hyperbolic equilibrium point of a parabolic
equation. To obtain the last part of the Theorem, that is the smooth dependence
with respect to f, we simply use a fixed point theorem with parameter. Indeed, the
proof of Theorem 5.2.1 of [31] consists in constructing the mappings h, and hg as
fixed points of suitable contraction mappings. These maps depend smoothly on f
and thus remain contractions mappings for f close to fy and their fixed points h,(f)
and hs(f) depend smoothly on f. Notice that in general Dh,(f)(0) and Dh(f)(0)
do not vanish, but are only small of order . =

Let p(z,t) be a hyperbolic periodic solution of (1.1) of minimal period w > 0,
let I' = {p(t) |t € [0,w)} be the associated orbit and let II(¢,0) : X* — X, be the
associated evolution operator defined by the linearized equation (3.1). We denote
i, i € N, the eigenvalues of the period map II(w,0). Since p(x,t) is a hyperbolic
periodic solution, the intersection of the spectrum of II(w,0) with the unit circle
St of C reduces to the eigenvalue 1, which is a simple (isolated) eigenvalue. We
recall that, if p(a), a € [0,w), is another point of the periodic orbit, the spectrum
of D, (Sf(w,0)p(a)) coincides with the one of II(w,0) whereas the corresponding
eigenfunctions depend on the point p(a).

We denote P,(a) (resp. P.(a), resp. Ps(a)) the projection in X onto the space
generated by the (generalized) eigenfunctions of D, (S;(w,0)p(a)) corresponding to
the eigenvalues with modulus strictly larger than 1 (resp. equal to 1, resp. with
modulus strictly smaller than 1).

Since a hyperbolic periodic orbit is a particular case of a normally hyperbolic
C! manifold, we may apply, for example, the existence results of [5], [34], [35] or
[59, Theorem 14.2 and Remark 14.3] and thus, we may state the following theorem.
Other methods of proofs are also given in [1], [35], [26], [25] and [47].

Theorem 3.6. Let fy be given in €, r = 2, and let Ty = {po(t) |t € [0,wo)} be a
hyperbolic periodic orbit of Eq. (1.1) of minimal period wy > 0.
1) There exists a small neighborhood Ur, of Ty in X® such that the local unstable
and stable sets

VVZ?)C(FO) = W"(F(]? U[‘O) = {UQ S Xa ‘ Sfo (t)uo € UFO s Vt <
Wige(To) = W#(To, Ur,) = {ug € X | Sg,(t)uo € Ur, , Vt =
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are (embedded) C'-submanifolds of X of dimension i(Ty) + 1 and codimension
i(Ty) respectively.

2) Moreover, Wi .(I'y) and W} (L) are fibrated by the local strongly stable (resp.
unstable) manifolds at each point po(a) € Ty, that is,

VVlf)c(FO) = UGE[O,WO)M/I%Z(])O(&)) ) Vquéc(FO) = UaE[U,wo)VVliqé(pO(a)) )
where there exist positive constants 7o, ko and K such that

Wis(po(a)) ={uo € X* | Sy (t)to — pola +t) [ xe < 7o , ¥ >0,
lim e*! S, (H)uo — pola +1)| xo = 0} ,

(
)

Wisk(po(a)) ={uo € X[ ]S, ( (3.4)
(

tUO—po(CL-i-t)HXa <f0, Vt<0,

oc

)
Tim e8| Sy, (8o — po(a + ) [xe = 0}

For any a € [0,wp), W:(po(a)) (resp. Wgi(po(a))) is a C"-submanifold of X*

of dimension i(I') (resp. of codimension i(I') + 1) tangent at po(a) to P,(a)X®
(resp. Ps(a)X®).

3) Finally, the local stable and unstable manifolds of the periodic orbit continuously
depend on the nonlinear map f € €.

We have seen that the local stable and unstable manifolds are C" graphs over
P, X% and P, X respectively. In general, the global stable and unstable manifolds
are not embedded submanifolds of X“.

Adapting the proof of [31, Theorem 6.1.9], one easily shows the following result.

Theorem 3.7. Let fe €, r =2, be given.

1) Let ey be a hyperbolic equilibrium point of (1.1). Then, the global unstable
set W¥(eo) (resp. global stable set W¥(eg)) is an injectively immersed invariant
manifold of class C" in X of dimension (resp. of codimension) i(ep).

2) Likewise, let Iy = {po(t) |t € [0,wo]} be a hyperbolic periodic orbit of mini-
mal period wy > 0. Then, the global unstable set W*(I'g) (resp. global stable
set W*(T'g)) is an injectively immersed invariant manifold of class C" in X* of
dimension i(I'og) + 1 (resp. of codimension i(I'y)).

Proof: We will give the proof in the case of a hyperbolic equilibrium ey, since the
proof is very similar in the case of a hyperbolic periodic orbit.
Proof for the unstable manifold: For every m € N, we introduce the open set

Uo(m) = {z € Uy | S¢(t)x is well defined, 0 <t < m}

where Uy is the neighborhood of ey, in which the local stable and unstable manifolds
are given as graphs (see Theorem 3.5). By Proposition 2.1, Uy(m) is an open subset
of Uy and thus W} .(eg) n Up(m) is an open subset of W} (ep). We readily check
that

W*(eo) = UpZoSy(m)(Wige(eo) 0 Uo(m)) . (3.5)
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Moreover, since W} _(eg) is negatively invariant, we have, for any m € N,
Sy(m)(Wige(eo) 0 Up(m)) < Sp(m + 1)(Wig.(eo) n Up(m + 1)) .

By Corollary 2.6, S¢(m) is an injective map from Uy(m) into X®. Moreover, by
Proposition 2.5, for any = € Uy(m), D,Sf(t)z is an injective map from X into
itself, thus S¢(m)yym) is an injective C"-immersion. By Theorem 3.5, W (eo) is
the image of an injective C"-map H, from the open ball Bgx(0,1) of center 0 and
radius 1 of R¥ into X®, where k = i(eg). Moreover, the derivative DH,,(y) has rank
k at each point y € Bre(0,1). We recall that H, *(W/".(eq) N Up(m)) is an open
subset V (k,m) of Bge(0,1). It follows that Sy(m)W}.(eo) N Us(m)) is the image of
the injective C"-immersion Sy(m)o H, : V(k,m) — X and thus is a C"-submanifold
of dimension k. Since the invariance is obvious, Statement 1) is proved.

Proof for the stable manifold: We first remark that

W*(eq) = UnZeSy(m) ™ (Wie(eo)) - (3.6)
Moreover, since W} (eg) is positively invariant, we have, for any m € N,
Sp(m) ™ (Wie(eo)) = Sp(m + 1)~ (Wii(eo)) -

As a consequence of the property (3.2) in Theorem 3.5, where h? is a C"-map of P, X
into the k-dimensional space P,X* and where Dh2(0) = 0, W} _(eo) is actually
represented as the set {v € Uy|g(v) = 0}, where g : z € Uy — g(z) € R* is a
map of class C" and Dg(v) has constant rank k at every point v € g~'(0). By
(31, Theorem 7.3.3], DS¢(m)u has dense range at every point u € X at which
Sr(m)u exists if (DSp(m)u)* is injective. By Proposition 2.5, the adjoint equation
(2.14) also satisfies the backward uniqueness property. Thus DSy(m)u has dense
range at every point u € Sy(—m)W} (eo), which implies that, at every point u €
(g o Sy(m))~1(0), D(g9(S;(m))u) has rank k. In other terms, the mapping v —
g(Sg(m)v) is a submersion of constant rank k at every point u € (g o Sy(m))~*(0).
By a theorem on Page 12 of [44] for example, (g o Sy(m))~'(0) is a C"-submanifold
of X of codimension k. Thus, since Syqy,) is injective, W?(ep) is an injectively
immersed manifold of codimension k. Since the invariance is obvious, Statement 2)
is proved. O

3.3 Transversality of connecting orbits

We use here the above concepts of stable and unstable manifolds of hyperbolic
equilibrium points or periodic orbits. The definitions related to Theorem 1.1 are as
follows.

Definition 3.8. Let C* be two hyperbolic critical elements. We say that W"(C™)
and W*(C*) intersect transversally (or are transverse) and we denote it by

W (CT)AW?*(C") ,
if, at each intersection point ug € W*(C~) n W*(C"), T, ,2W"(C™) splits, that is,

contains a closed complement of T,,W*(C") in X.
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It is important to notice that, in this paper, the complement of 7,,, W*® in X is
always closed since T,,/W*(C™~) is finite-dimensional. Also note that, by definition,
manifolds which do not intersect are transverse.

Definition 3.9. Let C- # C* be two different hyperbolic critical elements. A
trajectory u(t) of S(t) is a heteroclinic orbit connecting C~ to C* if u(t) €
W™(C™) n WH(CT).

Let C be a hyperbolic critical element. A trajectory u(t) of S(t) is a« homoclinic
orbit to C if u(t) e W*(C) n W*(C).

A heteroclinic or homoclinic orbit is transverse if the above intersections of
stable and unstable manifolds are transverse.

4 Singular nodal sets for linear parabolic equa-
tions with parameter

In this section, we consider a general linear parabolic equation with parameter
ow(z,t, ) = Av(z, t,7) + alx, t, 7)v(z, t,7) + b(x,t,7).Vov(z, t,7) (4.1)

in a domain Q of R

We are interested in the singular nodal set of v, that is the points (z, ¢, 7) where v
and Vv both vanish. To this end, we use techniques coming from [29]. The singular
nodal set of solutions of the parabolic equations, with coefficients independent of
the parameter 7, has already been studied in [28] and in [10]. Notice that we assume
that v is smooth in the variables (x,t) €  x R, but this is not a restriction since
this property holds in the applications, that we have in mind (see Section 5).

Theorem 4.1. Let I and J be open intervals of R. Let a € C*(Q x I x J,R) and
beC®(Q x I x JRY be bounded coefficients. Let v be a strong solution of (4.1)
with Dirichlet boundary conditions. Let r > 1 and assume that v is of class C" with
respect to T and of class C* with respect to x and t. Assume moreover that there
are no time t € I and no parameter T € J such that v(.,t,7) = 0. Then,

1) M ={(x,t,7) e QxIxJ|v(x,t,7) =0, Vyv(z,t,7) = 0} is contained in a
countable union of C"—manifolds of dimension d,

e cither parametrized by t, T and d — 2 components of x,

e or parametrized by T and d — 1 components of x.
2) the set
(TNS) = {(x0,t0) € Q x I |#1 € J such that (v(xo,to,T), Vv(20,t0,7)) = (0,0)}
is generic in €2 x 1.

Proof: We introduce the set

M, = {(x,t,7) €Q x I x J such that for all |a| <gq, Djv(z,t,7) =0,
and there exists «, so that |a| = ¢+ 1, Dv(z,t,7) #0 } .

23



By Proposition 2.10, if v(z, ¢, 7) vanishes at infinite order in z, then v(.,¢, 7) identi-
cally vanishes in (). By assumption, this is precluded. Thus, M = U,>1M,. And,
without loss of generality, we can replace M by M, in Property 1) of Theorem 4.1.

Let ¢ = 1 and (g, to, 70) € 2 x I x J. Let us first prove that there exists py, > 0
such that Property 1) of Theorem 4.1 holds with © x [ x J replaced by the ball
B((xo,to,70), po,q) and M replaced by M,. Assume that (xo,to, 79) € M, (otherwise
the property is trivial). There exists a multi-index g with |f| = ¢ — 1 such that
Hess(DPv(zg,t0, 7)) # 0. In particular, there exist i,5, 1 < i,j < d, such that
the derivative D2, (D?v(x,t0,70)) # 0. We next consider the D? derivative of the

equation (4.1). Since v vanishes at order 18] + 1 at (z, to, 70), we obtain the equality

%Dﬁv(x07t077'0) = Aw(Dﬁv(x0>t07TO)) :

Now two cases can occur:

e Either £D%v(zg,t,70) = 0 and thus ZZ=1 %(Dﬁv(xo,to,m)) = 0. In this
case, if %(Dﬂv(xo,to,ro)) = 0 for all k, then there exist ¢ # j, such that
Dgﬁj(Dﬁv(a:O,to,To)) # 0. By considering their i*" and j* components, we
see that V,D,,(DPv(xg,t, 7)) and Vwaj(Dﬁv(mo,to,To)) are linearly inde-
pendent. If, on the contrary, there exists ¢ such that %(Dﬁv(xo,to, 7)) # 0,
then there also exists j # ¢ such that

0? 0?
— (D t —(D”? t :
8%2( U(.ZU(), OaTO)) X axjg( U(l’o, OaTO)) <0

By considering their i*" and j* components, we notice again that the vectors
V2Dy, (DPv(zo, b0, 70)) and VD, (DPv(zo,t0, 7)) are linearly independent.
To summarize, in all the cases, there exist ¢ and j, such that the vectors
VD, (DPv(zg,t0, 7)) and VIDIj(D’BU<Z‘0,t0,TO)) are linearly independent.
This implies that there exists py, > 0 such that
B((z0,t0,70), po.q) N (DaciDBv)_l(O) N (D%’Dﬂv)_l(o)
is an embedded C"—submanifold M, (g, 1, 7o) in R4"? of dimension d which
contains all of B((zo,to,70), poq) N My. This submanifold can be written as
M, (zo,to, 70) = {(z,t,7) € B((z0,to,70), po,q) such that
(@i, 25) = (Ps((@p)rig, £, 7), i ((Ta)rriyn 7))} -

e Or £D%v(xg,ty,19) # 0, then there exists ¢ such that D? DPv(xo,t,0) #
0. Notice that, since D,,D’v(xg,to,70) = 0, (Ds,, Di)DPv(xg,t9, 7o) and
(Dy,, D¢)(D., DPv (0, to, T0)) are linearly independent. Thus, there exists pg, >
0 such that

B((x0, %0, 70), pog) N (Da, D?0)71(0) 0 (D70)7H(0)

is an embedded C"—submanifold M,(zo, %, 7o) in R?"? of dimension d, which
contains all of B((zo,to,70), po,q) N My. This submanifold can be written as

M,(zo,to, 70) = {(z,t,7) € B((z0,t0,70), po,g) such that
(24, t) = (i ((Th)krir ), P(T)kreis 7)) } -
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To finish the proof of the first part of Theorem 4.1, notice that, since 2 x I x J is
separable, for any ¢ > 1, we can find a countable number of points (2, 4, tn.gs Tng)n>1
such that Q x I x J = U,B(Tng, tng Tng)s Pnq) and therefore we have M c
Ugs1 Uns1 M, g with M, , = My(2 4, thgs Tng)-

Let P : (z,t,7) — (z,t) be the canonical projection. Obviously, (T'NS) is the
complementary of PM. To prove the second part of Theorem 4.1, it is thus sufficient
to show that the projections of the manifolds M,, , obtained above have an image
which is contained in a closed set of empty interior. For any n and ¢, P, , is a
C"— (and a fortiori a C'—) map defined from a smooth manifold of dimension d
into Q x I < R4 By the Sard theorem (see for example [1, page 41]), the set
of regular values of this map is an open dense subset of Q x I (without loss of
generality, we may restrict the size of B((2p q,tnq, Tng), Png) i order to prove the
openness property). Obviously, the derivative of Py, , is never surjective and thus
the regular values of this projection map are not in its image. Hence, P(M,,) is
contained in a closed set of empty interior, and property 2) of Theorem 4.1 follows
from the inclusion M < Ugs1 Ups1 M4 o

Corollary 4.2. Assume that the hypotheses of Theorem 4.1 hold. Assume moreover
that a and b and v do not depend on 7. Then the set

(NS) = {xg € Q| there does not exist t € I such that (v(xg,t), Vu(zo,t)) = (0,0)}
is generic in ).

Proof: Since the problem is now independent of 7, Property 1) of Theorem 4.1
becomes: M = {(z,t) € Q x I'|v(x,t) = 0, Vyv(z,t) = 0} is contained in a
countable union of manifolds of dimension d — 1, either parametrized by t and d — 2
components of z, or parametrized by d — 1 components of . Then, Corollary 4.2
follows from a use of the Sard theorem like in the proof of Theorem 4.1. =

5 Omne-to-one properties for global solutions

In this section, we use the properties of the singular nodal sets of the linearized
equation (4.1) of Section 4 in order to prove one-to-one properties for bounded com-
plete solutions of the parabolic equation (1.1). We recall that, in Section 2.4, we had
deduced the backward uniqueness property of (1.1) from the backward uniqueness
property of the linearized parabolic equation (2.11) with coefficients a and b given
respectively by (2.12) and (2.13), where u; and uy are two solutions of (1.1) (see the
proposition 2.5 and the corollary 2.6).

Our first result concerns the periodic orbits p. It states that, for almost every
point (zg,t9) € Q x R, the value (xq, p(zo,to), Vp(zo, 1)) is not taken twice during
a period. Notice that if  is the circle S, this property holds for all the points
(x0,t0), see [37].
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Proposition 5.1. Let f € C*(Q x R x R4 R). Let p(t) be a periodic solution of
(1.1) with minimal period w > 0. Then there exists a dense open set of points
(7o, t0) € Q x R such that

i) (pe(o,t0), Vpi(wo, to)) # (0,0)
”) (p(x07t0)7 Vp(x(b tO)) 7 (p(J:O’t)a VP(x07t)) Zf t ¢ to + Lw

Proof: First, since f is of class C* and p is a bounded complete solution, Proposition
2.2 implies that p € C*(Q x R, R). We already noticed that p; satisfies (2.11) with
coefficients a and b given by (2.12). Since f and p are of class C*, the coefficients
a and b are also of class C*. Moreover, by Proposition 2.5, there exists no time s
such that py(s) = 0. Thus, Corollary 4.2 implies that there is a generic set of points
xo € 2 such that (p:(xo,t), Vpe(xo,t)) # (0,0), for any t € R.

Next, we set v(x,t,7) = p(z,t) — p(x,t + 7), which solves (2.11) with coeffi-
cients given by (2.13). Again, we notice that v, a and b are infinitely differentiable
with respect to =, t and 7. Moreover, if there exist 1, € R and 0 < 71 < w so
that v(.,t;,7) = 0, then by the backward uniqueness property of Corollary 2.6,
v(.,t,71) = 0, which means that p(t) is periodic of period 7 < w and contradicts
the fact that w is the minimal period. Thus, we can apply Theorem 4.1 to v with
I =R and J = (0,w) to obtain a generic set of points (xg,ty) € 2 x R such that the
condition ii) holds. Therefore, both conditions i) and ii) are satisfied in a generic,
and a fortiori dense, subset of {2 x R.

It remains to prove the openness. We consider the variable ¢ modulo the period w,
that is we work on S = R/(Zw). Let (z0,to) € 2 x S satisfying i) and ii). There is an
open neighborhood U of (zg, ty) in which i) holds everywhere in U. Moreover, since i)
holds, we may assume that for any (z,t) and (x, ') in U, t # t', (p(x,t), Vp(x,t)) #
(p(z,t"), Vp(z,t')). The set of values {(p(xo,t), Vp(zo,t)), (xo,t) ¢ U} is compact
and does not contain (p(zo, to), Vp(zo, o)) due to property ii). Hence, this set of val-
ues is at positive distance of the value (p(zo,ty), Vp(zo,t9)). Therefore, there exists
a neighborhood V < U of (xg, tg) such that, for any (x1,t1) € V, (p(z1,t1), Vp(z1,t1))
is not contained in {(p(x1,t), Vp(x1,t)), (x1,t) ¢ U}. This shows that ii) holds in V
and concludes the proof of the proposition. O

We also need to separate a periodic orbit from any other (bounded) complete
solution.

Proposition 5.2. Let f € C*(Q x R x R4 R). Let p(t) be a periodic orbit of (1.1)
of minimal period w or an equilibrium point, in which case we adopt the convention
that p is a periodic solution with minimal period w = 0. Let u(t) be a bounded
complete solution of (1.1), such that, p(t) # u(s), for any (t,s) € R% Then there
exists a dense open set of points (xg,tg) € 2 X R such that (u(xg,to), Vu(zo,ty)) #
(p(xo,t), Vp(xo,t)) for all t € R.

Proof: The proof is very similar to the one of Proposition 5.1 and thus the details
are left to the reader. We emphasize only a few arguments. Since f is of class
C* and u, p are bounded complete solutions, Proposition 2.2 implies that p and «
belong to the space C*(2 x R, R). To prove the genericity of the points (zo, 1) €
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2 x R such that (u(xg,to), Vu(zo,t9)) # (p(zo,1t), Vp(zo,t)) for all £ € R, we apply
Theorem 4.1 to v(x,t,7) = u(x,t) — p(z,t + 7), with I = J = R. The function v
satisfies the hypotheses of Theorem 4.1 and, in particular, due to the assumption
of the proposition, there are no times ¢ and 7 such that v(.,¢,7) = 0. To show the
openness of the set of the points (xg, ) € Q x R such that (u(z,to), Vu(xg,ty)) #
(p(xo,t), Vp(xo,t)) for all t € R, one proceeds like in the proof of Proposition 5.1 by
using the compactness of the set {(p(zo,t), Vp(zo,t)),t € R} (but here the proof is
even simpler, since we do not need to introduce the quotient S) D

As a particular case of the previous proposition, notice that we obtain the follow-
ing result of separation of periodic orbits. In the case where € is the circle S*, the
arguments of [13] show that this property holds for all the points (zg, ) (and not
only for a dense open subset). The generalization to higher dimension is as follows.

Proposition 5.3. Let f € C*(Q x R x R R). Let pi(t) and py(t) be two periodic
solutions of (1.1) of minimal periods wy and wy. Assume that they do not correspond
to the same periodic orbit, that is that pi(t) # pa(s) for all (t,s) € R% Then there
exists a dense open set of points (xg,tg) € Q x R such that (p1(zo,to), Vpi(zo,to)) #
(p2(xo,t), Vpa(xo,t)) for all t € R.

The main dynamical result of this paper concerns heteroclinic and homoclinic
orbits. We will need the following result.

Proposition 5.4. Let f € C*(Q2 x R x R4 R). Let p_(t) and p(t) be two periodic
solutions of (1.1) of minimal periods w_ and w, respectively. These periodic solu-
tions may coincide or each one may be reduced to an equilibrium point, in which
case we adopt the convention that the minimal period w is equal to 0. Let u(t) be a
global solution of (1.1) connecting p_(t) and p, (t), that is,

u(t) = ps(t) —— 0.

t—>+00

Then there exists a dense open set of points (xg,ty) € Q x R such that

’L) (&tu(xo,to),V(?tu(xo,to)) #* (0,0)
it) (u(zo,to), Vu(zo, to)) # (u(xo,t), Vu(xe,t)) ¥ t # g
ZZZ) (U(ZL‘(), to), Vu(a:o, t[))) # (pi (l’o, t), VpJ_r (ZL‘(), t)) VteR

Proof: Once again, the proof is very similar to the one of Proposition 5.1. We
apply Theorem 4.1 to v(z,t,7) = u(x,t) — u(zr,t + 7) with 7 < 0 and 7 > 0
to prove the density of Property ii); and to v(x,t,7) = w(z,t) — p+(x,t + 7) for
the density of Property iii). To prove the openness of Properties ii) and iii), we
fix a point (xo,tp) such that i)-iii) hold. Due to i), there exists a neighborhood
U = B(xg,p) x (to — 0,tg + 0) of (xo,to) such that (u(z,t), Vu(z,t)) is injective
in Y. Then we use the compactness of {(u(xg,t), Vu(zg,t)),t € (—0,tg — ] U
[to + 0, +0)} U {(p—(xo, 1), Vp_(x0,t)),t € R} U {(ps(0,t), VDi(m0,1)),t € R} with
arguments similar to the ones of the proof of Proposition 5.1. =
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6 Generic transversality of connecting orbits

To obtain the transversality of a connecting orbit as stated in Theorem 1.1, we
need to show that we can perturb any parabolic semiflow S¢(t) to another one,
for which the considered stable and unstable manifolds intersect transversally. The
construction of a suitable perturbation f +eg of f is the main difficulty in this task.
Indeed, the global dynamical framework is classical and well understood in finite
dimension. In Section 3, we have seen that the infinite dimension of X does not
really affect this framework. The main novelty in this paper lies in the construction
of a suitable perturbation f + g of f because we will need all the accurate PDE
results proved in Sections 4 and 5.

6.1 A perturbation to make an orbit transverse

The first step consists in constructing a suitable perturbation g, which acts on a
heteroclinic or homoclinic orbit u(¢) in a localized time interval only. In the following
result, the one-to-one properties proved in Section 5 are crucial.

Proposition 6.1. Let f € C*(Q x R x RYR) and let u(t) be a bounded complete
solution connecting p_(t) to p,(t) where p4(t) are two periodic solutions of minimal
periods wy. Notice that p_ = p, is possible and that p+ could be equilibrium points
in which case we use the convention wy = 0. Let E be a compact subset of Q xR x R?
with non empty interior, let U be an open subset of Q x R and let ¢ € CO(U,R).
Assume that there exists (zo,to) € U such that (xg,u(zo,to), Vu(zo,to)) belongs to
the interior of E and 1 (xg,to) # 0.
Then, there exists a function h € C*( x R x R% R) such that

(i) the function h : Q x R x R? — R has a compact support contained in E,

(ii) the function howu : (x,t) € Q x R +— h(x,u(x,t), Vu(z,t)) € R has a support
contained in U,

(i) we have §, o ¥(x, t)h(x, u(z,t), Vu(z,t)) dedt # 0.

Proof: Since 1(xq,to) # 0 and (¢, %y) € U, without loss of generality, by choosing
U smaller, we may assume that v does not vanish in . We set

K ={(z,u(z,t), Vu(x,t)), (z,t) ¢ U} U {(z,p_(2,t), Vp_(2,1)), (z,t) € Q x R}
U {(x,py(z,t), Vpy(z,t), (2,t) € Q x R} .

Proposition 5.4 shows that there is a dense open set of points (Z,t) € U such that
(%,u(7,t), Vu(Z,t)) does not belong to K. Up to perturbing our reference point,
we can thus assume in addition that (xg,u(zo, o), Vu(zo, o)) does not belongs to
K. Notice that (xq,u(zo,to), Vu(zo,to)) still belongs to the interior of E if our
perturbation is small enough. Since K is compact, (xq,u(xg,to), Vu(zg,tp)) is in
the interior of E\K. Hence, we claim that it is sufficient to choose h non-negative,
with compact support in F\K and such that h(zo, u(zo, ), Vu(z,to)) > 0.
Property (i) holds by construction. For all (z,t) ¢ U, (z,u(z,t), Vu(z,t)) € K
and thus h(z, u(z,t), Vu(z,t)) = 0, showing (ii). Moreover, ¢(x,t)h(x,u, Vu) is not
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zero at (xo,tp) and its sign is constant in Y. These properties together with (ii)
show that (iii) holds. o

Using this perturbation g, we are able to perturb a non-transversal connecting
orbit to a transversal one.

Proposition 6.2. Let fy € C*(Q x R x R, R) and let Ny be any small open neigh-
borhood of fo in the € -Whitney topology (r = 2). Let I'y = {p+(t)|t € [0,ws)} be
two hyperbolic periodic orbits of minimal periods wy = 0 of Sy, (t), which may be not
distinct and may be equilibrium points if wy = 0.

Then there exists a function f € Ny such that T'_ and T, are still hyperbolic peri-
odic orbits for S¢(t) and the unstable manifold W*(I'_, f) of T'_ intersects transver-
sally the local stable manifold W (Ui, f) = W; (T4, fo) of T'y.

Proof: We will prove the existence of a function f € N, satisfying the properties of
Proposition 6.2 by applying the transversal density Theorem B.3 in Appendix B.

First, notice that the larger the regularity r is, the more difficult is the result.
Thus, without loss of generality we assume r > dim W*(I'_) — codim W*(I';) in the
remaining part of the proof.

In what follows, E will be a regular compact subset of Q x R x R with non-empty
interior. We denote by Cj(E) the subset of functions g € C"(Q x R x R? R), which
identically vanish outside F; in fact, we identify CJ(E) with the space of functions in
C"(E,R), for which the first r derivatives vanish on 0F. We recall that the topology
induced in CJ(E) by the Whitney topology coincides with the classical C" topology
and thus that Cj(FE) is actually a Banach space.

The proof splits in several steps.

First step: construction of particular neighborhoods
By theorems 3.5 and 3.6 and the remarks following both theorems, there exist two
neighborhoods Ay of Ty, for which the local stable and local unstable manifolds
WLy, Ny, fo) and W*(I'y, Ny, fo) of Ty are well defined and such that N m./\@ =
@ if Ty # I'_. In the case where F+ — I'_, N\ = N_ can be chosen so that
Wu(l, Ny, fo) n W (F+7N+7f0) =

We would like to perturb fy to deform the global unstable manifold W*(T"_, fy)
without changing the dynamics in Ni. By construction, the part of W*(I'_, f;)
outside N_ U N, is a non-empty open subset of W(T'_, fo). The difficulty is that
the nonlinearity f sees the phase space X“ only through the projections by the
evaluation map

Ev : (z,0) € Qx X¥ — (z,0(x),Vo(r)) e 2 x R x R%. (6.1)

We need to be sure that for all u(t) connecting I'_ to I';, not only u(t) goes outside
N_ U N but also Ev(u(t)) goes outside Ev(N_ U N,).

The local unstable manifold W*(T'_, N, f;) is an embedded finite dimensional
manifold and its boundary X" = 8W“(F_,/\~/—7 fo) is a compact set such that, for
all trajectory u(t) belonging to the global unstable manifold W*(I'_, fo)\I'_, there
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exists a time #, € R such that i(fy) € ¥*. Let 0 € X* and consider the tra-
jectory uy(t) = Sy (t)o, solution of (1.1) with initial data u,(t = 0) = o and
nonlinearity f = fo. For all t < 0, u,(t) belongs to the local unstable manifold
W“(F_,N_,fo)- Moreover, due to Proposition 5.2, there exists (z,,t,) € Q x R,
such that (u, (s, ts), Vs (Ts,ts)) # (p+(2s,t), Vps(z,,t)) for all £ € R, or equiva-
lently

{(Zo, Uo (X6, t0), Ve (24, t5)} N Ev({ze} x ToUTly)) = & .

Since {(2y, Uy (Ts, ts), Vg (zs,t,)} and {z,} x (I'_ UT'}) are compact sets and since
Ev is continuous because X* is continuously embedded in C'(£2), we can find r, > 0
and p, > 0 and neighborhoods N, . < Ny of I'y in X* such that

U, = Bq(xy,75) X Bra1 (e (s, ty), Vg (g, ts)), po)
and N ; satisfy
min {Hgl - gQHQde“ | §1 € ua and 52 € EV<BQ($U7TJ) x (NU,— v a,-i-)} > 0.

By continuity of Ev and of the flow S;(t) with respect to the initial data and with
respect to f = fo + g, there are a neighborhood V, of ¢ in X“ and a neighborhood
W, of 0 in € such that for any ¢’ € V, and g € W, the trajectory Sy ;4(t)o" has
a projection Ev({zo} x Sy,14(t)o’) contained in U, for a non-empty open lapse of
time.

We can proceed as above for any point ¢ € ¥*. By compactness of 3", it can
be covered by a finite collection V,,,..., V,, of neighborhoods of points oy,...,
on. Weset No = n,N,, + and E = U,U,,. Notice that E is a finite union
of closed balls. Thus, CJ(FE) is a well-defined Banach subspace of € and we set
W' = W, nCj(E).

To summarize, our construction satisfies the following properties (see Figure 2):

1. The neighborhoods Ny are small enough such that the local stable and lo-
cal unstable manifolds W*(T',, N, fo) and W*(T_,N_, fy) are well defined.
Moreover, these local manifolds do not intersect if I'; # I'_, or have an inter-
section reduced to I'if I'y, =T'_ =T

2. For any f = fo + g where g € W’ (in particular g is supported in the set E),
the flow Sy, 44(t) is equal to the flow of Sy, (¢) in Ni. In particular, we have
WS(F+7N+a fo) = WS<F+7N+7 fO +g) and Wu(r—vN—a fO) = WU<F—7N—7 f0+
g) and the properties of 1. still hold when f; is perturbed to f = fo + g.

3. For any f = fo+g where g € W', for any global trajectory u(t) = Sg,+4(t)u(0)
of the unstable manifold of I'_ (T'_ excluded), there exists (g, %) €  x R and
r > 0 such that for all (z,t) € Baoxr((xo,t0),7), (x,u(z,t), Vu(z,t)) belongs
to the interior of E (which is the set where the perturbations g € W" can be
constructed) and not in Ev({z} x N5).

Second step: Application of the Sard-Smale transversality Theorem B.3
If f = fo+ g, where g is close to 0 in Cj(F), then f is close to fy in € (equipped
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Projection of X by
/ ' the evaluation Ev(z,, )
X , at the point x,

/ the space where the nonlinearities f 7

The trace of the set ' whose

projection intercepts the one of
any heteroclinic orbits and does
not meet the projections of Ny

A place where the projection

of u, is one-to-one and where

it is easier to construct a suitable
perturbation h to modify u,

Figure 2: A figure illustrating the proof of Proposition 6.2. In the phase space, N5
are small enough to define local dynamics and are disjoints in the heteroclinic case.
The nonlinearity sees the dynamics only via the projections Ev(z,,-) by evaluating
(U, Vuy) at a point x,. In the first step, we construct a set E whose projections
do not meet the ones of the neighborhoods N+ of the closed orbits and such that,
for all connecting orbit u,, there is a point x, such that the evaluation of u,(t)
at this point enters in E for an open lapse of times. The perturbation g of the
nonlinearity fo will be supported on this set E to be able to modify any connecting
orbits without modifying the closed orbits. Moreover, in the final step of our proof,
we will also localize the perturbation in the place where the projection of uy,(t) has
no self-intersection and where the modification of u,(t) by a perturbation of the
nonlinearity is easier to understand.
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with the Whitney topology). Moreover, by construction, for any f = fy + ¢ with
g € W, S¢(t) has the same dynamics as Sy, () in the neighborhoods N of T'y.
Therefore, Proposition 6.2 holds if we can find a function g € W™ < CJ(E) as close
to 0 as wanted such that W*(T'_, fo + g) intersects W*(I',, N, fo) transversally.

We recall that we did not assume global existence of solutions and thus the
solutions in the unstable manifold may blow up. To overcome this technical problem,
for all m > 1, we introduce the sets

N ={uge N_ /Yge W' | St .q(t)uo is well defined for all ¢ € [0,m]} .

The global orbit I'_ is obviously contained in N and we recall that ii) of Proposition
2.1 implies that N is open, in other words N is a neighborhood of I'_ contained
in N_. Moreover, we have

vy € WT ) Wu(rfafo + g) = UmENSf(m)WU(FvainafO + g) .

To prove Proposition 6.2, it is sufficient to show that for any m € N, there exists
a generic subset of functions g € W such that Sy, ,(m)W*(T_, N, f,) intersects
Ws(T'y, N, fo) transversally. Indeed the intersection of all these generic subsets
is generic and hence dense in W™ and consists in functions f = f; + g such that
W(_, fo + g) intersects W (I'y, fo + g) transversally.

To show this property, we are going to use the Sard-Smale transversality theorem
B.3 in Appendix as follows. Let m > 1, let M = W*T_,N™ f3), Y = X* and
W =WsT,, Ny, fo). Let A =W" and A= CL(E) n W', We define the mapping

(I):(MXA—> Y )

(u0,9) = Sjysg(m)ug

Notice that Sj,q(m)W*“(I'-, N™, fo) intersects W*(I';, N, fo) transversally if and
only if ®(., g) intersects W*(I', Ny, fo) transversally. Thus, due to the above dis-
cussions, the conclusion of Theorem B.3 in this framework will complete the proof of
Proposition 6.2. Hypothesis i) of Theorem B.3 is a consequence of the assumption
r > dimW*('_) — codim W*(I'}) made at the beginning of this proof and of the
regularity of the parabolic flow with respect to the parameters. Thus, Hypothesis
ii) is the only assumption which remains to be verified.

Third step: checking Hypothesis ii) of Theorem B.3
Let ug € W*(T_,N™ fo\['—- and f = fy + g, where g € W". If Sp(m)ug does
not belong to W*(I';, N5, fo), then ii) is trivially satisfied. If S;(m)ug belongs to
We(T'y, Ny, fo), we set u(t) = Sy(t)ug and we remark that, since W*(T', N, fo) =
W5(Ty, Ny, f), u(t) is a global solution and u(t) € W*(I'y, Ny, f) for all t = m.

It remains to show that ® is transversal to VW in X® at the point uy, we have to
compute

DQ(UOag)(UOah) = Duq)(u(hg)’vo + ng)(u()ag)h .

Let us consider the second term and let v(t) be the derivative of u(t) with respect
to a variation h of the nonlinearity g. By differentiating Equation (1.1), we have
that v solves

o = Av + h(z,u, Vu) + f,(z,u, Vu).v + fo,(z,u, Vu).Vu
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with v(t = 0) = 0. We denote by U(t, s) the family of evolution operators generated
by the equation (2.11) with coefficients given by (2.12), which is the linearization of
the nonlinear equation along the trajectory w(t). Using the variation of constants
formula, we get

Dgcb(uo,g).hzf U(m, $)h(.,ul., s), Vu(., s)) ds (6.2)
0

In a similar way, we obtain that D,®(ug,g).vg = U(m,0)vy whose range is the
tangent space TymyW"(I'_, f).

We claim that the image of D,®(ug,g) is dense in X and we postpone the
proof of this density in a final step below. Assuming this property, let us check
Hypothesis ii) of Theorem B.3 using Definition B.2. First notice that T,,m)W =
TumyW?* (L', N, f) is a closed subspace with finite codimension (see Theorem 3.5).
To show that the image of D®(ug, g) contains a closed complementary subspace
of TymyW in X, it is sufficient to reach a given finite number of independent
vectors ¢i,..., ¢, outside T,m)W. This is obviously implied by the density of
the image of Dy®(ug,g) in X*. Since span(¢s,...,¢p) @ Ty = X, we have
that T,y oM x A = D®(ug, g) " (Tym)WV) @ span(in, . . ., 1b,) where DP(ug, g).1; =
¢;. By continuity, we directly have that D®(ug,g) ' (TuemWV) is closed and its
complementary space is also closed because of its finite-dimensionality.

Fourth step: the image of Dy®(ug, g) is dense in X*
The operator (—Ap)® is a homeomorphism from X into X. Hence, it is sufficient
to show that for any non-zero 1, € X*, there exists h € C°(E) such that

(b | (=Ap)*Dy® (g, g)-h yxcs x # 0 .

Hence, using the expression of D, ®(ug, g).h given by (6.2), we have to find a function
h e CF(FE) such that

J(;m< U(m, s)*((=Ap)*)* Y | (-, ul., ), Vu(.,s)) )xax xa ds # 0 .

Now, we use Proposition 2.4: ¢(s) = U(m,s)*((—Ap)*)*iy, is well defined in X*
and is a solution in C°((0,m),C*(Q)) of (2.14) with @ and b as in (2.12). In particular,
1) satisfies the unique continuation property stated in Proposition 2.8: in any open
set of Q x (0,m), there exists (z,t) such that ¢ (z,t) # 0.

By considering the constructions made during the first step (see the third of the
properties recalled at the end), we know that there exists a non-empty open set U <
Q2 x R such that for all (zg,t0) € U, (xo, u(z0,t0), Vu(xo,to)) belongs to the interior
of the set E and is not in Ev({z} x Ny). In particular, u(xg,ty) cannot belongs to
N, and thus ¢y € (0,m) because we have already noticed that u(t) € W*(T', N, f)
for all ¢ > m and because u(t) e W*(I'_,N_, f) for all ¢ < 0 by definition of ® and
u. We now apply Proposition 6.1, noticing that the unique continuation property for
1 yields the existence of (xg, %) € U such that 1(zg,ty) # 0. We obtain a function
h € CF(FE) such that

JRLw(az,s)h(:c,u(:z:,s),Vu(x,s))d:cds £ 0.
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It remains to notice Proposition 6.1 guarantees that how is supported in U/ and that
the above discussion shows that U < Q x (0,m). Thus, for any ¢, € X*, we may
replace the domain R x Q by [0, m] x Q in the above integral and, in conclusion, we
have obtained h such that

(P | (=AD)*Dy®(ug, 9).h )yx+ x = Lm<1/1(8)|h(.,u(.,s),VU(.,S))>X*’X ds # 0.

which implies that the image of Dy®(uy, g) is dense in X*. o

6.2 Proof of Theorem 1.1

The proof of our main theorem easily follows from the perturbation result of Propo-
sition 6.2.

Let fy € €" be given and let Ci be two hyperbolic critical elements. By Theorems
3.3, 3.5 and 3.7, there exists a neighborhood O of f; such that Ci are associated
with two families C*(f) of hyperbolic critical elements depending smoothly on f.
Moreover, the corresponding local stable and unstable manifolds W}".(C~(f)) and
Wi (CH(f)) also depend smoothly on f.

Let m € N be given and let

WE(C(f)) ={ue X* such that ||u|xo < m and there exists
t € [0,m] and wuy € Wji.(C™(f)) such that u = S¢(t)ue} -

The set W (C~(f)) is a bounded open subset of the global unstable manifold
W*(C~(f)) and an immersed manifold of X“. Also notice that W (C~(f)) depends
smoothly on f. We consider the sets

G = {f €O [ WL(C (AW ()}

The smooth dependences yield that &,, are open subsets of O (see Appendix A
to understand what these smooth dependences mean with respect to the Whitney
topology). We claim that the sets &,, are also dense. Indeed, X is embedded in C!
and so its ball {u | ||u|xe < m} provides values (z,u(z), Vu(x)) uniformly bounded
by some constant C'(m). For any f € O, we may perturb f to f such that f is of class
C® in the ball of radius C'(m) and equal to f outside the ball of radius C(m) + 1.
In this way, f is as close as wanted to f in the € Whitney topology. Moreover, any
solution u in W (C~(f)) stays in the place where f is a C*—non-linearity. Applying
Proposition 6.2, we may perturb f to obtain a non-linearity in &,,.

Since the sets &,, are open and dense in O, by setting & = n,,®,,, we obtain

the generic set of Theorem 1.1.

7 Further generalizations of the generic transver-
sality stated in Theorem 1.1

Our above arguments are not exactly specific to Equation (1.1). We may easily
check the following generalizations.
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Other geometries

Dirichlet boundary conditions are not mandatory, we may choose Neumann ones or
Robin ones. We may also consider other flat geometries such as {2 being a torus or
a cylinder.

We may also add coefficients to the Laplacian operator A, typically considering
the Laplace-Beltrami operator \/igdiv(\/ggijv') associated to a metric g. However,
notice that part of our results, e.g. Theorem 4.1, require smooth coefficients and
thus g needs to be smooth. Thus, we may generalize Theorem 1.1 in the case where
Q2 is a bounded C*—submanifold of R", as a sphere for example.

Systems of parabolic equations

Instead of considering the scalar parabolic equation (1.1), we consider a system of
n parabolic equations as follows. We keep the same space X = LP(Q2), p > d, and
the same Ap Laplacian operator with homogeneous Dirichlet boundary conditions.
Like in the introduction, we keep o € (1/2 + d/2p, 1), so that X* = D((—Ap)® —
W2*P(Q) is compactly embedded in C*(Q). Let n € N, n > 1. We consider the
system of parabolic equations

U(x,t) = AU(z,t) + F(z,U(x,t),VU(x,t)),  (z,t) e Q2 x (0,+0)
U(z,t) =0, (x,t) € 0 x (0,+0) (7.1)
U(z,0) = Up(x) € X7 = (X)",

where F = (f1, fa, ..., fa) € C"(QxR"xR™ R"), r > 2, and where U = (uy (2, 1), ug(z, 1), ..., up(x,t)
belongs to R™. As in the case n = 1, the system (7.1) generates a local dynamical

system S,,(t) = S, r(t) on X&. This (local) dynamical system S, r(t) satisfies all

the smoothing properties of Section 2 as well as the dynamical systems properties

given in Section 3. The strong unique continuation property of Proposition 2.10

still holds and is proved in [10, Theorem 2.2] (see also [28]). The singular nodal

sets properties as given in Theorem 4.1 and its Corollary 4.2 are still true and are

proved with the same arguments (see also [10, Theorem 2.3]). These facts allow us

to generalize Theorem 1.1 to the system (7.1).

Genericity for other topologies

We have chosen here to consider the genericity in €” by endowing C"(Q x R x R, R)
with the Whitney topology (see the precise definition in Appendix A). Indeed this
topology seems to be the most usual one for this kind of question concerning generic
dynamics. Moreover, it also seems to be the most delicate topology since it has
only a few nice properties (for example the closed sets are not the sequentially
closed sets and in particular €" is not a metric space). However, Theorem 1.1
also holds if we endow C"(Q x R x R% R) with other reasonable topology. We
may for example consider CJ (2 x R x R R), the set of bounded C"—functions on
Q x R x R? endowed with the supremum C"-norm. We may also extend the previous
metric by considering unbounded C"—functions but defining their neighborhoods
with bounded perturbation only (in other words, we may say that if f — g or one
of its r first derivatives is unbounded, then f and ¢ are at infinite distance). In
any case, the conclusions of Theorem 1.1 remain valid since, in the proofs, we in
fact only consider non-linearities via a bounded set of Q x R x R, where all these
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topologies are equivalent (see Appendix A).

Some open problems
To conclude, let us mention cases where the generalization is not straightforward
and remains an open problem.

We may wonder if Theorem 1.1 is still true for systems of parabolic equations if,
instead of considering mappings F(z,U, VU) in the set C"(Q x R® x R™ R"), one
considers only mappings F(x,U) € C"(Q x R®,R") depending only on x and of the
value of U. Since the Hausdorff dimension of the nodal set is, in general, larger by
1 than the dimension of the singular nodal set (see a simple example in [10, Section
9]), the one-to-one properties of global trajectories, as given in Section 5, can be
false if F' = F'(x,U) and are no longer consequences of Theorem 4.1 (see [10, Section
9]).

We can also wonder if one can extend Theorem 1.1 to the case where the
Laplacian operator is replaced by a 2m-th order homogeneous elliptic linear op-
erator. In this case, in Equation (1.1), we replace the non-linearity f(z,u, Vu) by
a non-linearity f*(x,u, Dyu, D?u, ..., D*" ) depending on the values of u, D,u,
<o D21y Tf the strong unique continuation property of Proposition 2.10 holds,
then, arguing exactly as in the proof of Theorem 4.1, one shows that the statement
of this theorem is still true provided we replace the singular nodal set by

(TNS) = {(x0,t0) € Q x I| there does not exist 7 € J such that
(v, Dyv, D2, ..., D™ ') (z0, 0, 7) = (0,0, ....,0)}

Unfortunately, the strong unique continuation property for the parabolic equation
with higher order elliptic operators is not always true (concerning the elliptic equa-
tion, see [27] and [52] for example). For this reason, we cannot state here a gener-
alization of Theorem 1.1 for higher-order parabolic equation.

A Appendix: The Whitney topology

If we want to prove generic properties for the parabolic equation (1.1) with respect
to the non-linearity f, we need to equip the space of nonlinear functions f with
a topology. Let E < R", n > 1, by f € C"(F,R), we mean that f is r times
differentiable in the set £ and that these derivatives are continuous. We do not
a priori endow C"(E,R) with any topology and we do not assume that f or its
derivatives are bounded.

In this article, we consider £ = Q x R x R? which is unbounded in R**!. Since
we do not want to exclude unbounded non-linearities, we cannot equip C"(F,R)
with the classical C"-topology.

Definition A.1. For any r € N, we denote by € = €"(E,R) the space C"(E,R)
endowed with the Whitney topology, that is the topology generated by the neighbor-
hoods

{geC"(E,R) | |D'f(y) — D'g(y)| <6(y) , Yie{0,1,....r}, VyeE},

where f is any function in C"(E,R) and § is any positive continuous function.
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We emphasize that, if E is bounded, then the Whitney topology coincides with
the classical C"-topology and thus €"(E,R) is a Banach space equipped with the
classical norm | f|| = sup;_g;. . [ /@[ r=. However, if E = QxR x R?, the neighbor-
hoods of a function f in the Whitney topology cannot be generated by a countable
number of them. As a consequence, this topology is not metrizable and open or
closed sets cannot be characterized by sequences. In order to give an idea about the
uncountable conditions imposed by the Whitney topology, we recall that a sequence
of functions (f,,) converges to a function f in the Whitney topology if and only if
there is a compact set K < F such that f, = f in E\K for any n € N, but for a finite
number of them, and such that (f,) converges to f in the space C"(K,R), equipped
with the classical topology of uniform convergence of the functions together with
their derivatives up to order r. This means that the Whitney topology imposes
an uncountable number of conditions of proximity outside compact sets and thus a
sequence has to be constant there in order to be convergent.

As already written in Section 7, we could have chosen a simpler topology, but
the Whitney topology seems to be the most usual one. In order to overcome several
technical problems due to this topology, we make more precise some arguments in
this appendix. We omit the corresponding problems during the main proofs of this
paper to avoid too heavy proofs. However, if all the technical details are written,
the interested reader will notice that we easily deal with the fact that the Whitney
topology does not generate a Banach space as follows.

Genericity and Baire property: The main purpose of this paper is to obtain the
genericity of the transversality of heteroclinic and homoclinic orbits. The notion of
generic sets, that are sets containing a countable intersection of dense open sets, is
important because it provides a nice notion of large subset. However, the accep-
tance of this notion is mainly related to the Baire property, that is the fact that
the countable intersection of generic sets is generic. A space satisfying the Baire
property is called a Baire space. Complete spaces, and in particular Banach ones,
are Baire spaces. But when F is unbounded, €"(E,R) with its Whitney topology is
even not metrizable. Thus, it is important to emphasize that it is at least a Baire
space, implying that the genericity is still a meaningful concept (see [19] or [33] for
example).

Smooth dependences, open or dense subsets and other abuses of nota-
tions: When FE is unbounded, since €"(E, R) is not metrizable, we can speak about
continuous dependence on f € € (E,R) but not about smooth dependence, even not
about derivatives with respect to f. We sometimes use the following abuse of nota-
tion. Consider K a compact subset of £ and define P as the canonical projection
from ¢"(£,R) onto €"(K,R), that is Pf := fix is the restriction of f to K. Now, as
already noticed, € (K, R) endowed with the Whitney topology is equivalent to the
Banach space C"(K,R) endowed with the classical C"—norm. Consider a function
® depending on f via the values in K only. We may thus associate with ® defined
in ¢"(E,R) a function ® defined in ¢ (K, R) and then it is relevant to say that ®
depends smoothly on Pf. In this case, we may use an abuse of notations by saying
that @ depends smoothly on f instead of saying that ® depends smoothly on Pf
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(notice that, rigorously, we should not even say that Pf depends smoothly on f).
At this point, it is important to notice that, the restriction operator

P:¢"(E,R) - ¢"(K,R) with K < E compact and £ < R"

is continuous, open and surjective. Continuity is clear and surjectivity follows from
the Whitney extension theorem (see [1]), or a simpler result if r = 0 or K is a regular
subdomain for which the extension is easily constructed. Openness follows from the
following argument: consider g € € (K, R) close to 0, extend g to f € € (F,R) and
truncate f by multiplying it by a smooth function y with 0 < x < 1, xjx =1 and
X = 0 outside a small neighborhood of K. This provides a function xf € €"(E,R)
with P(xf) = g and xf as close to 0 in €"(E,R) as wanted as soon as ¢ is small
enough. Thus, the image by P of any neighborhood of 0 contains a neighborhood
of 0.

The surjectivity of P enables to define the above functional ® in €" (K, R) because
to each function g € €" (K, R) indeed corresponds a class of equivalence of functions
fe € (E,R) with Pf = g. The openness is useful to show that a property is open
in €"(E,R) if this property depends on the value of f in K only: if the property
is open in €"(K,R) with the above abuse of notation, then it is open in €"(E,R).
Together, these properties show that, with the abuse of notation, if a property is
open and dense (resp. generic) in €" (K, R) then it is open and dense (resp. generic)
in € (E,R).

Notice that the above tricks have already been widely used in previous articles
(see [7] for instance). Finally, for a further study of the Whitney topology and the
comparison with the weak topology, we refer the reader to [19] or [33] for example.

B Appendix: Sard Theorem and Sard-Smale trans-
versality theorems

The Sard theorem ([61]) and the transversality theory (which goes back to Thom
[71]) are very useful tools for proving the genericity of a given property in finite
dimension. In [67], Smale has shown how to use Fredholm theory to generalize the
transversality theorems to infinite-dimensional Banach spaces. There exist different
version of this kind of transversality theorems (often called Sard-Smale theorems or
Thom theorems) with slight changes in the hypotheses, depending on the framework,
in which they are used. We recall here the general framework and the version used
in this paper.

Let M and N be two differentiable Banach manifolds and let f : M — N be
a differentiable map. We say that x € M is a regular point of f if Df(z): T,.M —
T't)N is surjective and its kernel splits (that is, has a closed complement in T, M).
A point y € NV is a regular value of f if any x € M such that f(z) = y is a regular
point of f. The points of N' which are not regular values are said critical values.
The classical theorem of Sard is as follows.
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Theorem B.1. If U is an open set of RP and if f : U — R? is of class C* with
s > max(p — q,0), then, the set of critical values of f in R? is of Lebesgue measure
zero.

Using Fredholm operators and a Lyapounov-Schmidt method, Smale has gener-
alized Sard Theorem to infinite-dimensional spaces (for introduction to Fredholm
operators, see [6] for example). As a consequence of Smale theorem in [67], many
versions of Sard-Smale theorems can be obtained, see [1] and [32] for examples. The
versions involving a functional formulation have been used since the pioneer work
of Robbin [58] and are very useful in the PDE context where the geometrical argu-
ments may be too difficult to perform, see Theorem B.4 below and [7, 8, 36, 37, 38|.
In this article, the transversality of connecting orbits may be proved with a more
geometrical version of Sard-Smale theorems. Indeed, we only need to perturb an
unstable manifold, which is finite-dimensional, and we may do it far from the pe-
riodic orbit, so that the basic framework does not depend on the parameter (see
Section 6). This kind of geometrical setting is more difficult to use if we want to
prove generic hyperbolicity as discussed in Appendix C below.

We recall the following definition (see [1] for more details).

Definition B.2. Let M and N be two C' Banach manifolds and let f € C'(M,N).
Let W be a Ct submanifold of N'. The function f is said to be transversal to W
at a point v € M if either f(z) ¢ W or f(x) e N and

i) Dpf N TyyW) is a closed subspace of T, M which admits a closed complemen-
tary space,

i) Dy f(TyM) contains a closed complement to Ty W in TN

We need in this article a slight improvement of Theorem 19.1 of ll] The idea of
replacing the condition on A by a condition on a dense subset A only has been
already used in [7, 8, 36] for example.

Theorem B.3. Letr > 1. Let M be a C" separable manifold of dimension n. Let
W be a C" manifold of codimension m in a Banach space Y. Let A be an open subset
of a separable Banach space and let A be a dense subset of A. Let ® € C"(M x A, Y).

Assume that
i) r>n—m,
i) @ is transversal to W at any point (x,)\) € M x A.

Then, there is a generic set of parameters A € A such that the map x — ®(x, \) is
everywhere transversal to W.

Proof: Theorem B.3 is proved as Theorem 19.1 of [1]. The only difference is that
hypothesis ii) is assumed here only for a dense set of parameters A. To obtain this
improvement from the classical version where ii) is assumed everywhere, we argue
as follows. Since M is separable and finite dimensional, we can find a countable
sequence of open subsets (M) such that M = UM, and M is contained in M
and is compact. Let A\g € A. Let (A\p) be a sequence converging to A\g. Assume that
there is a point x, € M, such that ® is not transversal to W at (z,,,A,). By the

compactness property, one may assume that (xp) converges to xg € My. Since ®

39



is C1, @ is not transversal to W at (xg, A\g) which is absurd. Thus, there exists a
neighborhood U of Ay such that ii) holds for any (z, A\) € Mj x U. By applying [1,
Theorem 19.1], we obtain a generic subset U), U such that for any A € Uy, the map
x — ®(x,\) is transversal to W for any x € M. Since A is dense in A, we have a
generic subset Uy, A such that for any A € Uy, the map z — ®(x, \) is transversal
to W for any x € M. The generic set of parameters appearing in the conclusion of
Theorem B.3 is then M. o

Figure 3: The geometric idea behind Sard-Smale theorems as Theorem B.3: if per-
turbing the parameter \ provides enough freedom, a non-transversal intersection
between ®(M, ) and W is generically perturbed into either an empty, and thus
transversal, intersection or a non-empty transversal intersection.

For brief discussions in Appendix C and for the curious reader, we finish by a
brief recall of one of the simplest version of Sard-Smale theorem with a functional
formulation (see for example [32] for other versions or proofs). Let us recall that a
continuous linear map f : E — F between two Banach spaces is a Fredholm map
if its image is closed and if the dimension of its kernel and the codimension of its
image are finite.

Theorem B.4. Let k > 1 and let M, N and A be three C* Banach manifolds. Let
yeN and let ® € CK(M x A, N). Assume that:

i) for any (z,\) € @ '({y}), D.P(x,\) : T,M — T,N is a Fredholm map of index
1 strictly less than k,

i) for any (z,\) € @ 1({y}), D®(z,\) : TLM x T\A — T, N is surjective,

iii) M is separable.

Then, there is a generic set of parameters X\ € A such that for all x € M such that
(x,\) e @ 1({y}), D, ®(x,\) is surjective.

~As in Theorem B.3, a similar result holds if A is replaced by a dense subset
A < A and if A is separable (see [7]).
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C Appendix: discussion about proving the generic
hyperbolicity of periodic orbits

The purpose of this section is unusual. To obtain the genericity of the Kupka-
Smale property for the parabolic equation (1.1), it remains to prove the genericity
of hyperbolicity of equilibrium points and periodic orbits. The generic hyperbolicity
of equilibrium points is proved in [37]. We tried to obtain the generic hyperbolicity
of periodic orbits but failed to get a complete proof. In this section, we would like
to present some ideas and to point out where there is still a gap in the proof. Maybe
this discussion could inspire a motivated reader.

The first proofs of generic hyperbolicity of periodic orbits appeared in [41, 65].
Peixoto in [51] introduced a nice recursion argument, which has been modified in
[1] and [43]. Basically, the recursion is as follows. We introduce the sets

Gi1(K) = {f € €| any equilibrium point e of (1.1) with |e|x« < K is hyperbolic}

Gs/2(A, K) = {f € Gi(K) | any non-constant periodic solution p(t) of (1.1)
with period T € (0, A] such that sup,.g|p(t)|xo < K is non-degenerate} .

and

G2(A, K) ={f € G1(K)| any non-constant periodic solution p(t) of (1.1)
with period T € (0, A] such that sup,g|p(t)|x- < K is hyperbolic} .

The slightly strange above notation comes from the fact that G; and G, are the sets
originally introduced by Peixoto, whereas the set Gz, has been introduced later.

We know from the arguments of the second part of Section 3 of [37] that G, (K)
is a dense open subset of €". The idea of the recursion argument is that there exists
e > 0 small enough, such that Gy(e, K) = Gi(K) due to the absence of periodic
orbits of small period. Then, the method of Peixoto would consist in proving, like
in [43], that Go(A, K) N Gs/2(3A/2, K) is dense in Gy(A, K) and that Go(3A4/2, K) is
dense in G3/2(3A4/2, K). By this way, we obtain a chain of dense inclusions

P g2(9€/4, K) c g3/2(9€/47 K) (@ 92(35/2, K) c g3/2(3€/2, K) c g2(5, K) = gl(K)
dense dense dense dense

which shows the density of the hyperbolicity of periodic orbits in G;. The openness

of these sets is rather simple and similar to the finite-dimensional case considered

in [51]. This scheme of proof has been exactly performed in [43] and in [1]. The
difficulty lies in the proofs of density.

We claim that the following density holds.

Proposition C.1. For any positive A and K, Gs35(3A/2, K) N Ga(A, K) is dense in
G2(A K).

Proof: We give here very brief arguments since this proposition is only an auxiliary
result in the whole proof of generic hyperbolicity, which is unfortunately not yet
completed.

41



The proof of Proposition C.1 is very similar to the one of Proposition 6.2. We
apply a suitable version of Sard-Smale theorem (similar to Theorem B.4) to the map

P (T,uo,g) [— Sf0+g(T)uO—U0 .

As usual, the main difficulty is to obtain a surjectivity as required by Hypothesis ii)
of Theorem B.4. We skip the details, but simply notice that checking this property
is very similar to the end of the proof of Proposition 6.2: we have to find for any
solution ¢* of the adjoint equation along a periodic orbit p, a perturbation g of f
such that

JQ JoT 9(@,p(x, s), Vp(z,s))* (x, s)dsdr # 0 .

This is achieved by constructing a function as in Proposition 6.1 by using Proposition
5.1. o

The proof of the genericity of the Kupka-Smale property would be obtained if
we could prove the following result.

Conjecture C.2. For any A > 0 and K, G2(3A/2, K) is dense in G3/2(34/2,K) n
G2(A K).

To prove this conjecture, we only need to know how to make hyperbolic a given
simple periodic orbit in the following sense.

Conjecture C.3. Let f € C*(2 x R x R4 R) and let N be any small open neigh-
borhood of f in C". Let p be a simple periodic solution of (1.1) with minimal period
w > 0 and such that supcpg ) [P(t)|xo < K, where K > 0. Then, there exists a func-
tion f € N such that p is a hyperbolic periodic solution of (1.1) with non-linearity
f.

Once again, the usual strategy would be to apply a Sard-Smale theorem (similar
to Theorem B.4) to an appropriate functional ® and then to check a surjectivity

hypothesis as ii) of Theorem B.3. If we try the most natural way, we will have to
find a perturbation g of f satisfying

Re f: JQ (Dvg, Dyug)(x,p(z,t), Vp(x,t)) . ™ (z,t) (o, Vo) (x,t) dedt # 0 (C.1)

where p is the considered simple periodic orbit, ¢ a solution of the linearized equation
associated to an eigenvalue A with modulus |A\| = 1 and ¢* a solution of the adjoint
equation. Notice in (C.1) the presence of the real part Re since the spectrum of a
periodic orbit has complex eigenvalues. To obtain this perturbation g, we may use
a construction as follows.

Proposition C.4. Let f € C*(Q2 xR xR?% R) and let p € C*(Q2 xR, R) be a periodic
solution of (1.1) with minimal period w. Let V € C*(Q x [0,w], R¥*1) be a function,

which is not everywhere colinear to (p(z,t), Vpi(x,t)). Then, there exists a function
g€ C®(Q x R x RYR) such that

i) g(x,p(x,t),Vp(x,t)) =0 V(z,t)e xR,

ii) f: L(Dug, Deug) (2, pla, £), Vp(z, ).V (2, 1) dadt 20 .
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Proof: To simplify the notations, we denote by U the variable (u, Vu) € R and
we set P(z,t) = (p(z,t), Vp(z,t)) € R

By assumption, there is an open set U with U < Q x (0,w) such that V is never
colinear to P, on U. Notice that, in particular P,(x,t) # 0 for all (z,t) € U. Due
to Proposition 5.1, restricting U, we can assume that, for all (zg,%y) € U, the map
(,t) € Q x [0,w) — (z,P(z,t)) € Q x R reaches the value (xq, P(z9,t0)) at
(x0,to) only.

Let (x9,ty) € U. We complete (P, V) to a basis of R4 let Wi,...,Wy_ 1 bed—1
vectors of R such that (Py(wo,to), V(zo,t0), Wi, ..., Ws_1) is a basis of R
Restricting again U, we can assume that (P(z,t), V(x,t), Wi, ..., W4_1) is a basis
of R4 for all (x,t) e U. Let V = U x W where W < R? is a neighborhood of 0.
We define h: V — Q x R4 by

R, t, 7,81, ..y, 8a-1) = (x, P(x,t) + 7V (x,t) + s; W1 + ... + sq-1Wa1) .

Up to choosing V smaller, the local inversion theorem shows that h is a C*-diffeomorphism
into its image. We recall that for all (zg,%y) € U, the map Q x [0,w) > (z,t) —
(z, P(z,t)) € Q x R™! takes the value (xq, P(z0,)) at (zo,%0) only. Due to the
compactness of the graph of this map, we can restrict W such that (z, P(z,t))
belongs to h(V) if and only if (z,t) belongs to U. Let y € C*(2 x R R) be
a function with compact support in V, which will be made more precise later.
We set O(x,t,7,81,...,,8¢-1) = x(x,t,7,81,...,,54-1)7. We define the function
g : h(V) - R by g(x,u,Vu) = g(x,U) = 0o h™*(z,U). We can extend g by
0 outside h(V) to obtain a function in C*(Q x R**!). By construction, for all
(x,t) ¢ U, g(x, P(z,t)) = 0 and Dyg(x, P(z,t)) = 0. Moreover, for all (z,t) € U,
g(x, P(x,t)) = 6(z,t,0,0,...,0) = 0 and

dvg(x, P(x,t)).V(z,t) = DO(h~"(z, P(z,1))). (aUh Yz, P(x,1)).V (z,1))
= Dl(z,t,0,...,0). (duh~ " (h(z,t,0,...,0)).0;h(x, 1,0, ...,0))
— DO(x,t,0,...,0).0-(h~ )(m t,0,...,0)
= 0,0(z,t,0,...,0)
= x(z,t,0,...,0)

Thus, Property i) of Proposition C.4 holds and moreover

f f ovg(x, P(x,t)).V(z,t) dedt = J x(z,t,0,...,0) dzdt .
0 Jo u

Therefore, we can easily choose x such that Property ii) of Proposition C.4 also

hOldS. o

The final problem lies in checking that the real part of ¢*(z,t)(¢, Vo) in (C.1) is
not everywhere colinear to (p;, Vp;). This is true if we only consider real functions
(see Proposition C.5 below), but we consider here complex solutions * and ¢ and
thus the real part of ¥*(¢, V) correspond to a combination of two real solutions of
the linearized equation: the real and the imaginary parts of ¢. Even if this colinearity
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would be very strange and holds surely in very rare cases only (remember that we
may break potential symmetries by perturbing f), we found no rigorous argument
to avoid it.

We finish with a statement of non-colinearity which could be inspiring.

Proposition C.5. Let I be an open interval of R and Q and open subset of R%. Let
ae€C®Q x I,R) and b e C*(Q x I,R?) be bounded coefficients. Let vy and vy be

two solutions of the real equation
o(z,t) = Av(z,t) + a(z, t)v(x,t) + bz, t).Voo(x, t) . (C.2)

Assume that (vy, Vvy) is colinear to (ve, Vug) at each points (x,t), meaning that
there exists real values a(x,t) and 5(x,t) such that for all (x,t) e Q x I,

a(z,t) (v, Vuy)(x,t) + Bz, t)(ve, Vua)(x,t) = 0. (C.3)

Then vy and ve are colinear to vy as solutions, that is that (C.3) holds with real
constants o and 3.

Proof: If v; = 0 for ¢ = 1 or ¢« = 2 the conclusion is trivial. By the unique
continuation properties of Section 2, up to choose I and {2 smaller, we may thus
assume that (v;, Vv;) are not zero and thus that a(z,t) and (x,t) are smooth non-
zero functions. Moreover, we may fix the normalization o?(z,t) + 8%(z,t) = 1. Fix
(20, to) and set (&, B) = (a(zo, to), B(zo, ty)). We notice that the value (@, ) is taken
by (a(x,t),B(x,t)) in a submanifold M of dimension d’ = d of Q x I because the
possible values of the function lie in the circle S' which is one-dimensional. The
function w = Gvy + Pu,y is also a solution of (C.2) and by construction (w, Vw)
vanishes in the submanifold M of dimension d’. We now apply Theorem 4.1 with
families independent of 7 € J = R. The singular nodal set of w(x,t,7) is M x J of
dimension d’ + 1 = d + 1. Thus w = 0 which concludes the proof. O
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