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In this paper, a method for the quasi-static simulation of flexible cables assembly in the context of automotive
industry is presented. The cables geometry and behavior encourage to employ a geometrically exact beam model.
The 3D kinematics is then based on the position of the centerline and on the orientation of the cross-sections,
which is here represented by rotational quaternions. Their algebraic nature leads to a polynomial form of equi-

librium equations. The continuous equations obtained are then discretized by the finite element method and
easily recast under quadratic form by introducing additional slave variables. The asymptotic numerical method,
a powerful solver for systems of quadratic equations, is then employed for the continuation of the branches of
solution. The originality of this paper stands in the combination of all these methods which leads to a fast and
accurate tool for the assembly process of cables. This is proved by running several classical validation tests and

an industry-like example.

1. Introduction

During the last decades, the room available in car vehicles (e.g. in
engine compartment) has plummeted because of the rapid development
of on-board electronics. As a result, a need for very accurate numerical
tools for design has appeared in automotive industry. In the meantime,
a fast computation is necessary so that design duration remains suitable
for industry. In this context, flexible pieces represent an outstanding
challenge since, unlike most of car pieces, they cannot be modeled as
rigid body solids in CAD software. This paper focuses on a specific type
of flexible piece, namely electrical cables. Cables have a complex struc-
ture. A wire is made up of copper filaments wrapped in an elastomer
duct. These wires are most of the time gathered in bundles which are
themselves surrounded by various protections such as tape, PVC tube
... Moreover, the full cable is often constituted of several drifted cable
pieces forming a system with a complex geometry.

Due to its slender shape and its flexibility, one can consider a simple
cable as a beam undergoing large displacements and large rotations.
There exist several theories accounting for nonlinear beams, see Refs.
[1-3]. The most widely used theory is the geometrically exact beam
model whose founding principles were established by Reissner [4,5]
and further generalized by Simo [6]. Various finite element formula-
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tions (FEM) have been presented to solve these equations numerically.
The notable works of [7-11] and more recently [12,13] can, among
others, be listed.

At the heart of all these formulations, the rotation parameteriza-
tion is of paramount importance in the numerical models. The 3D rota-
tions modeling indeed is not an easy task especially when computa-
tional efficiency is sought. The rotational vector-like parameterization
used by many authors features only 3 parameters (minimum set in
3D). However, as no parameterization of less than 4 parameters can
be singularity-free [14], this choice poses several numerical limitations
and lacks robustness. A powerful alternative consists in using quater-
nions, a set of 4 singularity-free parameters. Firstly used only for stor-
age in the numerical models, Zupan et al. [12] have recently shown
their utility when used as primary variables. They also have devel-
oped a model without rotation matrices exploiting the high potential
of quaternion algebra, and very efficient for numerical purposes [15].
In addition, quaternions offer an original description of rotations since
they substitute the usual trigonometric functions by algebraic variables
and lead to polynomial equilibrium equations.

The finite element method, very adapted to the assembly of com-
plex geometries such as electrical cables ones, is applied to the con-
tinuous equilibrium equations. The algebraic system obtained is then
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generally solved by a classical predictor-corrector method (PCM) [16].
Even if the appearance of arc-length methods [17] has considerably
enhanced the robustness of this type of method, they often require to
choose a step size which may be very tricky for the user. A sufficiently
small step size allows to compute even highly nonlinear part of equi-
librium branches but in return may impractically increase the compu-
tation time, while a larger step size may spoil the convergence. Taking
advantage of the polynomial form of the system of equations obtained
when using quaternion parameters an alternative consists in replacing
the PCM by the asymptotic numerical method (ANM) firstly presented
by Damil and Potier-Ferry [18] and by Cochelin [19]. The ANM is a
very powerful solver for quadratic problems and it overcomes all the
drawbacks of the PCM. This technique indeed is very robust, does not
require any tuning parameters and is thus well suited for an industrial
use. In addition, Cochelin and Medale [20] have equipped the method
with a bifurcation detector and improved its efficiency in the vicinity
of bifurcation points.

Combining quaternions with the ANM has already been set up on
a rod model discretized with a finite difference scheme by Lazarus et
al. [21], which have got very promising results. We propose here to
set up the technique on the finite-element based geometrically exact
beam model, in what constitutes the main originality of this paper. Val-
idations and illustrations of the method on very intricate problems are
provided and discussed. A critical evaluation and future researches are
presented by way of conclusion.

2. Governing equations

In this section, the classical quasi-static formulation of the geomet-
rically exact beam model, based on the rotation vector, is firstly pre-
sented. It enables to explain all the main ingredients of the model and
to discuss their physical meaning. Secondly, the equations are modified
by using quaternions instead of the rotation vector. This leads to the
formulation which serves our numerical model, presented in part 3.

2.1. The geometrically exact beam model

In the geometrically exact beam model, a beam is described by
defining a family of cross-sections whose centroids form a curve called

the centerline of the beam. The kinematic variables essential to this
description are introduced following the notations used in Ref. [22]. Let
us consider a beam of initial length L, with an arbitrary cross-section €,
as depicted Fig. 1. Let (u;,u,,u3) be a fixed Cartesian (global) frame.
The current position of the centerline in this frame is described by the
vector field x(s) which is a function of the curvilinear abscissa s € [0, L]
along the beam axis. A material (local) frame (e (s), e5(s), e5(s)) is intro-
duced to define the cross-section at abscissa s. The vectors e, and e;
span the cross-section while the vector e; remains normal to the cross-
section for every deformed configurations. It is essential to note that e,
is not necessarily tangent to the centerline of the beam such that shear
deformation is taken into account (Timoshenko model). The reference
configuration is chosen such that the beam is unstressed. However, in
this state, the reference position of the centerline is an arbitrary curve
and not necessarily a straight line, thus accounting for the initial curva-
ture of the beam. Its initial position is then a function of s denoted X (s),
such that the displacement of any point of the centerline is x(s) — X (s).
Similarly, the material frame in the reference configuration depends
on s and is denoted (E;(s), E5(s), E3(s)). To end up with the definition
of the kinematic variables, let us introduce the two rotation operators
Ry(s) and R(s) which depict the orientation of the material frames in
the global frame in the initial and in the current configuration respec-
tively, that being E;(s) = Ry(s)u; and e;(s) = R(s)u;, i € {1, 2, 3}. AsRy(s)
defines the initial curvature of the beam it is constant through the defor-
mation. With these notations, the position vector in the spatial frame of
any point M’ of the undeformed beam located in the section at s writes

X(s,X9,X3) =Xo(s) + Ry(5)Y (X5, X3), (€D)]

where Y(X,,X3)=[0 X, X3]7 is the material position of M’ in
the cross-section. Under the assumption that cross-sections remain
plane and do not undergo any deformations along the transformation,
Y(X,,X3) is constant and M’ after deformation becomes M” whose posi-
tion is given by

x(5, X5, X3) = Xo(5) + R(5)Y (X, X3). )

The current configuration of the beam is then completely characterized
by the position of the centerline x,(s) and the orientation of the cross-
sections R(s). One recovers here that the kinematic variables depend
solely on the curvilinear abscissa s as for any beam model. As it is

s+ds

Fig. 1. Kinematics of the geometrically exact beam model.
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clearly implied, the dependency in s is dropped in the following. Fur-
thermore, the derivative with respect to s is from now on denoted with
the prime symbol ’.

For any rotation operator R, it is shown that the matrix RTR’ is
skew-symmetric [22]. Any 3 x 3 skew-symmetric matrix A is made
of only 3 independent components which can be gathered in a vector
a=vect(A)=[a; ay as]’. The skew-symmetric matrix associated to
a is denoted a and is equal to:

0 —-as a,
d=|a; 0 -q 3
-a; @ 0

With these notations and hypothesis, the material translational and
rotational strain measures are equal to [23].

r=[rT,Ts) =R™x, T, (4a)

K = [k K k3] = vect®RTR)) — K, (4b)

where the intrinsic translational strain 'y = RgXi) = u, and the intrinsic
rotational strain K, = vect(RgR()) solely depend on the initial configu-
ration of the beam. Let us point out that in the reference configuration,
the strain measures I' and K are both equal to 0: the assumption of an
initially unstressed configuration is thus well recovered by these mea-
sures definition.

To interpret these measures, let us consider the straightforward case
in which the beam centerline is a straight line in the reference configu-
ration. The intrinsic strains then obey I'y = u; and K, = 0. x(s) is, by
definition, a vector tangent to the centerline of the beam at abscissa s
in the current configuration. In expression (4a), the operator RT maps
back this vector projection from the material frame to the fixed frame.
The measure I then consists in comparing this quantity to its reference
value u;. A fully equivalent interpretation is made by recalling that
the scalar product of 2 vectors may be geometrically interpreted as the
projection of one vector in the direction of the other. It follows that
Iy =elx) —1,T, = elx{ and I'; = e x] are the comparison of the pro-
jection of x/(s) on the material frame to e, in the 3 material directions.
As the beam is parameterized by the curvilinear abscissa in the initial
configuration, the norm of x:) (s) is equal to 1 if the length of the center-
line remains unchanged, is greater than 1 in case of elongation of the
centerline and smaller than 1 in case of shortening. With regard to all
these observations, we eventually infer that I'; is the axial strain of the
neutral axis, while I'y and I'; represent the shear strains in directions
e, and e;.

In the case of a pure rotational transformation R, RTR’ represents
the gradient of the transformation along the beam axis. As this quan-
tity is a skew-symmetric matrix, it is equivalent to write RTR'Y and
vect(RTR') x Y = K x Y. It follows directly that in (4b) x, depicts the
torsional strain while x, and k5 represent the curvature strains around
e, and e; respectively.

The expression of the aforementioned rotation operator R is gener-
ally obtained from a reduced representation. The choice of this rep-
resentation is actually a crucial issue since various criteria compete
against each other to get the best set of parameters: numerical efficiency
(number of parameters), mathematical form, existence of singularities,
geometric interpretation. Let us recall that any 3D rotation of a rigid
body solid is made up of 3 independent parameters. The 3-parameters
rotational vector 9 presented in this paragraph thus constitutes the min-
imal set of parameters. We choose it here for its easy geometrical inter-
pretation since it is defined by

, (5)

for a rotation of angle 9 around the unit axis n. The rotation operator
then writes in terms of this parameterization as [22]

9=on=1[9, 9, 9"

sin(@~ 1 —-cos(®) %%
RO =L+ = =8+ ==~ 99. 6)

2.2. Virtual work principle

Using the quantities introduced in the previous section and the
Cartesian rotational vector 9 defined in (5) as rotational parameters,
the virtual work principle for a 3D shear elastic beam is stated here.
Following Reissner’s work [4,5] and the generalization of Simo [6], it
writes

L L
/ (N~6F+M~6K)ds=/ (n, - 6xg +m, - 59) ds
0 0

+ [N, - 5x0]g + [M, - 595 . %)

with the generalized stress resultant in force and moment N and M,
the external applied force and moment per unit length n, and m,, the
external end force and moment N, and M, and the virtual positional
and rotational vectors 6x, and §9. The left-hand of the equation is
the opposite of the virtual work of internal forces —6W; and the right-
hand is the virtual work of external forces 6W,. N =[N T, T5]” and
M = [M, M, M;]" are work conjugates to the virtual translational strain
6T and the virtual rotational strain 6K respectively. Therefore, N stands
for the axial force resultant, T, and T5 the transverse force resultants
in respective directions e, and e3, M, the torsional moment and M, and
M the bending moments around axis e, and es.

In the scope of this paper, only linear elastic materials are consid-
ered. In this particular case, the stress-strain relationship states pro-
portionality between stress resultant vector = [M! NT]” and strain
resultant vector £ = [['T K717 that be

T = C€ = diag(Cy. Cy)E. ®

In (8), Cy = diag(EA, GA,, GA3) and C,,; = diag(GJ, EI,, EI3) are the two
3 X 3 stress-strain submatrices corresponding solely to the force compo-
nents and the moment components respectively. In these expressions,
E and G are respectively the Young’s modulus and the shear modulus
of the material; A is the cross-sectional area; A, and A are the shear
areas in directions e, and es; I, I5 are the second moments of area with
respect to axes e,, e;; J is the polar moment of area.

Let us notice that this model can take into account the case of the
origin of the material frame not being on the centerline effortlessly. In
this case, out-of-diagonal terms simply appear in the stress-strain matrix
C.

Finally, the virtual strains in (7) are given in terms of the kinematic
variables by the equations [22]:

6T = R"6x)) + R"x)) T69 = R"ox) + (T + T)T59,
9
5K =RTR'T+T)59+Ts9 = (K +Ky)T +T)58 + T59'.

In (9), T is a tangent operator which can be expressed as a function of
9 only under the form:

_ cos(@)—1% 1 (. sin@®)\53
T=I+ X025+ o, (1- 5295, (10)

2.3. Strong form of equilibrium equations

Introducing expressions (9) into the virtual work principle (7), inte-
grating by parts with some rearranging and using the fundamental
lemma of calculus of variations lead to the following equilibrium equa-
tions:

!/ —
{(RN) +n =0, Vs [0L] 1)

(RM) +x6 X (RN)+m, =0,
along with the natural boundary conditions

RN-N_,=0 ats=0,L,
{ ¢ (12)

RM-M,=0 ats=0,L,
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or the essential boundary conditions

Xg=Xx3 ats=0,L,
4 =9; ats=0,L,

(13)
where x; and 9 are respectively imposed positions and rotations.

2.4. Quaternion parameterization of rotations

As explained at the end of paragraph 2.1, the choice of rota-
tion parameters is of paramount importance in numerical models. In
a total Lagrangian framework (i.e. using total rotations), the rota-
tional vector & prevents from having angles greater than 2z. It is
clear from equation (10) that the tangent operator T indeed becomes
rank-deficient around 2z-angles and leads to a singularity. Procedures
exist to circumvent this flaw [9], however, we find it more expedi-
ent to use an other parameterization not requiring any special pro-
cedure. As demonstrated in Ref. [14], the minimal set of parameters
avoiding all singularities is made up of 4 parameters. With regard
to this principle, the 4-parameters quaternions appear as an optimal
choice for the representation of rotations. In addition, quaternions
feature a special algebra totally equivalent to the algebra of rota-
tion operators but which proves computationally more efficient [24].
Finally, they offer a polynomial representation of rotations in com-
parison to classical trigonometric ones. We will show in the following
part how this property is used as a leverage in our numerical solu-
tion.

The next developments of this paragraph aim at giving the funda-
mentals on quaternions necessary to the comprehension of the method.
The interested reader may consult for instance [25] for more details.
The notations of [12] on quaternion algebra are used here. A quater-
nion @ is defined by

d = qg +ia; +ja, +kas, as

where ay, a;,a,, a; € R and the imaginary numbers i, j and k are linked
by the identities

2= =k*=ijk=-1. (15)

1, i, j and k form a basis of the set of quaternions, denoted H. As
a result, a quaternion may also be seen as an element of the four-
dimensional Euclidean linear space R*, whose components are a,, a;,
a, and a; in the Euclidean basis made up of the 4 vectors [1 0 0 017,
[010017, 001017, [000 1]7. In this paper, no distinctions are
made between the quaternions and their projection into a basis of the
Euclidean space so that we can smoothly write a quaternion under
the vector form d = [ay a; a, as]’. To distinguish quaternions from
the three-dimensional vectors of R3, the hat symbol is used: a € R3,
daeR*
Let us introduce the handy notation

d=qy+a (16)
In this expression, a, and a = ia; + ja, + ka; are called respectively the
scalar and the vector part of the quaternion. This notation helps draw-
ing a parallel between quaternions and complex numbers, the scalar
part amounting to the real part and the vector part amounting to the
imaginary part. It is also helpful when one wants to express the exten-
sion of a vector of R3 in the quaternion space H. Indeed, any basis
(iy.1y,13) of the three-dimensional Euclidean space can be extended
into a basis of the four-dimensional Euclidean space (?0,?132,?3),
with /i\o =1+0 and /i\k =0+1i, ke {1, 2, 3}. As a result, any vector
v of R3 has a quaternion counterpart in H, ¥ = 0+ v. This quater-
nion with a zero scalar part is called a pure quaternion and depicts
the extension of a vector into a quaternion. Conversely, a restric-
tion operation may be defined, which transforms a pure quaternion
into a vector. This operation is denoted Vec, so that for any pure
quaternion p of H, Vec(p) = p € R3. In the following, no distinctions

will be made between pure quaternions and other quaternions in the
notation. For a better comprehension, the reader just has to keep in
mind that any vector extension in the quaternion space is a pure
quaternion.

Using the analogy with the complex numbers, a conjugate quater-
nion is defined as @ = ap —a. The set of quaternions is equipped
with the inner product @ b= agby +a-b and the quaternion norm
lla|l = Va - @ Furthermore, the three following elementary operations
are also defined: the addition @ + b = (ag + bg) + (a+b), the scalar mul-
tiplication Ad = Aay + Aa for 1 € R and the quaternion multiplication,
denoted o, which follows directly from the definition of a quaternion
(14) and from the relations (15):

dob=aghy—a-b+(bya+agh+axh), a7

where - and x are the scalar product and the cross product of vectors.
This operation is associative but not commutative, so left and right mul-
tiplication must be distinguished.

Finally, it is convenient for the further presented formulation to
extend the cross product of vectors of R3 to pure quaternions. For two
pure quaternions p and q, it is defined as

Pxg=0+pxqg=pxq. (18)

To perform the rotation of a vector x into a vector y, that be y = Rx, a
special set of quaternions, called Euler parameters, is employed. For a
rotation of angle 9 around an axis oriented by the unit vector n, Euler
parameters are defined by

a:cos(g>+nsin(g). (19

The rotation is then applied using the following formula:

¥y=qdoXxoq*, (20)
which is quadratic with respect to ¢ and is totally equivalent to using
a rotation matrix (see Appendix F). Furthermore, if one wants to
apply a combination of two successive rotations of respective quater-
nions ¢; and @, the rotational quaternion §,o q;, evidencing the
multiplicative nature of quaternions, needs to be used in (20), that
be:

¥=(G@z0q;)oXo (g,0q,)" (21

Let us notice for practical purposes that the norm of the rotational
quaternion defined in equation (19) is 1 (the so-called unit quaternions)
obeying

Gog =G og=1=1+0. (22)

Besides, deriving this relation with respect to s leads to the following
useful relations

qoq=-@od",

pNE

(23)
~ Ak A~
g oq =—(q oq).

In order to manipulate equations in quaternion space, let us also intro-
duce the following helpful relations, stemming from (17), (18) and the
commutativity of inner product:

o for arbitrary quaternions p, g and 7:

p-(@oF)=q- (pot) = (po?) &
(@oF)=q-(po?) = (poF’) 28

]
=
-
o
_
=
I
>
—_
-
2
o
=
2
I
—
%
o
=
2
2
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Table 1
Free-end position and rotation of the cantilever beam under the end-moment M; = 3z ELQ
for several values of n and Ne on the left; deformed shape during loading on the right.

n N, z1(L) z9(L) 03(L)
1 2 0.03376  0.29412  9.65337
5 0.00104  0.21346  9.43450
10 0.00007  0.21228  9.42542
20 0.00000 0.21221  9.42482
2 2 ~0.00001 021100  9.42464
5 0.00000  0.21224  9.42484 3 03(L) =0
10 0.00000 0.21221 9.42478 ¥
5 2 0.00000 0.21221 9.42478
Exact 0 0.21221 9.42478
e for pure quaternions&and?): with the virtual positional (pure) quaternion &X, and the vir-
PN ~ tual rotational quaternion &¢. The resultant of the external
dob+b*oa=2a xb. (25)

2.5. Rewriting of governing equations

The weak form of equilibrium equations (7) along with (4) and
(9) are now expressed in terms of the quaternion parameters. The
rewriting operation consists in replacing vectors by their quaternion
equivalent x — X and the rotation operation by its expression in the
quaternion space y = Rx — ¥ = go Xo g*. Most of the relations intro-
duced in the paragraph 2.4 serve this change of rotation parame-
ters.

First, the strain measures (4) are rewritten by combining equations
(22), (23) and (25) to get the pure quaternion strains (see Appendix A
for the full demonstration)

~

F:a*oﬁgoa—fo (26a)

K=2§"0q -K,, (26b)
with the intrinsic translational strain fo = UI; and rotational strain KO =
263 o a:) expressed in quaternion space. The virtual strain expressions
(9) in the quaternion space are obtained by differentiating equations
(26a) and (26b) and rearranging them with (25) (see Appendix B or
[12] for the full demonstration) leading to

moment is conjugated to the virtual rotational vector in the vir-
tual work principle (7). To express the resultant of the exter-
nal moment in the quaternion space, a relationship between
the virtual rotational vector and the virtual rotational quaternion
must be established. One demonstrates (see Appendix D) that we
have

89=2¢" o 54. (28)
Substituting the quaternion expressions (26)-(28) to their vecto-
rial counterpart in the virtual work principle (7) and using the
relations (24) to obtain the resultant of the external moment,

the new virtual work principle extended in quaternion space
writes

L L
/(ﬁ.5f+ﬁ.5k)ds=/ (7, - 5% +2(Go ,) - 54) ds
0 0 (29)

~ 1L o~ L
+ [Ne~5x0]0 + [Z(qo M,) ~6q]0.

As noticed in paragraph 2.4, the four components of a rotational quater-
nion g are not independent but constrained by the condition of unity

sT=G 06x)04+2q o (3?6 x (8o a")) 0q, (27a) g-qg—1=0. This constraint is taken into account by the method of

Lagrangian multipliers. Following the approach of Zupan et al. [15],

~ , the Lagrangian multiplier appended to this constraint and denoted
6K =2G*o (6goq*) oq, (27b) . . . L

u is considered as a variable of the problem. The expression intro-

. ——0
=) —1 =
<N 10-2 | —e— 2 <N 10»2 |
5 ] —a—3 5
5 5
5 T 5
£ 107t 2 107}
3 ]
? @
g 2
10°} 10°}
10’ 10
N Computation time

e

Fig. 2. Influence of element order on the algorithm accuracy for the example of paragraph 5.1 (number of elements circled on second curve).
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Fig. 3. Cantilever 45-degree bend subject to a terminal out-of-plane force.

duced in the new virtual work principle (29) hence is the term u(q -
g — 1) differentiated and integrated along the length of the beam, that
be:

L L
s, =0 [ w@-a-nds= [ (@a-vour2a-a)d GO

First, introducing the expressions of 6T and 6K (27a) and (27b), then
rearranging (29) with equations (24)-(25), integrating by parts and
applying the fundamental lemma of calculus of variations yield the
strong form of equilibrium equations (see Appendix C for the full
demonstration):

Vec<(aoﬁoa*)’)+ne =0,
Vec ((GoMoq*y +%, x(GoNog")+m, =0,
((q q) +x,x(q q)) e vs € [0,L] (31)
U =0
q-q-1 =0

along with the natural boundary conditions

Vec(&oﬁoa*>—Ne:0 at s=0,L,
. . (32)
Vec(?]oMo?f)—Me:O at s=0,L,

or the essential boundary conditions

Xo = X4, t s=0,L,
0 ’ d ~ a s (33)
Vec(q) = Vec(qy) at s=0,L,

where @, is the prescribed rotation under quaternion form (19). It
ensues from (31) that u(s) = O is solution of the continuous problem
while the remaining equations are strictly equivalent to the original
form (11). Introducing the Lagrangian multiplier in the virtual work
principle thus do not alter the equilibrium equations. Besides, it should
be noticed that only the vector part of the quaternion is prescribed in
the boundary conditions (33). The scalar component is indeed automat-
ically known from the fulfillment of the unity constraint (31d). Another
equivalent possibility is to replace (33b) by § = §; with |g4| =1 and
nu=0ats=0,L.

At this point, the continuous form of equilibrium equations of the
problem is established. The equations are expressed in both weak
form through equations (29)-(30) and strong form through equations

Table 2
Free-end position of the bent cantilever beam for F = 600.

Formulation Order x1 (L) x5 (L) x3(L)
Present n=0 47.3061 15.7009 53.3364
n=1 47.1507 15.6845 53.4751
n=2 47.1501 15.6847 53.4755
n=3 47.1501 15.6847 53.4755
Bathe and Blorchi [41] n=0 47.2 15.9 53.4
Simo and Vu-Quoc [10] n=0 47.23 15.79 53.37
Zupan et al. [15] n=15 47.4159 15.2861 53.4725

(31) along with (32), knowing relations (26a)-(27b). A vector equa-
tion is made up of 3 scalar equations. As a result, the set of govern-
ing equations in strong form (31) is composed of 8 (3 + 3 + 1 +
1) scalar equations. Besides, the unknowns of the problem are the 8
following fields of s: the 4 components of the rotational quaternion
d=1q0(5) q1(5) qa(s) qs(s))T depicting the rotation of the sections,
the 3 components of the current position vector of the cross-sections
centroids x,(s) = [x;(s) X5(s) x3(s)]” and the Lagrangian multiplier
u(s). As a result, our problem is a well-posed 8 equations — 8 unknowns
problem and can henceforth be solved numerically.

For convenience, let us gather the 8 scalar unknown fields under a
single vector field

25) = [xo)T GOT u)]" (34)

This allows to write the weak form of equilibrium equations (29)-(30)
under the compact form

L L
/2-58ds:/(fe+fu)-5zds+[F5-5z]g, (35)
0 0
with

fo=In’ @iomy o' F.=[NT @doNt o .
(36)

fo=10 @@ q-g-1]".
In equation (35), the strain and the stress resultant vector are still
equal to € = [I‘T KT]T and X = [NT MT]T but from this point for-
ward are expressed in quaternion space, thatbe I' = Vec(f), K= Vec(k),
N = Vec(N) = Cy Vec() and M = Vec(M) = C), Vec(K), with T and K
expressed as in (26a) and (26b).

Equations (26a) and (26b) show clearly that f, K then 1/\\1, M through
(8) and as a consequence &, X are polynomial functions of z of degree
3. Similarly, equations (27a) and (27b) expose that € is a polyno-
mial function of z of degree 4. This in addition to the quadratic form
of expressions (36) evidences that the governing equation (35) is a
polynomial equation of z of degree 7. Thus, using quaternion param-
eters instead of the rotational vector has allowed to transform the non-
polynomial system of 6 equations/unknowns (11) (it contains trigono-
metric functions due to the expression of the rotation and the tangent
operators (6) and (10)) in a polynomial system of 8 equations — 8
unknowns. How our method takes advantage of this specificity is shown
in the following parts.

3. Finite element method
3.1. Discrete form of equations

The finite element method is now applied to the weak form of gov-
erning equations (35) to obtain the discrete equilibrium equations. The
beam is cut in N, elements, which for sake of simplicity are supposed of
equal length L, = L/N,. Each element is composed of n + 2 equally-
spaced nodes: n internal nodes and one node at each extremity of
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the element. In each element e, the unknown field z© value at node
ie{l,...,n+2} is denoted 2'.

The virtual work principle (35) is discretized using a standard
Galerkin approach in which the trial functions x,, § and x and the
test functions x,, 6¢ and §u are interpolated similarly. This choice is
not obvious when dealing with rotational quantities and for this reason
it is discussed briefly in section 3.4. The same interpolation order is
used for all variables, since numerical studies have shown that a differ-
ent order for each variable may lead to numerical divergence [26]. The
interpolation then writes

n+2
29(s) = ) Ny(s)z". (37)
i=1
We use isoparametric elements so that the interpolation functions N;
in equation (37) are the same as the shape functions and are chosen
as standard Lagrange-type polynomials. Equation (37) may be written
under the compact matrix form

20 (s) = P(syu®, (38)

where, if Ig is the 8 x 8 identity matrix,

P(s) = [Nl(s)ls Ny(s)Ig Nn+2(s)18] (39)
is an interpolation matrix of size 8 x 8(n + 2) and u® contains the
unknowns nodal values of element e:

u®© = [(zl)T @7 (zn+2)T]T. (40)

As the elementary fields all depend on s and as all the equations are
written inside the element, except when needed for a better compre-
hension, the notations e and s are dropped in the following. As said ear-
lier, the test functions are interpolated similarly to the trial functions so
that we also have §2(¢(s) = P(s)éu®. However, it is convenient for the
writing to introduce a 2nd interpolation matrix Q of size 12 x 8(n + 2)
for the test functions such that

T
[exp™ @@ @@ su| =Qou, (41)
with
NiI; 0 0 .. N_,I5 0 0
! !

oo ¢ ML 0 0 NoLoo0 “2)

0 NI, 0 .. 0 Npipls 0

0 0 N, .. 0 0 Nins2)

We can henceforth write under discrete form the continuous equation
(35). To get the discrete version of the left-hand side, we search for
an expression of the virtual strains 6€ as a function of 6u®. From the
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expression of the virtual strains (27a) and (27b) and from (41), one
shows (see Appendix E) that

N
[ ] -6E = QTg(N, M) - 5u®, (43)
M

with the vector of 12 components
Vec [a* oNo a]
2 oM
2Go (ﬁx(f‘+f‘0)+1\71><(IA(+IA(O)) +2§ oM
0

gN.M) = (44

QTg(-,-) may be interpreted as an elementary discrete gradient of the
internal work, since it links X - 5€ to the virtual nodal values.

The discrete version of the right-hand side of equation (35) in a
given element stems directly from equations (38) and (41) and the vir-
tual work principle may now be written in each element in a discrete
manner. The elementary virtual work of internal forces, the elementary
virtual constraint and the elementary virtual work of external forces
respectively write

L, Le
W = - / T.68 ds=5u<e>.<— / QTg(N,M)ds>,
0 0

L, L,
T
56;(46):_/0 fu-o2 ds=6u(e)~<—/0 Q'c, ds), (45)

LE Le
sWE = / f.-62 ds=6su®- / P'f, ds.
0 0

In (45), we have introduced the vector ¢, = [0 024G §G-4- 1] T.
Besides, for the special cases of end elements, the loads on end-sections
must be added to external work. They write respectively —F,(0) - 62(0) =
su® . (=PT(0)F,(0)) and F,(L) - 52(L) = su™o . (PT(L,)F,(L)) for the first
and the last element. Summing these virtual quantities, the elementary
virtual work principle takes the form

oW + oW +5C = 5u® - (FO - F), (46)

where T'Ee) and T'(:) are respectively the elementary internal force vector
(in which is included the unity constraint) and the elementary external
force vector. They write

L, L,
F = /0 Q"% ds, FY = /0 P'f, ds. 47)

As in (47), the vector Ff) requires a special treatment at beam ends: the
end forces —PT(0)F, .(0) and PT(LE)F (L) must be included in the first and
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Fig. 4. Bifurcation diagrams for the deep circular arch. Displacement of the force application point in u, direction (left) and u; direction (right) vs. the force applied. The 4 branches

are numbered and their corresponding deformed shapes are found on Fig. 5.
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the last element respectively. In this equation, the vector fie) is equal to

Vec G o Aoa]
24GoM
f$e>= P AqA R o -~ NE (48)
2qo<N><(F+F0) Mx( +K0)>+2q oM+2u§
1

»Q)

q-

Few comments need to be made on this expression because it is at the
heart of the computer code, since the internal force vector is directly
linked to fge). First, let us notice that it does not make use of the
rotation matrix R which is replaced by computationally more efficient
quaternion products (see for instance [24]). This product is thus directly
implemented in the code. Afterward, recalling that N = CyI', M = C),K
and that the strains expressions are given by (26a) and (26b), one evi-
dences that this expression is still polynomial of degree 7 but this time
function of elementary fields. Finally, as quaternion expressions have
4 components and vectorial expression have 3, one observes that fge) is
a vector of 12 (3 + 4 + 4 + 1) components. After being multiplied by
QT it gives the vector T'Ee) whose size is equal to the number of nodal
values of the element, namely 8(n + 2).

In equations (47), the integrals over the element are evaluated
numerically by a classical Gauss-Legendre quadrature of order N,. Inte-
gration is performed in the parent element characterized by the coordi-
nate ¢ varying between —1 and 1. The Jacobian of the transformation
from physical to parent space is the same for all elements and is equal
to J = ds/dé = L,/2. One of the major problems of Timoshenko-like
elements is the presence of shear locking [27]. In order to avoid this
numerical deficiency, reduced integration is used. It consists in choos-
ing a quadrature order lower than the one required for exact numeri-
cal integration. In our case, for an element with n + 2 nodes, reduced
integration is employed by using N, = n + 1 points in the quadrature
formula [28].

At this point, all the necessary information has been given to com-
pute elementary quantities. The last remaining step of the finite ele-
ment method is to make an assembly operation on the elements to get
the global discrete problem equations. For that purpose, let us define
the global unknowns vector U containing all the degrees of freedom of
the problem:

T
=ledm @ Wt @ (49)
where N, is the total number of nodes. Assembling expression (44) for
all elements and stating that the virtual work principle holds for any
function 6U, the global discrete problem simply writes
RU)=Fy(U)-F,@U) =0, (50)
with the global internal force vector F; and the global external force
vector F,.

With eight degrees of freedom per node and N,, = (n + 1)N, + 1
nodes, the finite element method has transformed the 8 continuous
equilibrium equations (31) in a set of N,; = 8(n + 1)N, + 8 equations
forming the nonlinear global problem to solve.

Table 3
Critical forces obtained numerically with our code and the code of several authors for
in-plane buckling of the deep circular arch.

N, 10 12 20 40
Present n=1 905.3 901.3 897.8 897.3
Zupan and Saje [34] n=1 897.3
Cesarek et al. [42] n=1 906.57 899.69
Ibrahimbegovic et al. [9] n=1 897.3
Simo and Vu-Quoc [10] n=0 905.28

3.2. User control of a quasi-static problem

In the process of controlling equation (50) with a parameter A, we
can make the distinction between 2 main types of control: load control
(force/moment) and displacement/rotation control. In the former case,
the control parameter is inserted into the known external force vector
F, such that the problem (50) becomes

RWU,1)=F;U)-F, (U, 1)=0. (51)

In the latter case, 4 is included in the expression of the prescribed
displacement/rotation degrees of freedom of vector U (a weight
might be associated to A when there are several prescribed displace-
ments/rotations). As a degree of freedom is removed of the system for
each imposed displacement/rotation, the corresponding equations are
also removed of the system: the system would otherwise be overdeter-
mined. These equations are not necessary to get the equilibrium config-
uration but are not hollow though since they give the reaction force at
locked degrees of freedom. Mathematically, we can express control of
the j-th degree of freedom with a prescribed displacement u; through

R(U*, %) = FX(U*) - F:(U") =0

] >

where F and F are the force vectors from which the j-th component
has been removed.

Finally, let us comment the implementation of boundary conditions
(clamped or pinned ends) in the presence of quaternions. Boundary con-
ditions are applied classically in a Boolean manner: the equations cor-
responding to locked degrees of freedom are removed from the system.
However, because the 4 components of a quaternion are constrained,
the rotational degrees of freedom need to be dealt with care. In partic-
ular, it stems from the expression of essential boundary conditions (33)
that only the vector part of the quaternion needs to be prescribed: the
fourth component is then determined by the unity constraint. It follows
that to block all the rotations at one node, the three equations corre-
sponding to ¢, g, and g5 at this node are to be removed. To partially
block the rotations (two or less rotation directions), the equations corre-
sponding to these quaternion components are classically removed. For
instance, to block the rotations around e, and e; at one node (and sup-
posing for sake of simplicity that the axes of the corresponding section
are aligned with global axes), it suffices to remove the equations corre-
sponding to g, and g5 at this node.

U*:[ul Uy ... Ug Ug(A) Ujyq

3.3. Assembly of beams/rigid joints

With the purpose of simulating cables, it is necessary to be able to
assemble several beams. Indeed, in automotive industry, cables often
have a harness-type geometry. There exist several great references
which explain how to model the different types of joints for flexible
bodies, for instance [22] or [29]. However, it is less often expressed in
terms of quaternions. We thus explain here how we implemented a rigid
joint in our simulation as a basis for modeling other types of joints.

Let us assume that we want to bind the extremities of two beams
that we will denote with roman numbers I and II. Each beam, dis-
cretized with the finite element method, has one node at its extremity.
To create a rigid joint between the ends of the two beams, one must
constrain the position of the 2 nodes to remain the same and the rota-
tion between the cross-sections attached at each node to not vary along
the deformation. If we denote respectively z! = [(xf))T @HT 41T and

i — [(xg)T @"HT " T the degrees of freedom of nodes I and II in
the current state, the constraint writes for the position:

xl—xl=0. (53)

The rotation constraint is a bit more tricky to set up. Let us introduce
the quaternions at each node in the reference configuration a{) and
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ag . The variation of the rotation between the reference and the actual
configuration for the nodes I and II may be represented by the two
quaternions AG! and Ag"” which, following the rule of combination of
rotations (21), then meet

§'=aG"0G). q"=4¢"0q]. (54)

As the variation of rotation should be the same for the bound nodes,
that being Ag! = AG, and using relations (54) and (22) the constraint
finally writes as a function of the variables of the problem

G'ogh-g"ogl =0. (55)

As recalled in the previous section, only three components of the quater-
nions need to be prescribed. Conseq