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mohamad.elsayedhusseinjomaa@etud.univ-angers.fr

Abstract—In this paper, we propose a new algorithm to
calculate sample entropy of multivariate data. Over the existing
method, the one proposed here has the advantage of maintaining
good results as the number of channels increases. The new
and already-existing algorithms were applied on multivariate
white Gaussian noise signals, pink noise signals, and mixtures
of both. For high number of channels, the existing method failed
to show that white noise is always the most irregular whereas
the proposed method always had the entropy of white noise the
highest. Application of both algorithms on MIX process signals
also confirmed the ability of the proposed method to handle
larger number of channels without risking erroneous results.
We also applied the proposed algorithm on EEG data from
epileptic patients before and after treatments. The results showed
an increase in entropy values after treatment in the regions where
the focus was localized. This goes in the same way as the medical
point of view that indicated a better health state for these patients.

Index Terms—sample entropy, multivariate, complexity, EEG,
epilepsy

I. INTRODUCTION

Studying signals of living systems is an important step to-

wards better understanding the physiological and pathological

functioning of these systems. This is particularly relevant when

studying brain signals from electroencephalography (EEG).

Many works describe the analysis of irregularity or com-

plexity of EEG data (with multiscale and even multivariate

approaches) [1] [2].

One of the common methods for studying irregularity of

time series is entropy. Several algorithms have been proposed

to study entropy, such as the approximate entropy [3], sample

entropy [4], fuzzy entropy [5], and permutation entropy [6].

Sample entropy is one of the common entropy methods to be

applied on EEG signals. A multivariate approach of sample

entropy has also been proposed to consider the multivariate

characteristics of EEG signals [7]. For a small number of

channels or variates (2 or 3) this approach gives remarkable

results. However as the number of channels increases, this

approach fails to give results that could be depended on.

Therefore, to address the drawbacks of the existing multi-

variate approach, we propose in this paper a new algorithm

to compute sample entropy for multivariate data. It shows
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a higher ability of handling signals with high numbers of

channels without risking the significance of the values.

This paper is organized as follows. We describe some of

the existing sample entropy methods in Sec. II. We then

describe the new proposed approach in Sec. III. This approach

is validated on synthetic signals in Sec. IV. We present and

discuss results obtained on EEG data in Sec.V. Finally Sec.

VI concludes the paper.

II. EXISTING SAMPLE ENTROPY METHODS

A. Sample Entropy

Sample entropy (SampEn) was first introduced by Richman

and Moorman in 2000 [4]. It is the negative logarithm of

the conditional probability that a time series of length N ,

showing similarity within a tolerance r for length m, will also

show similarity within a tolerance r for length m+1, without

considering self-matches. To calculate the SampEn of a time

series {x1, . . . , xi, . . . , xN} of length N , first the delay vectors

(DV) should be generated. For a given embedding dimension

m the DVs will be Xm(i) = [xi, xi+1, . . . , xi+(m−1)] where

i = 1, 2, . . . , N − (m− 1). For a given threshold or tolerance

r, calculate all the possible distances between pairs of DVs

(Xm(i) and Xm(j) with i 6= j) and count the number of

pairs that have a distance less than the tolerance r. Any type

of distance could be used here, but the most commonly used

is the Chebyshev distance. Bm(r) will denote the frequency

of occurrence. Then, extend the embedding dimension from

m to m + 1 and generate the new DVs. For those new

DVs, recalculate the distances between all possible pairs

and count those with distances less than r and denote their

frequency of occurrence by Bm+1(r). SampEn will then be

SampEn = − ln
Bm+1(r)

Bm(r)
. The lower the value of SampEn,

the more regular the series is, thus more predictable it is.

B. Multivariate Sample Entropy

Multivariate Sample Entropy was introduced by Ahmed et

al. [7] [8]. Two multivariate extensions of the SampEn were

proposed, the naive method [8] and the full method [7], with

the full method being commonly used since it outperforms the

naive one [8].

Suppose {xk
1 , . . . , x

k

i
, . . . , xk

N
} is a multivariate time series

where 1 ≤ k ≤ K is the index of the variate and N is

the length of the time series. As in Sec. II-A, the first step

1



Fig. 1. Results of multivariate sample entropy for the two methods applied on white Gaussian (noted as W) and pink noise (noted as P), and a mixture of
them (noted as xW/yP where x is the number of white Gaussian noise channels and y is the number of pink noise channels). Each signal had 5000 samples
and 30 realizations were used. For both methods, the threshold was r = 0.15×standard deviation of the normalized signal and m = 2 for all the channels.

to calculate the multivariate sample entropy is to generate

the un-extended DVs: XM(i) = [x1
i
, . . . , x1

i+(m1−1), x
2
i
, . . . ,

x2
i+(m2−1), . . . , x

K

i
, . . . , xK

i+(mK−1)], where i = 1, 2, . . . , N−
max {M} and M = [m1,m2, . . . ,mK ] is the multivariate

embedding dimension vector. Calculate the distances between

all the possible pairs of DVs (XM(i) and XM(j) with i 6= j)

and count the number of distances that are less than a defined

tolerance or threshold value r and the frequency of occurrence

of that would be denoted by BM(r).
To extend the embedding dimension vector M to M+ 1

in the full method K DV subspaces are generated where

in each subspace the embedding dimension of only one

variate, k, is extended from mk to mk + 1. This way

the extended DV subspace for k would be X
k

M+1(i) =
[x1

i
, . . . , x1

i+(m1−1), . . . , x
k

i
, . . . , xk

i+(mk−1), x
k

i+(mk)
. . . , xK

i

, . . . , xK

i+(mK−1)]. The pair-wise distances are calculated

between all the DVs across all the K subspaces and the

number of pairs with distances less than the threshold r
is counted. The frequency of occurrence for that would be

denoted by BM+1(r). This way, the multivariate sample

entropy is mvSampEn = − ln
BM+1(r)

BM(r)
.

III. NEW APPROACH

It was noticed that the multivariate sample entropy method

explained in Sec. II-B shows erroneous results when the

number of channels increases (see Figs. 1 and 2). To address

this issue, we propose a new way to calculate sample entropy

for multivariate time series.

Let {xk
1 , . . . , x

k

i
, . . . , xk

N
} be a multivariate time series of

length N with 1 ≤ k ≤ K being the index of the variate and

let M = [m1,m2, . . . ,mK ] be the multivariate embedding

dimension vector. To calculate the sample entropy for this

multivariate signal:

1) For each variate k, generate the DV subspace: Xk
mk

(i) =
[xk

i
, xk

i+1, . . . , x
k

i+(mk−1)], where i = 1, 2, . . . , N −
(mk − 1) and mk is the corresponding embedding

dimension for the variate k.

2) For each variate k, calculate the distances between all

the possible vector pairs. Any type of distance between

vectors could be used. Here we use the Chebyshev

distance as it is commonly used in previous papers

dealing with sample entropy [4] [7] [8]. Since there

are N − (mk − 1) vectors this means there are α =
(N − (mk − 1))(N −mk)

2
possible distances without

including self-distances.

3) Count the number of instances Ak
mk

(r) where the dis-

tances are less than a predefined threshold r.

4) Define the frequency of occurrence as Bk
mk

(r) =
Ak

mk
(r)

α
.

5) Extend the dimension from mk to mk + 1 and repeat

steps 1 to 4. The new number of possible distances

between pairs is β =
(N −mk)(N −mk − 1)

2
. So

the frequency of occurrence for the extended case will

be: Bk
mk+1(r) =

Ak
mk+1(r)

β
, where Ak

mk+1(r) is the

number of instances that the extended DV pairs have

distances less than r.

6) Repeat all the above steps for all the variates of the time

series 1 ≤ k ≤ K.
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Fig. 2. Results of the two methods applied on MIX signals with varying number of channels. The value of p ranging between 0 and 1 with a step 0.1. Each
signal had a length of 5000 samples and 30 realizations. For both methods, the threshold was r = 0.15×standard deviation of the normalized signal and
m = 2 for all the channels.

7) The sample entropy of the multivariate time series is:

mvSampEnnew = − ln

∑
K

k=1 B
k
mk+1(r)

∑
K

k=1 B
k
mk

(r)
. (1)

The channel-wise computation of distances and frequencies of

occurrence, followed by a global integration, makes this ap-

proach much more robust, as it will be confirmed immediately.

IV. VALIDATION ON SYNTHETIC DATA

To study the effect of increasing the number of channels

on the existing multivariate sample entropy and the one

we proposed, we apply both algorithms on synthetic data

with varying number of channels and study the behavior of

the results. The MATLAB code for the existing multivariate

sample entropy was downloaded from [9].

A. White and Pink Noise

For this test, 3 types of multivariate noise signals are used:

1) Pure white Gaussian noise (WGN).

2) Pure pink noise (power spectrum proportional to 1/f ).

3) A mixture of WGN and pink noise.

These signals have a length of N = 5000 samples and each

type has 30 realizations. The existing method and the new one

were applied on these signals while the number of channels

increased gradually from 2 to 9. For both methods, the

threshold was r = 0.15×standard deviation of the normalized

signal and M = [mk] = 2 for 1 ≤ k ≤ K.

Figure 1 shows that, for the existing method, the entropy

value of the pure WGN signals is higher than that of the pure

pink noise for signals with 2 and 3 channels. This is the normal

case, since white noise is more irregular than pink noise [10].

But as the number of channels increases more than 3, the

sample entropy value of white noise drops below that of the

pink noise and the difference between white and pink noise

becomes larger. Whereas for the new proposed method the

sample entropy value of WGN remains larger than that of

pink noise regardless of the number of channels of the noise

signals. Also, the value of sample entropy for the mixtures

of the two noises is always between those of pure WGN and

pink noise. This proves that the new proposed method gives

more consistent relative results and is not dependent on the

number channels as the existing method is.

B. MIX process

In this test we evaluate the results of both methods as the

multivariate signals gradually change from periodic to uniform

random signals with respect to number of channels.

MIX process signals [3] are signals that range from periodic

to completely random as the value of the parameter p ranges

from 0 to 1. The two methods were applied on multivariate

MIX processes with 0 ≤ p ≤ 1 for various number of

channels. The length of the signals was N = 5000 samples

and we used 30 realizations. For both methods, the threshold

was r = 0.15×standard deviation of the normalized signal and

m = 2 for all the channels.

Figure 2 shows the results of the two methods on multi-

variate MIX process signals with 2, 4, and 7 channels. It is

expected that sample entropy value is minimum for p = 0 as

the signals are purely periodical. This value should increase as

the value of p increases and the signal becomes more random.

This is the case for both methods when the number of channels

is 2. But as the number of channels increases the results of the

existing method shows an increase in sample entropy value

for 0 ≤ p ≤ 0.3 but then the value starts decreasing for

0.3 ≤ p ≤ 1 and even drops below the value of p = 0.

Whereas for the proposed method the value of sample entropy,

as expected, increases as the value of p increases. This, once
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Fig. 3. Five regions where the entropy was calculated. LT: Left Temporal.
LC: Left Central. C: Central. RC: Right Central. RT: Right Temporal.

again, shows that the proposed method is more consistent

and is not dependent on the number of channels. It could

therefore be applied for higher number of channels without

risking getting erroneous values.

V. RESULTS ON EEG DATA

Epilepsy is a very commonly studied pathology using

EEG. It is a neurological disorder characterized by epileptic

seizures [11]. Besides, most epileptic patients present, in the

interictal state, or the state when no seizures occur, interictal

epileptiform discharges (IED). One of the common types of

epilepsy in children is the benign childhood epilepsy with

centrotemporal spikes (BECTS) [12]. It is known that children

with such epilepsy recover as they grow older (around 14

to 18 years old) [13]. A less common epilepsy syndrome of

childhood is epileptic encephalopathy with continuous spikes

and waves during sleep (CSWS), that associates with cognitive

impairment and strong IED during sleep [14]. Those two

syndromes are quite similar.

When treating patients with those syndromes, clinicians

aim to eliminate the cognitive deficits that are believed to be

strongly related to the frequency of spikes [15]. Some anti-

epilepticdrugs (AED) use to lower the frequency of the spikes.

For patients with BECTS a decrease in the number of spikes

was reported when the patients were treated with sulthiame

[16]. While the same effect took place on patients diagnosed

with CSWS when they were treated with levetiracetam [17].

In this application we will focus on the resting state, without

IED, EEG recordings of patients with the aforementioned syn-

dromes. We will evaluate the sample entropy of the recorded

EEG before and after treatment to see if it would imply an

increase in irregularity after treatment, as it is known that

signals from healthy subjects present higher irregularity than

those of pathological subjects [18] [19].

A. Recordings

The EEG data of 2 epileptic patients recorded in Université

Libre de Bruxelles; Hôpital Erasme (agreement of local ethical

committee P2015/242) were analyzed. Patient 1 (10 years old

male) was diagnosed with epilepsy with CSWS. The epileptic

focus was clinically localized on T5 (10-20 system). Patient 2

(9 years old male) was diagnosed with BECTS with the focus

being on C3 (10-20 system).

For each patient, two sessions of recordings were made,

T0 being the baseline and T1 being 4 to 6 weeks after T0

while a certain AED was successfully administered in this

period. Patient 1 was treated with lamotrigine, ethosuximide,

and clobazam, while Patient 2 was treated with levetiracetam.

Both patients had their resting state EEG recorded while

they were lying down for around 20 minutes. The acquisition

was done using high density EEG (HD-EEG) with 256 elec-

trodes (Electrical Geodesics, Inc.). The reference was the Cz

electrode and the sampling frequency was 1000 Hz.

B. Preprocessing and Application

All the recordings were preprocessed in the same way.

A high order band-pass filter between 0.5 Hz and 45 Hz

with a transition bandwidth of 0.22 Hz was applied. Then,

independent component analysis (ICA) [20] was performed

in order to isolate artifact-related components and discard

them before reconstructing the artifact-free signals. Finally, the

signals were visually examined by a trained neurophysiologist

to identify the spikes, and 40 spike-free epochs with eyes open

(1 second long) were extracted from each session recording.

Five regions of interest were taken from the 256 electrodes

(Central (C), Left Central (LC), Right Central (RC), Left

Temporal (LT), and Right Temporal (RT)). Figure 3 shows the

position of those regions with respect to the whole net. We are

interested in those regions because this is where we expect the

irregularity change to take place since the foci, as mentioned

in Sec. V-A, are central and temporal (since it is the nature

of the syndromes). The new proposed sample entropy method

was applied on the epoched multivariate signals of those five

regions. The threshold was r = 0.15×standard deviation of

the normalized signal and m = 2 for all the channels.

C. Results and Discussion

For both patients, the sample entropy results are presented

in Fig. 4. To objectively define the significance of the entropy

changes, a Friedman test was applied on the results. Those

regions with p-values < 0.02, with Bonferroni correction

for multiple comparisons, are considered to have significant

differences between T0 and T1, and are marked with ‘*’.

For Patient 1, C, LC, and LT regions show a significant

increase in sample entropy value. This suggests that the patient

is responding with the medication and is approaching the

healthy case [18] [19]. Besides, the regions that showed the

significant increase are in correspondence with the clinical

localization of the focus (T5). Patient 2 shows significant

increase for only the LC region. This could have the same

explanation as of Patient 1. The region of significance is also

in correspondence with the clinical localization of the focus

(C3). These results confirm the findings done in a previous

study [21] as the irregularity of the EEG signals increased

after almost one month of treatment.
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Fig. 4. Results obtained with the proposed sample entropy method on 40 epochs of two sessions for two subjects of the 5 regions. Epochs are 1 second long
(1000 Hz). The threshold was r = 0.15×standard deviation of the normalized signal and m = 2 for all the channels. Regions with statistically significant
differences between T0 and T1 are marked with ‘*’. Friedman test was applied with significance threshold p-value= 0.02 with Bonferroni correction.

VI. CONCLUSION

Sample entropy has been commonly used in several fields,

especially medical. In this paper, we reviewed the sample

entropy approach and its existing multivariate extension and

proposed a new approach for sample entropy of multivariate

signals. Existing and proposed methods were applied on

synthetic data. Results showed that the proposed method

overcomes the drawback of the existing method that it fails

to handle relatively large numbers of channels. Moreover,

proposed method was applied to real EEG data verifying

reliability of the method.

For future work, this method could be adopted for other

entropy measures to be extended to the multivariate approach.
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