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Piezoelectric resonant shunt
enhancement by negative
capacitances: Optimisation,
performance and resonance
cancellation

Marta Berardengo1 , Stefano Manzoni2 , Olivier Thomas3

and Marcello Vanali1

Abstract
This article addresses piezoelectric shunt damping through a resonant shunt associated with negative capacitances. The
main objective of this article is to provide guidelines for choosing the best electrical circuit layout in terms of control
performance and possible stability issues. This article proposes general analytical formulations for the tuning/optimisation
of the electrical shunt impedance and for the prediction of the attenuation performance. These formulations are demon-
strated to be valid for all the possible configurations of the negative capacitances. It is demonstrated that the behaviour
of the different shunt circuits can indeed be described by a common mathematical treatment. Moreover, the use of two
negative capacitances together is shown to provide benefits compared to traditional layouts based on a single negative
capacitance. The mentioned advantages relate to both stability and attenuation performance. The use of a resonant
shunt with the addition of negative capacitances is finally proven to provide enough attenuation to even cancel eigenfre-
quency peaks in some cases. This article also analyses the main issues arising from the practical implementation of the
negative capacitances. Finally, the theoretical results are validated through experiments conducted on a cantilever beam
coupled to two piezoelectric patches.
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Introduction

Piezoelectric shunt is a well-known technique for vibra-
tion damping. This approach relies on the electrical
link between a piezoelectric actuator, bonded to a
vibrating structure, and a properly designed electrical
network (Hagood and Von Flotow, 1991). The most
used shunt impedances for single-mode control are a
simple resistance (resistive shunt or R-shunt) and the
series of a resistance and an inductance (resonant shunt
or LR-shunt; Hagood and Von Flotow, 1991; Thomas
et al., 2012; Yamada et al., 2010).

Thomas et al. (2009, 2012) and Ducarne et al. (2012)
demonstrated that as soon as the electric impedance is
optimally tuned, the performance of the control
depends only on the modal electromechanical coupling
factor (MEMCF) of each mode of the electromechani-
cal system (EMS; composed of the vibrating structure,
the piezoelectric actuator and the shunt impedance).

The MEMCF is a feature of the EMS, and it is a func-
tion of the mechanical, geometrical, and electrical char-
acteristics of the structure and the piezoelectric
actuator. The MEMCF of a given mode is proven to
also be related to the distance between the natural fre-
quencies of the EMS in short circuit (SC) and open cir-
cuit (OC) of the mode considered. The higher the
MEMCF is, the higher the maximum achievable
attenuation is (Thomas et al., 2012).
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The use of synthetic circuits can improve the
attenuation performance provided by the optimally
tuned shunt (e.g. Date et al., 2000; Sluka and Mokry,
2007; Tang and Wang, 2001). Among these circuits, the
use of negative capacitances (NCs) has been shown to
be highly reliable and effective in enhancing the perfor-
mance of piezoelectric shunt damping. NCs do not
exist in nature, but they can be implemented by using
operational amplifiers (OP-AMPs) (Horowitz and Hill,
1989). NCs were fruitfully employed coupled to a resis-
tive shunt (Beck et al., 2013, 2014; Behrens et al., 2003;
Berardengo et al., 2016b, 2017; Collet et al., 2011; De
Marneffe and Preumont, 2008; Kodejška et al., 2012;
Manzoni et al., 2012; Park and Baz, 2005) and to a
resonant shunt (De Marneffe and Preumont, 2008;
Heuss et al., 2016; Neubauer et al., 2006). The resonant
shunt coupled to NCs was proven to be highly effective
in reducing the vibration level when single-mode con-
trol is needed. Furthermore, its attenuation perfor-
mance is higher than that of the resistive shunt coupled
to NCs. For this reason, the study of this shunt circuit
deserves attention from the scientific community.

This article specifically addresses the coupling
between NCs and a resonant shunt; thus, it is worth
explaining the main content of the referenced works
related to this type of damping approach. De Marneffe
and Preumont (2008) analysed the damping perfor-
mance provided by this type of shunt compared to
other approaches; among them, active control was also
considered. The coupling between a resonant shunt and
NCs resulted in among the best solutions for the
attenuation of vibrations, showing very good perfor-
mance. Neubauer et al. (2006) proposed optimisation
criteria for a shunt composed of a series connection of
an NC, a resistance and an inductance. Heuss et al.
(2016) used the connection of an NC and a resonant
shunt to develop a vibration absorber composed of a
beam and a piezoelectric patch connected to the men-
tioned shunt impedance.

However, there are still many open issues regarding
the coupling between NCs and resonant shunts. The
aim of this article is to address these open issues by
exploiting a mathematical approach that has already
been successfully used by the authors to describe the
coupling between NCs and resistive shunts (Berardengo
et al., 2015b, 2016b, 2017).

Specifically, this article addresses the following
points:

1. It shows that it is possible to find a common
mathematical treatment that is valid for all the
possible connection types of NCs with a reso-
nant shunt, which was not previously demon-
strated in the literature;

2. It provides a comparison of the damping per-
formance of the different possible layouts of the
electrical network, which is currently lacking in

the literature. This comparison also allows
demonstrating that it is possible to reach reso-
nance cancellation in specific operating condi-
tions, thus revealing the high damping
performance offered by NCs coupled to a reso-
nant shunt;

3. It discusses the effect of the practical implemen-
tation of NCs, which is generally neglected in
the literature. Indeed, an issue related to the use
of NCs is that the simplest circuit layouts
employed to construct the NCs, named ideal
circuits (ICs) here, occasionally cannot be used
in practice. In such cases, more complex cir-
cuits, named real circuits (RCs) here, must be
used because they are more reliable for a practi-
cal implementation. Unlike the ICs, the RCs
cannot be considered as pure NCs (see later in
this article, that is, the section related to the
effects of the NC implementation on system sta-
bility and damping performance) but rather as
complex negative impedances. Here, the aim is
not to explain how to modify ICs to achieve RC
configurations, which is already explained in the
literature (e.g. Beck et al., 2013; Moheimani and
Fleming, 2006), but rather to show the effects of
RCs coupled to a resonant shunt in terms of
damping performance and EMS stability.
Moreover, related to this point, the stability
analysis of a complex multi-degrees-of-freedom
structure when an RC NC is coupled to a reso-
nant shunt is discussed because it has never
been addressed in the literature. Indeed, note
that the active nature of the NC circuit poses
some issues related to EMS stability, and thus,
stability must always be studied.

Regarding the first point of the above list, recall that
a piezoelectric actuator can be linked to a passive
shunt impedance Zsh and NCs in three different
ways: parallel, series and series + parallel (SP)
(Berardengo et al., 2015b, 2016b, 2017), as explained
in Figure 1(a) to (c) (�C1 denotes the IC NC in the
parallel configuration, while �C2 denotes the IC NC
connected in series). The theoretical approach pre-
sented in Berardengo et al. (2016b, 2017) can be
fruitfully exploited to show that a common mathe-
matical description can also be derived for the cou-
pling between IC NCs and the resonant shunt,
regardless of the type of NC connection used. This
allows presenting brand-new formulations for the
optimisation of the shunt impedance and for the pre-
diction of the attenuation. Furthermore, the coupling
between the resonant shunt and NCs in the SP con-
figuration will be treated herein, which has not previ-
ously been considered in the literature. This new
general formulation thus makes the comparison of
the different shunt layouts in terms of damping



performance possible and straightforward, thereby
filling the gap related to point 2 of the above list.
This comparison will prove the possibility of achiev-
ing resonance cancellation in given operating condi-
tions. Regarding point 3 of the list, the effects of
using RC NCs in place of IC NCs on both the
attenuation performance and the stability are taken
into account and described herein. This will allow
for a complete comparison of all the possible shunt
layouts.

All the mentioned analyses will allow developing
guidelines for how to apply shunt damping by cou-
pling NCs and resonant circuits. These guidelines
aim to explain the best layout to be used for a spe-
cific case and how to enhance the stability of the
EMS.

Therefore, this article uses a mathematical approach
previously developed to describe shunt damping
through NCs coupled to a resistive shunt to describe
the damping offered by NCs coupled to a resonant
shunt. This allows the authors to reveal many features
of this specific damping approach, as explained in the
previous list.

The remainder of this article is structured as follows.
The next section describes the theoretical model
employed in this article. The subsequent section analy-
ses the stability of the EMS when coupled to IC NCs
and provides the analytical expressions to be used for
optimising the values of the elements of the shunt impe-
dance, as well as the expressions of the associated
vibration attenuation. Then, the article shows the effect
of using RC NCs and provides the mentioned guide-
lines for using NCs coupled to a resonant shunt.
Finally, the last section of the article describes the
experiments conducted to validate the theoretical
results.

Model of the EMS

Coupling of an NC with an arbitrary impedance

The model used here was originally developed in the
works of Thomas et al. (2009, 2012) and Ducarne et al.
(2012) and then improved in the works of Berardengo
et al. (2016b, 2017), where a deeper insight into the elec-
trical behaviour of the EMS enables a better descrip-
tion of the system dynamics, thereby improving the
accuracy of the original model. Only the parts of the
model that are fundamental for a deep understanding
of the article are reported in this section. Readers can
refer to the referenced works for a detailed description
of the model. From the next subsection (i.e. the subsec-
tion related to the coupling between a resonant shunt
and NCs) on, the new outcomes related to the coupling
between NCs and a resonant shunt are addressed.

A generic elastic structure with one piezoelectric
patch bonded on it and excited by an external force
Fext is considered (see Figure 2). A generic passive
shunt impedance Z is connected to the piezoelectric
patch, V is the voltage between the electrodes of the
piezoelectric actuator, Q is the electric charge in one of
the electrodes, and considering the sign convention for

Figure 1. Piezoelectric shunt with NCs: (a) parallel, (b) series and (c) SP configurations; Zsh is a passive shunt impedance. When a
resonant shunt is considered, this impedance Zsh is made from an inductance L and a resistance R connected in either (d) series or
(e) parallel. Refer to the main text of the section entitled ‘Coupling of an NC with an arbitrary impedance’ for the definitions of the
other symbols in the figure.

Figure 2. An arbitrary structure with a piezoelectric patch
connected to a passive shunt impedance Z.



V in Figure 2, Q is precisely the charge in the upper
electrode. A reduced-order model of the EMS can be
obtained by expressing the displacement of any point x
of the structure at time t, U(x, t), in modal coordinates
and considering N vibration eigenmodes (N being infi-
nite in theory)

U (x, t)=
XN

i= 1

Fi(x)qi(t) ð1Þ

where Fi is the ith eigenmode of the structure (normal-
ised to the unit modal mass) and qi is the ith modal
coordinate. Note that even if the structure shown in
Figure 2 is a cantilever beam, any type of structure can
be considered, and the discussion is still valid, thanks to
its general formulation. Therefore, the displacement U
can be in any direction, and x is intended to be a gen-
eric coordinate defining the position over the structure.

In the case of low modal density and if a single-
degree-of-freedom (SDOF) approximation is con-
sidered by keeping only the ith mode in the modal
truncation, the behaviour of the EMS can be described
for O ’ vi (where O is the angular frequency) as follows

€qi + 2jivi _qi +v2
i qi � xiV =Fi ð2Þ

CpiV � Q+ xiqi = 0 ð3Þ

where equation (2) is the equation of motion of the
EMS, and it is coupled to the EMS electrical behaviour,
described by equation (3), through the coefficient xi. Fi

is the modal forcing, which depends on Fext and the ith
mode shape Fi. Note that Fi are the eigenmodes of the
EMS with the piezoelectric patch in SC (with V = 0). vi

is the ith natural frequency of the EMS in SC, ji is the
associated structural damping factor, and xi is a modal
coupling coefficient, which is related to the energy trans-
fer between the ith mode shape and the piezoelectric
patch. The values of xi are functions of the mechanical,
geometrical and electrical characteristics of the piezo-
electric actuator and the structure, as well as of the posi-
tion of the actuator. It is possible to compute the xi

coefficients either analytically (Ducarne et al., 2012) or
using a finite element model (Thomas et al., 2009); an
alternative approach is to estimate the xi coefficients
experimentally, as explained at the end of this section.

The term Cpi in equation (3) is the value of the capa-
citance of the piezoelectric patch at frequencies above
vi when an SDOF approximation is performed on the
complete model (Berardengo et al., 2016b), and it is
defined as follows

Cpi =C‘ +
XN

n= i+ 1

x2
n

v2
n

8i= 1, . . . ,N � 1 ð4Þ

where C‘ is the electrical blocked capacitance of the
piezoelectric patch (i.e. the capacitance value with

U (x, t)= 0 8x ) qi = 0 8i). The second term on the
right-hand side of equation (4) accounts for the contri-
bution to the capacitance value of the modes higher
than the ith mode, which are neglected in the SDOF
approximation. This static correction, introduced in
Berardengo et al. (2016b), is an improvement to the
model proposed in Thomas et al. (2012) and enables
achieving a more accurate description of the EMS when
an SDOF approximation is considered. The value of Cpi

can be estimated by measuring the capacitance of the
piezoelectric patch at a frequency between the ith and (i
+ 1)th modes. A more refined approach to estimate
the Cpi value is to measure the piezoelectric capacitance
at several frequency values and then update the model
of the piezoelectric capacitance using the acquired data,
as explained in Appendix 1. Moreover, details about the
definition of Cpi and its estimation can also be found in
Berardengo et al. (2016b).

The model described by equations (2) and (3) is
related to the case of a simple piezoelectric shunt where
no NCs are included in the circuit. The addition of IC
NCs is now addressed according to the network layouts
described by the schemes in Figure 1(a) to (c). RC NCs
will be considered later in this article (i.e. in the section
related to the effects of the NC implementation on sys-
tem stability and damping performance). The passive
shunt impedance in the circuit without NCs was
referred to as Z in Figure 2. Conversely, the passive
shunt impedance is referred to as Zsh in Figure 1(a) to
(c), where NCs are added to the circuit. This difference
in nomenclature helps to differentiate the two different
situations considered: the absence or presence of NCs.

The following change in variables is now introduced

�Vsh =Vsh

ffiffiffiffiffiffiffi
Ceq

p
, �Qsh =

Qshffiffiffiffiffiffiffi
Ceq

p ð5Þ

here, Qsh and Vsh are the charge and the voltage seen
by the shunt impedance Zsh (see Figure 1(a) to (c)),
respectively. Ceq is an equivalent capacitance, defined
in Table 1. This equivalent capacitance depends on the
IC NCs connected to the piezoelectric patch, and thus,
it depends on the type of NC layout (parallel, series or
SP; see Figure 1(a) to (c)). According to Berardengo
et al. (2016b), the following system of equations is
obtained using equation (5)

€qi + 2jivi _qi +(vsc
i )

2qi � vi
~ki

�Vsh =Fi ð6Þ

€qi + 2jivi _qi +(voc
i )2qi � vi

~ki
�Qsh =Fi ð7Þ

�Vsh � �Qsh +vi
~kiqi = 0 ð8Þ

Equations (6) to (8) describe the electromechanical
behaviour of the EMS when NCs are added in the elec-
tric circuit. These equations play the same role as equa-
tions (2) and (3): the latter are related to an EMS
without NCs, whereas the former are related to an



EMS with NCs. Note that equations (6) and (7) are
equivalent: they both describe the EMS motion, but
one is expressed as a function of �Vsh (i.e. equation (6))
and the other as a function of �Qsh (i.e. equation (7)).
vsc

i and voc
i are the natural frequencies of the EMS

when Zsh is a SC (Vsh = 0) or an OC (Qsh = 0), respec-
tively, and their expressions are defined in Table 1.
Note that their values depend on the NCs C1 and C2.
The term ~ki is defined as the enhanced modal electro-
mechanical coupling factor (EMEMCF) and assumes
the following expression

~ki =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
voc

ið Þ2 � vsc
ið Þ2

v2
i

s
ð9Þ

Note that if we fix voc
i = v̂i (where v̂i is the OC

eigenfrequency of the EMS without the addition of any
NCs) and vsc

i =vi (where vi is the SC eigenfrequency
of the EMS without the addition of any NCs) in equa-
tion (9), we obtain the classical expression of the
MEMCF ki (which is close to the ith effective coupling
factor; Berardengo et al., 2016b; Thomas et al., 2012)

ki =
xi

vi

ffiffiffiffiffiffiffi
Cpi

p =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(v̂i)

2 � (vi)
2

v2
i

s
ð10Þ

The MEMCF measures the energy transfers between
the electric circuit and the ith mode, and vice versa,
through the electric network. The EMEMCF is a para-
meter that is analogous to the MEMCF, but it accounts
for the presence of the NCs (the NCs improve the

energy transfers because ~ki.ki). The analytical formula-
tions of all the parameters involved in the definition of

the EMEMCF ~ki depend on the layout used to connect
the NCs, and they are summarised in Table 1. More
details on the effect of the EMEMCF can be found in
Berardengo et al. (2016b).

Note that once the value of Cpi has been estimated
and vi and v̂i have been experimentally measured, the
xi value can be derived by using equation (10).

Coupling between resonant shunt and NCs

Equations (6) to (8) describe the electrical and mechani-
cal behaviours of the EMS when NCs are added to the
EMS, and Zsh is a generic passive impedance. In the
case that this impedance is made from a resistance R
and an inductance L, we obtain the traditional reso-
nant shunt coupled to NCs. Note that R and L can be
linked in either series or parallel (see Figure 1(d) and
(e)). Therefore, six possible configurations exist (i.e.
three different NC configurations and two different
layouts for the connection between L and R; see Figure
1). Equations (6) to (8) account for all the NC layouts.
However, different expressions for Vsh and Qsh must be
derived according to the type of connection between R
and L: series or parallel.

In the case of a parallel link between R and L, the fol-
lowing relation in the frequency domain links the voltage
Vsh and the charge Qsh at the impedance terminals

Vsh =�
LRjO

LjO+R
jOQsh ) �Vsh =� Ceq

LRjO
LjO+R

jO�Qsh ð11Þ

where j is the imaginary unit and O is the angular fre-
quency. Using equation (11) together with equations (6)
to (8), the following frequency response function (FRF)
between qi and Fi can be defined

H
par
i (O)=

qi

Fi

= �O2 +v2
e + 2jjeveO

� �
: O4 � O2 v2

e + 4jijevive + (voc
i )2

� �
+ vsc

i

� �2
v2
e

n
+ jO 2jeve vsc

i

� �2 � O2
� �

+ 2jivi v2
e � O2

� �h io�1

ð12Þ

Table 1. Parameters of the EMS without NCs, enhanced by a single NC in parallel and series configurations and enhanced by two
NCs for the SP configuration.

Simple shunt without NCs Parallel configuration Series configuration SP configuration

vsc
i = vi vi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

i �
x2

i

C2 � Cpi

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

i �
x2

i

C1 + C2 � Cpi

s

voc
i =

v̂i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

i +
x2

i

Cpi

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

i +
x2

i

Cpi � C1

s
v̂i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

i +
x2

i

Cpi

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

i +
x2

i

Cpi � C1

s
~ki = ki kiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C1

Cpi

s kiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Cpi

C2

r kiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C1

Cpi

� �
1+

C1

C2
� Cpi

C2

� �s

Ceq = Cpi (Cpi � C1) CpiC2

C2 � Cpi

(Cpi � C1)C2

C1 +C2 � Cpi

EMS: electromechanical system; NC: negative capacitance; SP: series + parallel.



Conversely, in the case of a series connection
between R and L, the following relation holds

Vsh =� (LjO+R)jOQsh ) �Vsh =� Ceq(LjO+R)jO�Qsh

ð13Þ

which leads to the following FRF

H ser
i (O)=

qi

Fi

= �O2 +v2
e + 2jjeveO

� �
: O4 � O2 v2

e + 4jijevive + voc
i

� �2
� �

+ vsc
i

� �2
v2
e

n
+ jO 2jeve((v

oc
i )2 � O2)+ 2jivi(v

2
e � O2)

	 
��1

ð14Þ

In the above equations, ve and je are the resonant
frequency and the non-dimensional damping ratio of
the electrical circuit, respectively, and their analytical
expressions are defined in Table 2 for the two possi-
ble connection types of R and L. Note that equations
(12) and (14) are valid for all the possible connec-
tions of the NC (i.e. parallel, series and SP; see
Figure 1). Furthermore, they are also able to
describe the behaviour of the pure resonant shunts
(i.e. without NCs) if the proper values of the EMS
parameters are used: vsc

i =vi, voc
i = v̂i and

Ceq =Cpi (see Table 1).
If the FRF Hi (see equations 12 and 14) is multiplied

by Fi(xf)Fi(xm), where xf is the point where the external
force Fext is applied and xm is the point where the struc-
tural response is measured, then the FRF between the
displacement and the force U (xm)=Fext is found.

Stability and performance

The FRFs between a generic force Fext and the struc-
tural displacement U have been derived in the previous
section for all the possible configurations of NCs and R
and L connections. These expressions, shown in equa-
tions (12) and (14), are the basis that allows studying
the EMS stability and finding the optimal values of the
electrical components of the shunt impedance and the
associated attenuation performance. All these topics are
addressed in the next subsections.

Stability

When an NC is used in the shunt circuit, the stability of
the EMS must be verified. Indeed, the addition of NCs
can cause instability due to the active nature of these
components.

The stability of the EMS can be studied by applying
the Routh–Hurwitz criterion (Gopal, 2002) to the
FRFs of equations (12) and (14) considering both series
and parallel NC layouts. The shunt circuit should
always be taken into account in the analysis because it
can change the stability conditions (see, as an example,
the stability limits found in Berardengo et al. (2016b)
for the resistive shunt coupled to NCs compared to the
slightly different ones derived in De Marneffe and
Preumont (2008)). To derive a closed mathematical
expression for the stability conditions, the structural
damping was initially neglected (i.e. ji = 0). The
derived stability conditions are the same for R and L
connected both in series and in parallel

C1\Cpi for an IC NC connected in parallel ð15Þ

C2.Cpi 1+ k2
i

� �
for an IC NC connected in series ð16Þ

Then, numerical simulations were performed to deter-
mine whether a non-null damping could change these
conditions. The simulations revealed that the stability
conditions are not affected by a non-null value of ji.

The conditions of equations (15) and (16) were
derived using equations (14) and (12), which describe
the EMS behaviour when an SDOF approximation is
taken into account. Therefore, they are related to only
one mode of the EMS. Nevertheless, when stability is
studied, all the modes must be taken into account to
avoid spillover effects. Therefore, the stability condi-
tions of the entire EMS must be intended as the ones
related to the modes with the strictest limits. These con-
ditions are as follows

C1\C‘ for an IC NC connected in parallel ð17Þ

C2.C0 for an IC NC connected in series ð18Þ

where C0 is the value of the capacitance of the piezo-
electric patch at the null frequency, which can also be
expressed as C0 =Cp1(1+ k2

1 ) (Berardengo et al.,
2016b). Note that the condition of equation (17) is
associated with the mode at the highest frequency,
whereas equation (18) is related to the lowest (i.e. the
first) mode.

A similar approach can be used for the SP layout
and leads to the following result

C1\C‘ and C2 +C1.C0 for IC NCs connected in SP

ð19Þ

There are two conditions for the SP configuration
because there are two NCs in the circuit. Notably, the

Table 2. Definitions of ve and je for the two possible
connection types of L and R.

L and R connected
in series

L and R connected
in parallel

ve =
ffiffiffiffiffiffiffiffiffi

1

LCeq

s ffiffiffiffiffiffiffiffiffi
1

LCeq

s

je = R

2

ffiffiffiffiffiffiffi
Ceq

L

r
1

2R

ffiffiffiffiffiffiffi
L

Ceq

s



conditions of equations (17) to (19) are equal to those
found in Berardengo et al. (2016b, 2017) for a resistive
shunt coupled to NCs.

Optimisation

Although several studies in the literature aimed to
derive rules for the resonant shunt optimisation (e.g.
Hagood and Von Flotow, 1991; Soltani et al., 2017;
Thomas et al., 2012; Yamada et al., 2010), few of them
accounted for the presence of NCs (e.g. Neubauer
et al., 2006) and the performance and robustness with
this type of enhanced shunt circuit. Among these few
studies, few of the possible shunt circuit layouts were
considered; this also prevents a comparison among all
the possible shunt layouts. In this scenario, this section
aims to derive general analytical formulae for the tun-
ing and the performance estimation of the resonant
shunt coupled to NCs, starting from the general analy-
tical model derived previously. Therefore, thanks to the
common formulation for all the NC layouts (see equa-
tions (6) to (8)), the formulations derived in the follow-
ing will have a general validity and can be used for any
NC configuration. Moreover, because the description
is based on non-dimensional parameters (i.e. ki, ~ki, and
the b parameters introduced later in the article), the
mathematical description is valid for any given engi-
neering problem (e.g. either mono- or bi-dimensional
structures and either piezoelectric benders or stacks).
This allows achieving a common mathematical descrip-
tion that is valid for all the possible connection types of
the NC with the resonant shunt.

Note that the values of the elements composing the
electrical circuit must be optimised if a high control
performance is required. Indeed, the resonant shunt is
not robust to mistuning, and thus, a perfect tuning
between the mechanical and electrical parts of the EMS
is needed (Berardengo et al., 2015a, 2016a).

Optimisation of the NC. With regard to the IC NC, it is
already explained in the literature (Berardengo et al.,
2016b) that the closer the NC is to Cpi, the higher the
EMEMCF is; in turn, this implies higher potential
damping performance. Therefore, it follows that the
NCs must be chosen to maximise the EMEMCF, even
in the case where the NCs are coupled to a resonant
shunt, if the target is the maximisation of the control
performance. However, the stability criteria investi-
gated previously must be fulfilled at the same time.

To better determine the NC value that allows the best
possible attenuation performance while guaranteeing
stability, it is convenient to define the following indices

b1 =
C1

Cpi

, b2 =
Cpi

C2

, bsp1 =
C1

Cpi

, bsp2 =
Cpi

C1 +C2

ð20Þ

The index b1 is related to an NC in a parallel config-
uration, b2 is related to an NC in series, and bsp1 and
bsp2 are related to SP. With these definitions, null b

values correspond to a situation where no NCs are
added to the circuit (C1 = 0 and C2 =+‘). If NCs are
added, then the values of the b coefficients increase
from 0 towards 1. The closer the NC value is to Cpi,
the higher the EMEMCF ~ki is (see Table 1). This in
turn improves the maximum possible damping perfor-
mance. However, the b coefficients cannot be increased
up to 1. Indeed, b coefficients equal to 1 mean that the
values of the NCs are beyond the instability condition
(as shown previously in the article).

Consequently, it is easy to understand that IC NCs
in series are convenient for enhancing the EMEMCF of
the low-order modes because this layout allows reaching
higher b values with a stable configuration compared
with the parallel connection of the IC NCs. Indeed, the
value of Cpi is closer to C0 than to C‘ in this case.
Conversely, IC NCs in parallel enable enhancing the
EMEMCF of the high-order modes because the value
of Cpi is closer to C‘ than to C0 in this case. Finally, IC
NCs in SP improve the damping performance of all the
modes, particularly those in the middle frequency range,
as explained in Berardengo et al. (2016b).

Optimisation of the inductance. The optimisation of the
value of L is achieved here by using a well-known pro-
cedure already applied to tuned mass dampers, as well
as to simple piezoelectric resonant shunts (e.g. Den
Hartog, 1956; Hagood and Von Flotow, 1991;
Snowdon, 1968; Thomas et al., 2012). This is possible
because the FRFs of equations (12) and (14) have the
same form as the FRFs without NCs added (as previ-
ously shown in the article).

If we initially consider an EMS with ji = 0, for a
given value of ve, there exist two points F� and F+ at
vF� and vF+, respectively, which are common to all
the curves jHi(O)j when je is varied (see Figure 3(a)).
The optimal value of ve (named vopt

e ) is the value that
makes jHi(vF�)j= jHi(vF+)j

vopt
e =voc

i for R and L connected in series ð21Þ

vopt
e =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 vsc

ið Þ2 � voc
ið Þ2

2

s
for R and L connected in parallel ð22Þ

Then, using the expressions in Table 2, the corre-
sponding optimal value of the inductance, Lopt, can also
be found.

Optimisation of the resistance. The optimal choice for je
would be to make both the points F� and F+ maxima
of jHi(O)j. Actually, this is not possible (Thomas et al.,
2012). However, there exist two values of je, denoted



j�e and j+e , such that one of the two aforementioned
points is a maximum of the FRF amplitude (i.e. the
derivative of jHi(O)j with respect to O is set to zero at
vF� and vF+). The optimal value of je (named jopte ) is
chosen as the geometric mean of j�e and j+e (i.e.
(jopte )2 =((j+e )2 +(j�e )

2)=2), and it results in the
following

jopte =

ffiffiffi
3
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
voc

ið Þ2 � vsc
ið Þ2

voc
ið Þ2 + vsc

ið Þ2

s
for R and L connected in series ð23Þ

jopte =

ffiffiffi
3
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
voc

ið Þ2 � vsc
ið Þ2

3 vsc
ið Þ2 � voc

ið Þ2

s

for R and L connected in parallel ð24Þ

Then, using the expressions presented in Table 2, the
corresponding value of the optimal resistance Ropt can
also be found. The FRF amplitude with vopt

e and jopte is
provided in Figure 3(b).

A remarkable result of equations (21) to (24) is that
a common mathematical description can be found for
all the possible NC layouts. Moreover, these mathe-
matical expressions are valid even in the case of a sim-
ple resonant shunt without NCs. Indeed, equations (21)
to (24) when no NCs are used in the shunt circuit are in

agreement with the formulations proposed by Yamada
et al. (2010) for the pure resonant shunt without NCs.
Notice that if mobility or accelerance is taken into
account in place of the dynamic compliance, the opti-
misation formulae are slightly different (Andreaus and
Porfiri, 2007; Yamada et al., 2010).

The detailed procedure used to find jopte can be
found in Liu and Liu (2005) and Thomas et al. (2012).
Moreover, Table 3 presents the values of vF� and vF+

for the different possible cases.

Attenuation performance

To have an estimation of the achievable attenuation,
the vibration reduction provided by the resonant shunt
coupled to NCs is approximated here using the attenua-
tion index AdB defined as follows

AdB = 20 log10

Hsc

Hshunt
ð25Þ

where Hsc is the peak of jHi(O)j in SC without any NC
and Hshunt is the amplitude of Hi(O) at vF� (Thomas
et al., 2012) with the optimally tuned resonant shunt

coupled to NCs. Recall that Hsc = 1=(2v2
i ji

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2

i

q
).

Furthermore, note that jHi(O)j at vF� in the tuned con-
dition is a good approximation of the peak of jHi(O)j

Figure 3. (a) jHij for SC, OC and three different je values with ve.vopt
e and (b) jHij for SC, OC and with the optimal je and ve

values (i.e. je = jopt
e and ve =vopt

e ). ji = 0, ki = 0:1, and Cpi = 40 nF in both plots.

Table 3. Expressions of vF� and vF+ .

Connection type vF� vF+

L and R in series
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
voc

ið Þ2 � voc
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
voc

ið Þ
2� vsc

ið Þ
2

2

rs ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
voc

ið Þ2 +voc
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
voc

ið Þ
2� vsc

ið Þ
2

2

rs

L and R in parallel
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vsc

ið Þ2 � vsc
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
voc

ið Þ
2� vsc

ið Þ
2

2

rs ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vsc

ið Þ2 +vsc
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
voc

ið Þ
2� vsc

ið Þ
2

2
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due to the flat shape of the FRF amplitude (see Figure
3(b)). The resulting expression of AdB for R and L con-
nected in series is presented in the following

AdB = 10 log10

S1 +N1

4v4
i j2

i 1� j2
i

� �
v
opt
e

� �2 � v2
F�

� �2

+ 2v
opt
e jopte vF�

� �2
� 

ð26Þ

while the expression of AdB for R and L connected in
parallel is as follows

AdB = 10 log10

P1 +N1

4v4
i j2

i 1� j2
i

� �
v
opt
e

� �2 � v2
F�

� �2

+ 2v
opt
e jopte vF�

� �2
� 

ð27Þ

where

S1 = 2viji vopt
e

� �2 � v2
F�

� �h
+ 2vopt

e jopte voc
i

� �2 � v2
F�

� �i2

v2
F� ð28Þ

N1 = v4
F� + vopt

e

� �2
vsc

i

� �2
h
� voc

i

� �2
+ vopt

e

� �2
+ 4viv

opt
e jij

opt
e

� �
v2
F�

i2

ð29Þ

P1 = 2viji vopt
e

� �2 � v2
F�

� �h
+ 2vopt

e jopte vsc
i

� �2 � v2
F�

� �i2

v2
F� ð30Þ

The expressions of equations (27) and (26) can be
rearranged using the expressions of Table 1 to obtain
the expression of AdB as a function of ji, ki and ~ki.
These expressions are provided in Appendix 2. Note
that the expression of the attenuation depends only on
ji and ~ki when an NC in parallel is used. Conversely,
when a series NC is taken into account, ki also appears
in the expressions of the attenuation. For the SP, the
attenuation expressions depend on ji and ~ki and ki and
bsp1. This means that different values of the attenuation
are expected for different NC layouts once the values
of ji and ~ki are fixed.

Figure 4 shows the performance of the different
shunt configurations for three different ji values for an
NC in either series or parallel and the two possible con-
nections of R and L. Henceforth, we will add two super-
scripts to the symbol AdB to specify the shunt layout
that the attenuation refers to. The first superscript indi-
cates the connection between R and L (S = series and
P = parallel), while the second superscript indicates the
NC layout (S = series, P = parallel, and SP = series
+ parallel). For example, A

P, SP
dB is the attenuation for

R and L in parallel and NC in the SP configuration;

A
S, P
dB is the attenuation for R and L in series and NC in

the parallel configuration. Note that Figure 4 also
allows comparing the damping performance of the pure
resonant shunt (i.e. with no NCs added) and that of the
resonant shunt coupled to NCs. Indeed, the first point
(on the left) of each curve of the plot shows the attenua-
tion provided by the pure resonant shunt (i.e. ~ki = ki),
while all the other points of the same curve describe the
attenuation as a function of the EMEMCF ~ki, which is
increased from the value of ki by adding NCs in the
electrical circuit. Such a comparison will also be possi-
ble for the other plots of the same type presented later
in this article.

Figure 4 shows that the NC in the parallel config-
uration provides better attenuation compared to the
NC in series with the same value of ~ki. Furthermore,
the connection of R and L in series is able to enhance
the attenuation more than the connection in parallel.

Notably, for R and L in parallel and NC in series, the
curves of Figure 4 stop for ~ki close to 0.8. This result
occurs because the optimisation criterion of equations
(22) and (24) cannot be applied for higher ~ki values
because the quantity ½3(vsc

i )
2 � (voc

i )2� becomes lower
than zero. From a physical perspective, this situation is
related to the case in which the value of v2

F� becomes
negative (see Table 3). As mentioned, this occurs when ~ki

is increased over a certain value, and this threshold value
depends on the value of ki. A similar result occurs even
for NC in parallel and L and R connected in parallel but
for values of ~ki much higher than 0.8 (i.e. for ~ki.

ffiffiffi
2
p

,
thus not interesting in practical applications). This topic
will be treated in more detail later in this section.

For the NC SP layout (see Figure 5), the curve of
AdB has the same shape as the curve related to the NC
in series, but the attenuation performance is between
that of the NC in parallel and that of the NC in series.

Figure 4. AdB trend as a function of ~ki for different ji values: (a)
ki = 0:01 and (b) ki = 0:3. Solid thick red line for AP, S

dB , dashed
thick orange line for AP, P

dB , dashed thin blue line for AS, P
dB and solid

thin green line for AS, S
dB . The lines related to AP, P

dB and AS, S
dB are

always almost superimposed.



When the value bsp1 is increased (i.e. the parallel NC is
pushed towards the stability limit), the SP curve shifts
upwards and tends to the parallel NC curve.
Conversely, if bsp1 is close to 0, the SP tends to behave
as the series. As in the previous cases, also for NCs in
the SP configuration, a series connection between R

and L provides attenuation levels that are some decibels
higher than in the case of R and L connected in parallel.
Furthermore, as in the case of the NC in series, also in
the case of NCs in SP, a parallel connection between L

and R prevents reaching high ~ki values because v2
F�

becomes negative. The value at which this situation
occurs depends on the values of ki and bsp1. A more
detailed analysis of the NC SP layout will be provided
in the next subsection.

The attenuation provided by different NC layouts is
thus different for high ~ki values (see Figures 4 and 5).
This is in contrast to what occurs for a resistive shunt
coupled to NCs (Berardengo et al., 2016b). Indeed, in
the latter case, although the expressions of AdB are dif-
ferent, the differences in terms of attenuation level
achieved for different NC layouts are so small that they
can be neglected.

The previous analysis has been performed using
optimisation criteria that neglect the structural damp-
ing. With non-zero structural damping, the gain curves
no longer cross at points F+ and F�, although they
remain very close to this condition if ji is small enough.
Therefore, we also computed the actual maxima of
jHi(O)j and no longer in vF� . These actual maxima,
AdB, num, have been computed by calculating the value
of jHi(O)j frequency by frequency for the different
shunt configurations.

First, the connection between R and L in series is
taken into account. The case of R and L in parallel will
be addressed later in this section. Figure 6 shows the
AdB, num results for R and L in series for some NC lay-
outs (i.e. parallel and series; SP is not shown because it

has a similar behaviour) compared to the AdB values. It
is evident that the values of the index AdB are accurate
estimations of the actual attenuation values, with an
exception for the case of series (and SP) NCs at very
high values of ~ki. Hence, a specific discussion is needed
for the behaviour of AdB, num at high ~ki values for an
NC connected in series (or NCs in SP).

The series and SP NC layouts make the SC eigenfre-
quency shift towards increasingly lower frequency val-
ues (Berardengo et al., 2016b, 2017; De Marneffe and
Preumont, 2008). When such a shift is high (i.e. with
high b2 or bsp2 values and thus high values of ~ki), the
gain of Hi at low frequency increases considerably (see
Figure 7). This has two different consequences, depend-
ing on the connection of R and L. For R and L in series,
the point F� becomes a relative minimum (see Figure 7)
rather than a maximum. Hence, the value of jHij at fre-
quencies lower than vF� becomes higher than jHi(vF�)j
and jHi(vF+)j. However, this increase in the FRF gain
is at low-frequency values that are far from vi and thus
could be not critical for many specific applications. For
R and L in parallel, the value of v2

F� becomes negative,
thus preventing the use of the shunt optimisation cri-
teria for L and R found previously, as already observed.
However, the values of ~ki for which the aforementioned
effects appear are quite high (approximately 0.8). Such
high values of ~ki are difficult to achieve in practical
applications, and thus, the highlighted issues can be
neglected in many practical applications.

Note that the attenuation provided by the index AdB,
evaluated considering the FRF amplitude at vF� , satis-
factorily describes the actual attenuation AdB, num even
in the case of very high ~ki when the increase of the static
stiffness is neglected (see the upper branches related to
the curves of A

S, S
dB, num in Figure 6). Indeed, as already

mentioned, the FRF amplitude, achieved with the pre-
sented optimisation criterion, has a flat shape between
vF� and vF+ (see Figure 3(b)).

Regarding the connection of L and R in parallel, AdB

and AdB, num differ by less than 0.5 dB for high ~ki values.
Clearly, if we consider NCs in series (or SP), the com-
parison can be performed for ~ki values up to approxi-
mately 0.8, as already explained. No figures related to
such a comparison are presented here for the sake of
conciseness and because they would not add to the
discussion.

Figure 8 provides a comparison between the attenua-
tions AdB, num achieved with the two different types of
connections between R and L: between A

S, P
dB, num and

A
P, P
dB, num and between A

S, S
dB, num and A

P, S
dB, num. It is evident

that the layout with L and R in series ensures higher
attenuation compared to the parallel connection.
Furthermore, Figure 8 provides a clear picture of the
behaviour of the different possible shunt layouts, pro-
viding a summary of the discussion to this point.

A further remarkable result is shown in Figure 9,
where the dynamic magnification factor D is plotted for

Figure 5. AdB trend as a function of ~ki for different NC layouts:
ji = 0:1% and ki = 0:3. Dashed lines for NC in series and
parallel, and solid lines for NCs in SP with different values of
bsp1. R and L are connected in series.



different NC configurations and ji values. The dynamic
magnification factor is defined as the ratio between
Hshunt (see previously in this section) and H0, where H0

is jHi(O= 0)j in SC without NCs

D=
Hshunt

H0

=
Hshunt

1=v2
i

ð31Þ

Figure 9 shows that for ~ki values between approxi-
mately 0.1 and 0.5, all the curves tend to superimpose,
regardless of the layout of NC and L and R connec-
tions as well as the value of ji. The only parameter
affecting D is ~ki. When ~ki is lower than approximately
0.1, the curves group according to the type of R and L

connection and the value of ji; conversely, the type of
NC has a low effect (i.e. the curves related to NCs in

Figure 6. AdB and AdB, num for a system with (a) ki = 0:01 and ji = 0:1%, (b) ki = 0:01 and ji = 1%, (c) ki = 0:3 and ji = 0:1% and (d)
ki = 0:3 and ji = 1%. R and L connected in series. Thin solid line for AS, P

dB , thick solid line for AS, P
dB, num, thin dashed line for AS, S

dB and thick
dashed line for AS, S

dB, num. The thick dashed line is split into two branches: the upper branch is the attenuation calculated considering the peak
of the FRF amplitude at the highest frequency, thus close to F+ (see Figure 3b), and the lower branch is the actual attenuation calculated
considering the highest peak of the FRF amplitude, which takes into account the behaviour of the controlled FRF at low frequency.

Figure 7. jHij for a system with ki = 0:3, ji = 0:1%,
vi=(2p)= 30 Hz and three different values of ~ki: 0.45, 0.6 and
0.8. The NC is connected in series, and L and R are in series.
Circles (8) indicate the points F� related to the different curves,
while squares (u) indicate the points F+. The value of vF� is at
21.2 Hz for the case of ~ki = 0:8; it is not exactly a minimum
because j

opt
i is used in place of j�i .

Figure 8. AdB, num for a system with (a) ki = 0:01 and ji = 1%

and (b) ki = 0:3 and ji = 1%. Thin solid line for AP, P
dB, num, thin

dashed line for AS, P
dB, num, thick solid line for AP, S

dB, num, and thick

dashed line for AS, S
dB, num.



parallel and series with the same type of L and R con-
nection and the same damping value are almost merged
in Figure 9). When ~ki increases over approximately 0.5,
the curves split according to the NC type (i.e. parallel
and series) and R and L connection, while the damping
value has no effect. Indeed, three groups can be distin-
guished here:

� The upper one composed of the curves related to
NCs in series and R and L connected in parallel
(which stop at ~ki equal to approximately 0.8);

� The group in the middle is composed of the
curves related to NCs in series and R and L con-
nected in series and of the curves related to NCs
in parallel and R and L connected in parallel;

� The lower one composed of the curves related to
NCs in parallel and R and L connected in series.

For the SP layout, its curves are always between those
of the parallel and series layouts, according to the value
of bsp1.

A remarkable result is that impedances composed of
an NC in parallel and R and L connected in series are
able to make D lower than 1 when ~ki is close to 1.
Values of D lower than 1 mean that the height of the
FRF peak becomes smaller than the static FRF
amplitude.

Figures 7 and 9 show that the use of the classical
resonant shunt together with the use of NCs can lead to
the cancellation of resonance peaks. This is a remark-
able result that reveals the high damping performance
provided by this control approach.

This section (together with the following one) has
allowed providing a complete comparison of the vari-
ous connection layouts, together with evidence that the
considered type of vibration damping allows achieving
resonance cancellation, which is a remarkable result.

Advantages of the SP layout

A remarkable benefit provided by the NC in the SP
layout is that it can offer the same attenuation provided
by NCs in either a parallel or series layout but staying
further from the stability limits (i.e. lower b values).
This is demonstrated by Figure 10, which shows the
bsp1 and bsp2 values that must be chosen for the SP
configuration to reach a given attenuation value for the
system chosen as an example. Figure 10 also shows the
attenuation for an NC in series (see the horizontal axis
of Figure 10 where bsp1 = 0) and an NC in parallel (see
the vertical axis of the figure where bsp2 = 0). It is evi-
dent that the SP allows reaching the same attenuation
(see the iso-attenuation lines in Figure 10) of the NC in
either series or parallel with lower b values, which
means having a safer margin from the unstable condi-
tion. Moreover, note that the use of bsp1 and bsp2 val-
ues equal to b1 and b2, respectively, leads to higher
attenuation levels for the SP compared to the NC in
either parallel or series, which is a further advantage of
the SP layout.

Robustness of the vibration control

This section discusses the effect of mistuning on the val-
ues of ve and je. This is an important analysis because
the shunt system can often find itself working in mis-
tuned conditions in practical applications. Indeed, the
system can undergo changes in its characteristics over
time. For example, a mistuning can easily be caused by
a thermal shift, which can cause changes in the

Figure 9. Trend of D for a system with ki = 0:01 and different
ji values. Dashed lines for R and L connected in parallel, and solid
lines for R and L connected in series. NCs in series and parallel. Figure 10. AS, SP

dB for a system with ki = 0:1 and ji = 0:1%. The
system is supposed to become unstable for b1.0:8 and
b2.0:9. Therefore, the bsp1 and bsp2 axes are limited to 0.8 and
0.9, respectively. The isolines represent the value of AS, SP

dB in
decibels. Note that for this example, the maximum value of ~ki

that can be reached is lower than 0.4, and thus, no problems
related to the increase in the gain at low frequency with the SP
and series NCs occur.



electrical parameters of the shunt circuit and in the nat-
ural frequency of the system. Moreover, a mistuning
can be experienced even in the case of high uncertainty
associated with the values of the different system para-
meters. Therefore, it may be useful for the user to have
an estimation of the performance loss in the case of a
non-perfect tuning of the considered system to choose
the best NC and R and L connection configuration.
The aim of the authors in this section is not to provide
methods for predicting the loss of performance when
the shunt finds itself working in mistuned conditions.
Indeed, this analysis is already available in the literature
(Andreaus and Porfiri, 2007; Berardengo et al., 2015a,
2016a) for the resonant shunt without NCs (and it can
be extended to the case in which NCs are coupled to
the resonant shunt considering that the addition of an
NC, either in series or in parallel, aims at increasing the
achievable attenuation acting on the system coupling
coefficient). Nevertheless, a comparison in terms of
robustness (where the term robustness indicates the
capability of limiting the performance loss due to mis-
tuning) between the two different connection types of R
and L and among the three different NC layouts is
missing in the literature. In light of this, this section
aims to highlight any different behaviour in terms of
robustness among different shunt configurations to
determine whether there is one layout that is more
robust to mistuning than the others.

In this analysis, the mistuned values of ve and je will
be indicated by means of an asterisk as v�e and j�e . The
corresponding attenuation will be indicated as A�dB, num.
Figure 11 shows the trend of A

�, S, P
dB, num, and it confirms

that the resonant shunt suffers significant performance
losses when working in mistuned conditions, even when
adding NCs. Therefore, it is important to compare dif-
ferent shunt layouts in terms of robustness to determine
whether there is a circuit configuration that behaves
better than the others.

Figure 12 compares the different NC layouts; it pre-
sents some examples of the difference between the
attenuation in mistuned conditions provided by IC
NCs in series and in parallel configurations keeping the
same R and L connection (i.e. plots (a) and (b) for R
and L in series and plots (c) and (d) for R and L in par-
allel). It is evident that the NC in series offers almost
the same attenuation compared to the NC in parallel
when a mistuned condition is considered.

Figure 13 compares the effect on the robustness of
the type of connection between R and L while keeping
the same NC layout. Figure 13 shows the difference
between the attenuation in mistuned conditions pro-
vided by R and L connections in series and parallel for
an IC NC in parallel in plots (a) and (b) and in series in
plots (c) and (d). It is evident that the parallel connec-
tion between R and L becomes highly advantageous
when v�e � vopt

e . In the other cases, the series connec-
tion between R and L remains the best one.

All the discussions presented thus far are related to
IC NCs. The next section discusses the adoption of RC
NCs. Therefore, the effects of the use of RC NCs on
stability, tuning and performance will be addressed.

The effects of the NC implementation on
system stability and damping performance

As mentioned in the introduction, in some cases, RCs
must be used in place of ICs because of their higher
reliability. The aim of this section is not to explain how
to build RCs but rather to illustrate the effects of RCs
coupled to a resonant shunt on the damping perfor-
mance and stability of the EMS. Indeed, there are many
differences in terms of EMS behaviour compared to the
case of using ICs, and this point is often neglected in
the literature, even if it is important to consider it to
ensure an effective damping action. To this end, a brief
introduction about how to construct RCs is presented
herein to make the overall discussion clear.

The IC NCs can be practically built using an OP-
AMP. Among the different possible circuit layouts
available in the literature (Berardengo et al., 2016b), we
consider only two of them here, as shown in Figure
14(a) and (b). These two circuits can be viewed as pure
NCs, where the global NC at the circuit terminals, gen-
erically called �~C here, can be calculated solving the
circuits (Berardengo et al., 2016b; De Marneffe and
Preumont, 2008)

~C =
R2

R1

Ĉ ð32Þ

When NCs in series (as well as the series part of the
SP) are considered, an additional resistance R̂ is often
needed (see Figure 14(c)) to solve problems such as bias
currents, which prevent the correct functioning of the
circuit (Moheimani and Fleming, 2006). This additional
element makes the circuit no longer behave as a pure

Figure 11. A�, S, PdB, num for a system with ji = 0:1% and ki = 0:2:
(a) ~ki = 0:4 and (b) ~ki = 0:6.



NC but rather as the parallel of an NC, �~C (see equa-
tion (32)), and a negative resistance �~R (Berardengo
et al., 2016b)

~R=
R1

R2

R̂ ð33Þ

The effect of � ~R is to make the OP-AMP circuit
behave differently from a pure NC at low frequency
(Berardengo et al., 2016b). This in turn causes a wor-
sening of the attenuation performance when low-
frequency modes are involved (Berardengo et al.,
2016b) and has a destabilising effect (Berardengo et al.,
2016b; Manzoni et al., 2012). Berardengo et al. (2016b)
suggested the addition of a compensation resistance Rs

in parallel to �~R (see Figure 14(d)). This can cause an
offset on the OP-AMP output voltage but improves the
control performance and makes the circuit more robust
to instability. The model of the electrical circuit with
the addition of Rs is the parallel between �~C and a
resistance Req (Berardengo et al., 2016b), with

Req =
Rs

~R
~R� Rs

ð34Þ

Rs is chosen to make Req as close as possible to �‘,
which is a situation similar to an IC NC. When an NC
with the addition of R̂ and the absence of the compen-
sation resistance of Rs is used, it cannot be considered
as a pure NC. We refer to these circuits as RC NCs.
Conversely, the use of Rs, with values such that Req

tends to �‘, makes an RC NC behave as an IC NC.
This section analyses the effect of the value of Req

on the behaviour of the shunt damping. Specifically,
the next subsection analyses the attenuation perfor-
mance of the RC NC, while the subsequent subsection
addresses the stability of the EMS. Since the series con-
nection between R and L provides better attenuation
performance than the parallel link (see the previous dis-
cussion in the article), we will refer to the series connec-
tion henceforth. Note that the use of electrical schemes
different from those of Figure 14 to implement the
NCs would lead to the same models of IC NCs and RC
NCs and to the same results discussed in this section
(Berardengo et al., 2016b).

Performance analysis

As mentioned previously, IC NC circuits and RC NC
circuits exhibit different behaviour in the low-frequency

Figure 12. A�, S, PdB, num � A�, S, SdB, num for a system with ji = 0:1% and ki = 0:2: (a) ~ki = 0:4 and (b) ~ki = 0:6. A�, P, PdB, num � A�, P, SdB, num for a system

with ji = 0:1% and ki = 0:2: (c) ~ki = 0:4 and (d) ~ki = 0:6.



range. When Rs is used, the behaviour of the RC NC
electrical network tends to that of the IC NC, depend-
ing on the value of Rs used. This is clearly shown in

Figure 15. Figure 15 compares the impedance Zimp of
different circuits: a circuit made from the series of L, R
and an IC NC and circuits made from the series of L,
R and an RC NC with different levels of compensation
(i.e. different values of Req). It is evident that their
behaviours at low frequency are different. This in turn
means that the behaviour of the shunted EMS will be
different from the expected behaviour when an RC NC
is used in place of an IC NC.

Using an approach similar to that employed for IC
NCs, it is possible to find the SDOF FRF, H real

i , for an
RC NC in series and L and R connected in series (the
same approach can easily lead to the expression of the
FRF for L and R connected in parallel)

H real
i ¼ qi

Fi

¼ �B3jO
3 � B2O

2 þ B1jOþ 1

A5jO
5 þ A4O

4 � A3jO
3 � A2O

2 þ A1jOþ v2
i

ð35Þ

where

A5 =CpiL~R~C ð36Þ

A4 =Cpi(L+R~R~C + 2jiviL~R~C) ð37Þ

A3 = ~R~C +Cpi½R� ~R+ L~R~Cv̂2
i + 2jivi(L+R~R~C)� ð38Þ

Figure 13. A�, S, PdB, num � A�, P, PdB, num for a system with ji = 0.1 % and ki = 0.2: (a) ~ki = 0.4 and (b) ~ki = 0.6. A�, S, SdB, num � A�, P, SdB, num for a system

with ji = 0.1 % and ki = 0.2: (c) ~ki = 0.4 and (d) ~ki = 0.6.

Figure 14. Practical implementation of NCs: (a) IC NC for
connection in series (as well as for the series part of SP), (b) IC
NC for connection in parallel (as well as for the parallel part of
SP), (c) RC NC for connection in series (as well as for the series
part of SP) and (d) the use of the compensation resistance in RC
NC for connection in series (as well as for the series part of SP).



A2 = 1+ 2jivi½~R~C +Cpi(R� ~R)�+ v̂2
i Cpi(L+R~R~C)

ð39Þ

A1 = 2jivi + v̂2
i ½~R~C +Cpi(R� ~R)� � ~R~Cv2

i k2
i ð40Þ

and

B3 =CpiL~R~C ð41Þ

B2 =Cpi(L+R~R~C) ð42Þ

B1 = ~R~C +Cpi(R� ~R) ð43Þ

Then, from the FRF expression of equation (35), it is
possible to derive the attenuation performance, named
AdB, real here, that is achievable using RC NCs and
employing the optimal values of R and L derived from
the IC NC analysis (see equations (21) and (23)).

Figure 16 shows AdB, real, found by calculating the
maximum of jH real

i j employing equation (35), for an
EMS used as an example with the eigenfrequency in
the low-frequency range.

When Req is negative and jReqj is high (e.g.
jReqj= 75MO), the RC NC behaves as an IC NC and
the attenuation increases. It is easily observed that the
lower the value of jReqj (i.e. which corresponds to the
case of poor compensation) is, the farther the attenua-
tion is from the theoretical value of AdB and the worse
the attenuation is. One possibility to increase the
attenuation in the presence of low values of jReqj is to
find new optimal values of the resistance and induc-
tance, named R

opt
min and L

opt
min, respectively (the conse-

quent attenuation is named AdB, min), as shown in

Figure 16. These new optimal values can be found by
numerical minimisation of the maximum of jH real

i j (see
equation (35)). It follows that the use of proper values
of the compensation resistance Rs allows employing the
theoretical formulations for the optimal shunt para-
meters and the consequent attenuation even with RC
NCs. Conversely, when Rs is not used or compensation
is not proper, a numerical minimisation is needed for

Figure 16. Trends of AdB, real and AdB,min for a system with
vi=2p= 30:5 Hz, ji = 0:1% and ki = 0:2 for an NC (a) in series
and NCs (b) in SP with bsp1 = 0:5 for different values of Req.
Solid thick line for AdB, real and Req =� 1 MO, dashed thick line
for AdB,min and Req =� 1 MO, solid thin line for AdB, real and
Req =� 10 MO, dashed thin line for AdB,min and Req =� 10 MO,
dashed-dotted thick line for AdB, real and Req =� 75 MO, and
dashed-dotted thin line for AdB,min and Req =� 75 MO.

Figure 15. Magnitude and phase of the impedance Zimp for different values of Req. In this figure, L = 140.72 H, R = 18.89 kO,
~C = 50 nF and Req =� ‘, � 50, � 10, � 5, � 2, � 1 M O. The case with Req =� ‘ corresponds to the case of using an IC NC

(dashed line).



finding new L and R optimal values to obtain satisfac-
tory attenuation levels at low frequency. Another solu-
tion to improve the performance in the case of non-
proper compensation (or even no use of Rs) is to
employ an SP layout for the NC. Indeed, from compar-
ing Figure 16(a) and (b), the SP is able to improve the
attenuation performance of the RC NC in series even
for low values of jReqj.

Stability analysis

The previous subsection has shown that the use of RC
NCs deteriorate the attenuation at low frequency if Rs

is not used. Another effect of RC NCs is related to the
stability of the EMS. Indeed, Figure 16 shows that the
curves of AdB, real related to jReqj= 1 MO (blue thick
solid curves in Figure 16) stop at a given low value of
~ki. The reason for this result is that the EMS becomes
unstable after that ~ki value, even if the stability condi-
tions for IC NCs in series or SP layout are met. Indeed,
the presence of R̂ causes instability at low frequency
and makes the stability constraint stricter compared to
the use of IC NCs. Therefore, from Figure 16, it can be
deduced that the use of the compensation resistance
allows not only enhancing the performance but also even
improving the stability conditions, making them increas-
ingly closer to the theoretical ones valid for IC NCs.
Furthermore, the comparison of Figure 16(a) and (b) also
shows that the SP (compared to the series NC) is able to
improve the stability even for low values of jReqj.

The issue related to the stability of the EMS when
using RC NCs in series can be further deepened, taking
into account the fact that all the modes of the EMS
must be stable, not only those on which the control
action is focused. Consider, as an example, an EMS
with two modes at v1 and v2, with v2.v1. The damp-
ing action is focused on the mode at v2 (using R

opt
min and

L
opt
min), and stability is investigated for both of the

modes. The use of Lopt
num and Ropt

num is analysed here since
it allows increasing the performance and the stability of
the controlled mode, as shown in Figure 16. Therefore,
the situation considered in the example is the most
favourable from the stability perspective. The trend of
the poles of the EMS is analysed to study the stability.
The poles of the second mode have a negative real part
for all the considered values of ~ki (i.e. the mode is sta-
ble; this is also because the numerical minimisation
used to find R

opt
min and L

opt
min imposes the stability of the

mode). This does not occur for the first mode. Figure
17(a) shows that one of the poles related to the first
mode has a positive real part (i.e. instability) for some
~k2 and Req values. Particularly, it can be observed that
the value of ~k2 must be limited and/or the value of jReqj
must be increased to ensure stability. This is a further
indication that the use of an RC NC without compen-
sation considerably limits the maximum attenuation

achievable because of instability problems, even if R
opt
min

and L
opt
min are used in place of Ropt and Lopt.

A remarkable result provided by the SP configura-
tion is shown in Figure 17(b). Here, we consider the
same system as in Figure 17(a), but the SP configura-
tion is used for the NC: here, the NC in series is built
as an RC NC, while the parallel NC is an IC NC (see
Berardengo et al., 2016b for more details). The com-
parison of Figure 17(a) and (b) indicates that the SP
configuration improves the stability of the EMS com-
pared to the series NC. Indeed, with the SP configura-
tion, it is possible to use higher values of ~k2 or poorer
compensation (i.e. low jReqj values) without causing
instability.

Guidelines for coupling NCs to resonant
shunt

All the previous analyses allow developing guidelines
about how to apply shunt damping by coupling NCs
and resonant circuits. Indeed, several choices are avail-
able for the NC connection and the layout of the link
between R and L; the previous analyses allow high-
lighting the best choice as a function of the specific
application.

The first choice is related to the configuration
between R and L. The series connection must be pre-
ferred when the EMEMCF is high because it offers bet-
ter attenuation performance (see previously in the
article the subsection related to the attenuation perfor-
mance provided by IC NCs). When the EMEMCF is
not high, the differences between the two connection
types tend to become negligible (see the subsection
related to the attenuation performance provided by IC

Figure 17. Trend of the real part of the pole related to the first
mode, which can become unstable due to a low value of jReqj, as
a function of ~k2. The system parameters are v1=(2p)= 30 Hz,
v2=(2p)= 300 Hz, j1 = j2 = 0:1%, k1 = 0:20, and k2 = 0:05
for an NC (a) in series and NCs (b) in SP with bsp1 = 0:5.
Different values of Req are used: –1, –5, –10, –20 and –50 MO.



NCs). However, another point that must be taken into
account is the practical implementation of L. It is often
built using OP-AMPs because of its high value
(Moheimani and Fleming, 2006; Thomas et al., 2012),
and these circuits can generate additional resistances.
When the series connection is considered, it is straight-
forward to compensate these resistive parasitic effects
by changing R accordingly. Therefore, the series con-
nection must be preferred.

For the NC layout, the choice depends on the con-
sidered frequency range. When high-order modes are
taken into account, it is possible to choose between the
parallel and the SP layouts. The parallel layout provides
the advantage that IC NCs can generally be employed,
while the SP layout can often require the use of RC
NCs (for the NC in series). In the latter case, despite the
presence of an RC NC, the circuit can be considered as
ideal in terms of attenuation performance because the
control is at high frequency (where the RC NC behaves
as an IC NC). However, the stability is affected by the
presence of an RC NC, and thus, the stability of the
low-order modes must be checked. It follows that the
use of the compensation resistance Rs is strongly
encouraged if the stability must be improved.

With regard to low-order modes, the parallel NC
typically provides low performance because the value of
~ki cannot be greatly increased due to the stability limits.
Hence, it is recommended to use either the series or the
SP layout. Clearly, the SP layout allows improving the
attenuation by some decibels compared to the series (or
improving stability with the same attenuation perfor-
mance). In both cases, if RC NCs have to be used, it is
recommended to use the compensation resistance Rs for
the same reasons explained before; if Rs is not used, a
numerical minimisation procedure can often help to
find the best values of R and L to enhance the attenua-
tion performance. Furthermore, the SP layout should
be preferred in the case of RC NCs because it improves
the stability of the EMS.

Finally, when modes in the middle frequency range
are taken into account, the SP shows performance and
stability that are better than the series and the parallel
layouts.

Generally, the use of the SP layout is suggested in
almost all the cases, possibly coupled to the use of the
compensation resistance Rs when RC NCs are used.

Experimental tests

This section presents the experimental tests conducted
to validate the outcomes of the previous sections. The
next subsection describes the set-up used for the tests.
Then, the subsequent subsection validates the theoreti-
cal formulations derived for IC NCs, and the last sub-
section validates the results for RC NCs.

Experimental set-up

The set-up used consisted of a stainless steel cantilever
beam (length 180 mm, width 30.5 mm and thickness
1.1 mm) with two piezoelectric patches (length 70 mm,
width 30.0 mm and thickness 0.55 mm, material PIC
151) bonded at the cantilevered end. The two patches
were electrically connected in series.

The structure was excited using a contactless actua-
tor composed of a coil and a magnet bonded close to
the beam tip (see Figure 18). Making current flow in
the coil allowed exerting a force on the beam; this force
was considered proportional to the current flowing in
the coil (Thomas et al., 2003), which was measured
using a current clamp. The response of the structure
was measured using a laser Doppler velocimeter at a
point close to the tip.

Eigenfrequencies and non-dimensional damping
ratios were estimated through an experimental modal
analysis with the piezoelectric patch short-circuited.
The algorithm employed for modal parameter extrac-
tion was the polyreference least squares frequency-
domain method (Peeters et al., 2004). The ki values
were estimated by measuring vi and v̂i and using equa-
tion (10). The values of all these parameters will be pro-
vided explicitly for all the tests performed because the
different tests were performed on different days, and
thus, there were slight changes in the modal data.

For the Cpi values, we measured the trend of the
capacitance of the piezoelectric patch Cpiezo between 20
and 1400 Hz with a Hewlett-Packard 4284A LCR
meter, and then, we interpolated the experimental
points (see Figure 19 and Appendix 1). Cpiezo is
intended as QðOÞ=VðOÞ, where QðOÞ and VðOÞ are the
complex amplitudes of Q and V , respectively, and the
inherent resistance of the piezoelectric patch is
neglected. This allowed us to estimate Cp1 = 40:16nF,
Cp2 = 39:60nF, and C0 = 42:88 nF. C‘ was estimated
by measuring the capacitance value at 100 kHz, and
the result was 22.09 nF.

The NCs were built using Texas Instruments
OPA445 OP-AMPs. The NC in parallel (as well as the

Figure 18. The experimental set-up.



NC in parallel in the SP layout) was built using the
electrical scheme shown in Figure 14(b); we used the
schemes shown in Figure 14(c) and (d) for the NC in
series, as well as for the NC in series of the SP layout.

The inductance L was built using a synthetic circuit
based on Antoniou’s circuit (Thomas et al., 2012; Von
Wangeheim, 1996) employing OP-AMPs OPA445 (see
Appendix 3). The use of a synthetic circuit was due to
the high inductance values in the different tests, which
prevented the use of physical inductances. All the OP-
AMPs were supplied with a direct current (DC) voltage
of 630 V.

Experiments with ICs

This section discusses the tests performed on the first
mode of the beam to validate the formulations derived
for the values of vopt

e (see equation (21)), jopte (see

equation (23)) and the corresponding AdB value (see
equation (26)). With regard to the tests with NC in par-
allel, an IC NC was used (see Figure 14(b) and test A
column in Table 4). With regard to the tests with NCs
in series and SP, we used an RC NC with the compen-
sation resistance Rs for the NC in series (see Figure
14(d)); for the parallel NC in the SP layout, an IC NC
was used (more details about the electrical connections
for the SP can be found in Berardengo et al. (2016b,
2017)). The value of Rs was set to have a high value of
jReqj such that the RC NCs could be well approximated
as IC NCs (see test B column for the series and test C
column for the SP in Table 4). The tests were per-
formed with L and R connected in series because this
configuration offers higher attenuation levels compared
to a connection in parallel (see previously in the article
the subsection related to the attenuation performance
provided by IC NCs). Appendix 3 shows, as an exam-
ple, the circuit used for the tests with the series NC.

Figures 20 to 22 show the experimental results for
NCs in parallel, series and SP, respectively, achieved by
employing equations (21) and (23) for the shunt tuning.
There is a satisfactory agreement between the theoreti-
cal expectations (equation (26)) and the experimental
results. The curve related to the parallel NC (Figure
20) cannot be experimentally investigated for ~ki.0:386

because of the low instability threshold (theoretical
instability for b1.0:55 and experimental instability
found at b1 = 0:55, thus almost corresponding), as
expected when using NC in parallel to control low-
frequency modes (Berardengo et al., 2016b). For the
instability with the series configuration of the NC,
experimental instability was found at b2 = 0:90, while
the theoretical result would predict instability for
b2.0:94. Therefore, the stability conditions can be con-
sidered validated.

Figure 19. Trend of the modulus of the piezoelectric
capacitance as a function of frequency. Points are related to
experiments, while the line is the interpolated model.

Table 4. Description of the parameters for the experimental tests.

Parameter Test A Test B Test C Test D

v1=(2p) (Hz) 34.42 34.45 34.50 34.40
v̂1=(2p) (Hz) 35.58 35.65 35.65 35.60
k1 0.2618 0.2662 0.2603 0.2664
j1 (%) 0.39 0.36 0.36 0.33
C1 (nF) Changes – 18.07 –
C2 (nF) – Changes Changes Changes
Req (MO) –‘ –75.0 –75.0 –0.90 and –2.80
Rs (MO) – 2.91 2.91 –
R1 (kO) 11.47 Changes 11.47 (parallel)

Changes (series)
Changes

R2 (kO) Changes 11.49 9.38 (parallel)
11.49 (series)

11.49

C (nF) 22.10 69.30 22.10 (parallel)
69.30 (series)

69.30

R̂ (MO) – Changes Changes Changes



Note that during these tests, the circuit composed of
the series connection of L and R was measured every
time using a network analyser. Indeed, when an induc-
tance is built using OP-AMPs, there is a possibility of
having a parasitic resistance in series (Park and Inman,
2003; Viana and Steffen, 2006), as already mentioned.
Therefore, we measured the entire circuit to stay as
close as possible to the optimal values of the shunt
inductance and resistance.

The only experimental points in Figures 21 and 22
where there is not a strict agreement with theory are
those related to AdB, num (circles) at the highest ~ki values.
The reason for this result is that the maximum of the
FRF amplitude is at very low-frequency values for
these tests (i.e. approximately 2 Hz, see Figure 23) due

to the increase in the static gain (see Figure 7). At such
low-frequency values, the model used is expected to not
be highly accurate because of different reasons, for
example, we do not take into account the non-ideal
behaviour of OP-AMPs and we neglect the leakage
resistance of the piezoelectric patch (Doebelin, 2003;
Okumura et al., 2014). However, the mentioned experi-
mental points are able to properly describe the fact that
the theoretical curves of AdB, num decrease for high ~ki

values. Furthermore, Figure 23 shows the increase in
the FRF gain at low frequency for NCs in series with
high b2 values, as discussed in the subsection related to
the attenuation performance provided by IC NCs (see
also Figure 7).

According to the outcomes of the subsection related
to the attenuation performance provided by IC NCs,
we also know that the SP layout offers higher attenua-
tion performance compared to the series and parallel
layouts when the same b values are used. We also vali-
dated this result by performing a test with
b1 =bsp1 =b2 =bsp2 = 0:5. The theoretical and
experimental attenuation levels achieved match well.
Indeed, Figure 24 shows the experimental FRFs
achieved with the optimal L and R values (see equa-
tions (21) and (23)) for NCs in series, parallel and SP
compared to the theoretical expectations.

Finally, some tests performed to validate the
attenuation performance in mistuned conditions are
shown. Figure 25 shows the comparison between
experimental attenuations (blue circles in Figure 25)
and the theoretical expectations (the isolines in Figure
25). Again, the agreement is good, thereby confirming
the reliability of the theoretical model.

Figure 20. Comparison between experimental results (circles)
and theoretical expectations (solid and dashed curves) for NC
in parallel (Test A column in Table 4).

Figure 21. Comparison between experimental results (circles)
and theoretical expectations (solid and dashed curves) for NC
in series (Test B column in Table 4). The green dashed-dotted
curve is related to the values of AdB, num considering only the
peak of jHij at high frequency (i.e. close to F+) and neglecting
the increase in the static gain of the FRF (see Figures 3(b) and
7); the square is the experimental point related to this AdB, num

curve.

Figure 22. Comparison between experimental results (circles)
and theoretical expectations (solid and dashed curves) for NCs
in SP (Test C column in Table 4). The green dashed-dotted curve
is related to the values of AdB, num considering only the peak of
jHij at high frequency (i.e. close to F+) and neglecting the
increase in the static gain of the FRF (see Figures 3(b) and 7);
the square is the experimental point related to this AdB, num

curve (bsp1 = 0:45).



Experiments with RCs

Figure 26 shows the comparison between the experi-
ments and theory for an RC NC connected in series to
the series of an inductance and a resistance. Different
values of Req were tested. The data related to this test
are presented in Test D column of Table 4. It is
observed that the value of Req

�� �� is always low in these

tests (indeed, we are considering RC NCs here), and
the compensation resistance Rs is not used.

In the test of Figure 26(a) (where Req =� 0:9MO),
we have considered both the L and R values found
through the theoretical formulae valid for IC NCs and
the numerically optimal values found by means of
numerical minimisation of the maximum of jH real

i j.
Using the theoretically optimal values with
Req =� 0:9MO, the EMS is expected to become
unstable for ~ki = 0:58. Instability was found experimen-
tally for ~ki = 0:59. Therefore, good agreement is again
found between theory and experiments. In addition,
other values of Req (e.g. see Figure 26(b) where
Req =� 2:8MO) showed good agreement between the-
ory and experiments.

Another test (Test E, see Table 5; the values of the
electrical parameters are almost the same of those pro-
vided in Table 4) was performed regarding the instabil-
ity of RC NCs. The aim of this additional test is to
show the benefit provided by the use of NCs in the SP
configuration compared to the NC in series. In this
case, the shunt impedance was tuned on the second
mode of the beam (using L

opt
min and R

opt
min), and then,

instability was checked for different values of Req and
keeping the values of ~k2 and ~k1 constant (see Table 5).
The instability check for the model was performed on
the first two modes of the EMS by using equation (35);
indeed, it was already explained previously that

Figure 23. jHij for IC NC in series (see Test B column in Table
4) for different b2 (and thus ~ki) values. The b2 values are 0.45,
0.55, 0.765, 0.85 and 0.8865. The value of b2 equal to 0.8865
corresponds to the experimental point (circle) with the highest
value of ~ki in Figure 21. The value of 0 dB corresponds to the
FRF peak in SC.

Figure 24. FRFs with IC NCs for vi=(2p)= 34:40 Hz, v̂i=(2p)= 35:56 Hz, ji = 0:37%, ki = 0:2619 and
b1 =bsp1 =b2 =bsp2 = 0:5; R and L connected in series. (a) Experimental FRFs, (b) experimental (thick dashed line) and
theoretical (thin solid line) FRFs for the NC in parallel, (c) experimental (thick dashed line) and theoretical (thin solid line) FRFs for
the NC in series and (d) experimental (thick dashed line) and theoretical (thin solid line) FRFs for the NC in SP.



instability related to the use of RC NCs arises at low
frequency.

Note that the FRF H real
i related to NCs in the SP

configuration can easily be derived through equation
(35) by using Cpi � C1 in place of Cpi, ki=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C1=Cpi

p
in place of ki and vi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ k2

i Cpi=(Cpi � C1)
p

in place of
v̂i (see Table 1). Indeed, the SP layout can be viewed as
an enhanced version of an NC in series.

The use of the SP configuration allows decreasing
the value of jReqj more than the series before finding
instability, which in turn means having a higher robust-
ness to instability.

The comparison between the experimental and theo-
retical results is provided in Table 6, and the agreement
is also good for this test, even if slight differences occur.
Actually, in this test, slight changes in the values of the
parameters involved (e.g. ~k1, ~k2 and R) are able to sig-
nificantly change the results. Therefore, it is expected
that the uncertainty related to the measurement/

Figure 25. (a) A�, S, SdB, num and (b) A�, S, PdB, num for the beam with vi=(2p)= 34:40 Hz, v̂i=(2p)= 35:59 Hz, ji = 0:36%, ki = 0:2653 and
b1 =b2 = 0:5. The iso-lines are the theoretical expectations, and the circles are the experimental points (the number close to each
circle indicates the experimental attenuation). IC NCs are used (also using Rs).

Figure 26. Trends of AdB, real (solid lines) and AdB,min (dashed
line) for RC NC in series: (a) Req =� 0:9 MO and (b)
Req =� 2:8 MO. Solid and dashed lines are related to the
theoretical expectations; circles and squares are related to the
experimental results for AdB, real and AdB,min, respectively.

Table 5. Test E: modal data of the first two modes.

v1=(2p) (Hz) v̂1=(2p) (Hz) j1 (%) k1
~k1 v2=(2p) (Hz) v̂2=(2p) (Hz) j2 (%) k2

~k2

34.50 35.69 0.34 0.2649 0.8431 164.00 165.41 0.21 0.1314 0.3200



estimation of the different parameters is able to explain
these slight differences between the experimental and
numerical results. However, the trends are similar for
both experiments and theory, and the benefits provided
by the use of the SP layout are demonstrated.

Conclusion

This article has addressed vibration damping by means
of piezoelectric shunt. Specifically, the shunt layout
taken into account is made from a resonant shunt
coupled to NCs.

A common mathematical formulation has been
shown to exist for all the possible layouts of the NCs
(i.e. parallel, series and SP) regarding the optimisation
of the shunt parameters and the consequent achievable
vibration attenuation.

Since active elements (i.e. NCs) are considered in the
shunt, stability conditions for the EMS have also been
provided.

Furthermore, the behaviour of modified circuits,
which cannot be considered as pure NCs but which
must often be used in practical applications, has been
analysed.

Finally, the advantages provided by the use of two
NCs together, compared to traditional layouts where
only one NC is used, have been highlighted in terms of
both stability and attenuation performance.

All the mentioned analyses allowed developing some
guidelines for facing different types of control problems
to be provided, explaining how to improve performance
and stability. The coupling between the classical reso-
nant shunt and NCs is even able, in some cases, to pro-
vide an attenuation performance so high that resonance
cancellation is achieved.

The theoretical results have been validated through
an experimental campaign conducted on a cantilever
beam coupled to a pair of piezoelectric patches.
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Appendix 1

The procedure for estimating Cpi

Appendix 1 explains how to estimate the value of Cpi.
According to Berardengo et al. (2016b), the behaviour
of the capacitance of the piezoelectric patch Cpiezo as a
function of frequency is as follows

Cpiezo(O)=C‘ +
XN

i= 1

x2
i

v2
i + 2jjiviO� O2

ð44Þ

where j is the imaginary unit. Cpiezo is intended as
QðOÞ=V ðOÞ, where QðOÞ and V ðOÞ are the complex
amplitudes of Q and V , respectively, and the inherent
resistance of the piezoelectric patch is neglected.

If the trend of Cpiezo is described only in the fre-
quency range of the first m modes and if equation (10)
is employed, the following expression is obtained
(Berardengo et al., 2016b)

Cpiezo(O)=Cpm +
Xm

i= 1

ðkivi

ffiffiffiffiffiffiffi
Cpi

p
Þ2

v2
i + 2jjiviO� O2

ð45Þ

According to Berardengo et al. (2016b)

Cpi =Cpi+ 1 1+ k2
i+ 1

� �
ð46Þ



Hence, if equation (46) is used in equation (45), the
expression of Cpiezo between the null frequency and a
frequency value slightly higher than vm is a function of
a single variable, which is Cpm (indeed, the other para-
meters of the expression can be estimated: vi and ji by
a modal analysis and ki by employing the right-hand
term of equation (10)). If such an expression is fitted
with the experimental curve describing Cpiezo(O) over
the same frequency range by means of a minimisation
procedure, the value of Cpm can be estimated. Then,
using this value, the measured value of the ki coeffi-
cients, and equation (46), the values of Cpi for the
modes lower than the mth can also be estimated.

Appendix 2

Expressions of AdB for the different layouts

Appendix 2 provides the expressions of AdB (see equa-
tions (26) and (27)) as functions of ji, ~ki and ki by using
the expressions presented in Table 1.

With regard to R and L connected in series, the
expression of A

S, P
dB is

AdB = 10 log10

X1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2+ ~k2
i

q
8j2

i �8� 7~k2
i + 3~ki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1+ ~k2

i

� �q� 
j2

i � 1
� �

ð47Þ

where
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The expression of A
S, S
dB is

AdB = 10 log10

X2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ k2

i

2+ 2k2
i
�~k2

i

r

8j2
i 8+ 8k2

i � ~ki
~ki + 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1+ k2

i )
p� �h i

j2
i � 1

� � ð49Þ

where
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For A
S, SP
dB , its expression can be determined by not-

ing that the SP can be viewed as an enhanced series NC
thanks to the presence of the parallel NC.

With regard to R and L connected in parallel, the
expression of A

P, P
dB is

AdB = 10 log10
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The expression of A
P, S
dB is

AdB = 10 log10
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With regard to A
P, SP
dB , it can easily be derived by noti-

cing that the SP configuration can be seen as a series
configuration enhanced by the use of the parallel NC.

Appendix 3

The implementation of the synthetic inductance

Appendix 3 explains the layout of the synthetic induc-
tor built using Antoniou’s circuit (Thomas et al., 2012;
Von Wangeheim, 1996).

Figure 27 shows the inductance layout based on two
OP-AMPs. This inductance is inserted in a global cir-
cuit. This circuit was that used in the tests with an NC
in series using a compensation resistance. The connec-
tion between the inductance and the resistance R is in
series.

According to Figure 27, a given inductance value is
obtained by combining different resistances and a
capacitance

L=
CLRARCRD

RB
ð54Þ

RD was a potentiometer in these experiments for an
easy tuning of the L value; the values of the other com-
ponents are summarised in Table 7.

Figure 27. Layout of the circuit with R and L connected in series and an NC in series configuration, with the compensation
resistance Rs. The inductance L is built using OP-AMPs.

Table 7. Parameter values used for the synthetic inductance.

RA (kO) RB (kO) RC (kO) RD (kO) CL (mF)

11.50 11.50 11.50 Potentiometer 4.98




