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Abstract—Resistive random access memories (RRAM) are
novel nonvolatile memory technologies, which can be embedded
at the core of CMOS, and which could be ideal for the in-memory
implementation of deep neural networks. A particularly exciting
vision is using them for implementing Binarized Neural Networks
(BNNs), a class of deep neural networks with a highly reduced
memory footprint. The challenge of resistive memory, however,
is that they are prone to device variation, which can lead to bit
errors. In this work we show that BNNs can tolerate these bit
errors to an outstanding level, through simulations of networks
on the MNIST and CIFARI10 tasks. If a standard BNN is used,
up to 10~ bit error rate can be tolerated with little impact
on recognition performance on both MNIST and CIFAR10. We
then show that by adapting the training procedure to the fact
that the BNN will be operated on error-prone hardware, this
tolerance can be extended to a bit error rate of 4 x 1072, The
requirements for RRAM are therefore a lot less stringent for
BNNs than more traditional applications. We show, based on
experimental measurements on a RRAM H fO; technology, that
this result can allow reduce RRAM programming energy by a
factor 30.

I. INTRODUCTION

Deep neural networks have made fantastic achievements in
recent years [1]. Unfortunately, their high energy consumption
limits their use in embedded applications [2], [3]. The in-
or near-memory hardware implementation of deep neural
networks is widely seen as a solution [2], [4]-[6], as such
implementations could avoid entirely the energy cost of the
von Neumann bottleneck. This is especially true with the
emergence of novel memory technologies such as resistive
random access memory (RRAM), phase change memory
or spin torque magnetoresistive memory, which have made
tremendous progress in recent years [5]. These technologies
provide low-area, fast and non-volatile memory cells, which
can be embedded at the core of CMOS.

A challenge of the in-memory implementation of neural
networks is the high amount of required memory. Binarized
Neural Networks (BNNs) have recently emerged as a possibly
ideal solution [7], [8]. These neural networks, where the synap-
tic weights as well as neuron activation are binary values, can
achieve near state-of-the-art performance on image recognition
tasks, while using only a fraction of the memory used by
conventional neural networks [7], [8]. BNNs are therefore an
excellent candidate for hardware implementation where the
synaptic weights are stored in RRAMs [5], [9].

Nevertheless, despite their outstanding qualities, emerging
memories are prone to device variation [4], [10], which can
cause bit errors. In conventional applications, this is solved
either by relying on error correcting codes [11], or by pro-
gramming memory cells with high energy pulses that lead
to more reliable programming [10]. In this work, based on
the experimental measurements of RRAM cells and system
level simulations, we investigate the impact of bit errors on
in-memory BNNs. We find that BNNs can exhibit outstanding
error tolerance, allowing us to avoid these traditional tech-
niques for dealing with RRAM variability.

After presenting the background of the work (section II):

o We show on several tasks that BNNs have a high toler-

ance to RRAM bit error rate (section III).

o We show that this tolerance can be extended to outstand-
ing levels, if the training process of the BNNs takes
into account the fact the neural networks is going to be
operated on error-prone hardware (section IV).

II. BACKGROUND

Binarized Neural Networks are simplifications of conven-
tional neural networks, where synaptic weights, as well as
neuron activation values, assume binary values (+1 or —1)
instead of real values. In these conditions, the equation for
neuron activation A:

A= Wixy), ()

where X; are the neuron inputs, W; the corresponding synaptic
weights and f the non-linear activation function, is consider-
ably simplified

A =POPCOUNT(XNOR(W;, X;)) > T, (2)

where POPCOUNT is the function that counts the number
of 1s, and T is a learned threshold.

During training, synaptic weights also assume real weights.
The binary weights, equal to the sign of the real weight, are
used in both the forward and backward passes, while the real
weights are updated by the learning rule [7]. Once training
is done, the real weights are no longer needed. BNNs are
therefore extremely attractive for hardware implementation of
inference operation [12] due to their particularly low memory
requirement (one bit per synapse), and due to to the fact that



resource-hungry real multiplications in eq. (1) are replaced by
simple binary XNOR gates in eq. (2). An optimal implemen-
tation would be with RRAM [5], [13]-[15], as RRAM cells
are much more compact than SRAM, and yet non-volatile.
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Fig. 1. (a) Transmission electron microscopy image of a RRAM cell

embedded in a CMOS process. (b-c) Distribution of the resistance states of
RRAM cells in a kilobit array programmed in high resistance state (HRS,
red line) and low resistance state (LRS, blue line). The RRAM array is
programmed with (b) very strong, (c) strong and (d) weak programming
conditions.

TABLE I
RRAM PROGRAMMING CONDITIONS OF FIG. 1(B-D).

Programming condition | Very strong Strong Weak
SET compliance current 600 A 551 A 20pA
RESET voltage 2.5V 2.5V 1.5V
Programming time 100ns 100ns 100ns
Bit error rate <107° 9.7x 107" | 3.3x 1072
Programming energy 120/150pJ 11/14pJ 4/5pJ
(SET/RESET)
Cyclability 100 > 10, 000 > 10°

Nevertheless, the challenge of using RRAMs for in-memory
computing is their device variation. Fig. 1(a) presents the
transmission electron microscopy image of one of our H fO5-
based RRAM cell, integrated in the backend-of-line of a
full CMOS process, on top of the fourth layer of metal,
using the same process as [16]. These memory cells can be
programmed either in Low Resistance State (LRS, meaning
0) or High Resistance State (HRS, meaning 1). Figs. 1(b-d)
show programming statistics of kilobit arrays of such memory
cells. Table I summarizes the programming conditions used in
Figs. 1(b-d), as well as the corresponding RRAM properties:
bit error rate, and cyclability (number of times RRAM devices
can be programmed before definitive failure).

In Fig. 1(b), the devices are programmed with “very strong”
programming conditions (SET compliance current of 600u.A,
RESET voltage of 2.5V, programming time 100ns). These

conditions consume high programming energy, and also lead
to device aging, causing low endurance: the RRAM devices
cannot be programmed more than 100 times. It is seen in
Fig. 1(b) that, despite device variation, the distribution of
resistance of the LRS and HRS do not overlap at 3o, leading
to a bit error rate lower than 1076,

In Fig. 1(c), the devices are programmed with “strong”
programming conditions (SET compliance current of 55u.A,
RESET voltage of 2.5V, programming time 100ns). These
conditions consume 11 times less programming energy than
the previous ones, and also lead to less device aging. The
devices can be programmed more than 10,000 times. The
distribution of resistance of the LRS and HRS do not overlap
at 30, leading to a bit error rate of 9.7 x 1075,

In contrast, in Fig. 1(d), the devices are programmed with
“weak” programming conditions (SET compliance current of
20uA, RESET voltage of 1.5V, programming time 100ns).
These conditions consume thirty times less programming
energy than the very strong ones, and have very reduced
device aging: they can be programmed millions of times The
distribution of resistance of the LRS and HRS do overlap
significantly, leading to a high bit error rate of 3.3 x 1072,

In applications, this issue of device variability can be
dealt with several strategies. Either, we can use very strong
programming conditions, causing high energy consumption,
larger cell area (as the transistor associated with RRAM cells
need to be able to drive high currents), and low endurance.
Alternatively, we can rely on error correcting codes [11],
causing a very significant overhead to implement decoding
circuits [17]. Other strategies such as write termination [18],
[19] and adaptive programming [20] can also reduce the
impact of device variability, but with the cost of strong area
overhead. Now, we look how BNNs can deal with the issue
of device variation in a simpler fashion. This is especially
important as some strategies proposed to enhance bit error
tolerance in synaptic weights such as the reliance on sign-
magnitude representation [21] do not apply to BNNs.

III. BIT ERROR TOLERANCE WITH TRADITIONAL
TRAINING METHOD

To investigate the impact of bit errors due to RRAM device
variation in BNNs with synaptic weights stored in RRAMs,
we performed multiple BNNs simulations. We first consider a
fully connected neural network with two hidden layers of 4096
neurons, a softmax cross entropy loss function and dropout,
illustrated in Fig. 2. We trained this neural network on a
Nvidia Tesla V100 GPU to perform the traditional MNIST
handwritten character recognition task [22] for 1000 epochs.
The BNNs were simulated in the python language using the
deep learning Tensorflow framework, and an identical training
procedure than [7]. Without any bit error, this network achieves
a 1.6% error rate on the test dataset.

We then test the neural network again, but introducing
random bit errors on the synaptic weights, i.e randomly
flipping a fraction +1 weights to —1, and of —1 weights to
+1. Fig 3(a) shows the test recognition rate on MNIST as the
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Fig. 2. Binarized Neural Networks considered within this paper. (a) Fully con-
nected network for MNIST handwritten digit recognition. (b) Convolutional
neural network for CIFAR10 image recognition.

99 ———rrr———r T ———rrr

98 | ]
97 F B

o6 | ]
E (a) MNIST T ]

95' il il il
88— ——rrrr———rrrry

87

Test recognition rate (%)

86 F

85 F
L (b) CIFAR

84 -
1073

1073
Bit error rate (-)

1074

Fig. 3. Recognition rate on the test dataset of (a) the fully connected neural
network for MNIST and (b) the convolutional neural network for CIFAR10,
as a function of the bit error rate over the weights during inference. The neural
networks have been trained in a standard fashion, without weight errors.

function of the weight bit error rate. We see that bit error rate
as high as 10~2 does not affect the recognition rate. With an
error rate of 102 the recognition rate is only slightly reduced
from 1.6% to 1.8%.

To check that this surprising result is not due to the
simplicity of the considered neural network, we also studied a
deep convolutional neural network, trained on the much more
difficult image recognition CIFAR10 task [23]. The structure
of the neural network is presented in Fig. 2. Without bit
errors, the test recognition rate is 87.6%. All simulations were
performed with the Tensorflow deep learning framework [24].

We then perform the simulations including errors. Fig 3(b)
shows the test recognition rate on CIFAR10 as the function of

the weight bit error rate. Overall, the system is only slightly
less robust than in the MNIST case. With an error rate of 1073
the recognition rate is reduced from 87.6% to 87.4%. With an
error rate of 1072 it drops to 86.9%.

We have seen in section II that in RRAMSs, the choice
of programming conditions determines the bit error rate. As
we only need ensure a bit error rate of 10~* to avoid any
recognition rate degradation in both MNIST and CIFARI10
tasks, we therefore do not need to use “very strong” pro-
gramming conditions of Fig. 1 (b) and Table I, but can use
the strong conditions. This saves programming energy, cell
area and enhance the RRAM endurance, with regards to more
conventional applications that would require the reliability of
the very strong programming conditions.

IV. ADAPTING THE TRAINING METHOD CAN EXTEND THE
BIT ERROR TOLERANCE

We now show that the already high robustness seen in
Fig. 3 can be further enhanced if an appropriate training
method is used. For this purpose, we retrain the BNNs, but this
time including bit errors during the training process, and not
only during the testing phase. This way, the training process
takes into account the fact that the BNN will be implemented
on error-prone RRAM-based systems. The devices subject to
errors are chosen independently in training and testing phase:
the training phase assumes that the RRAM-based systems will
have errors, but does not know which devices will be affected.

More precisely, to train the neural network, we added errors
at each iteration. The forward-pass is computed with errors on
weights, e.g. 10% are changed from the original weights W to
Werror. During the backward-pass, we reuse the same value
of weights W,,..,, instead of W to backpropagate through the
whole depth of the neural network.
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Fig. 4. Recognition rate on the test dataset of the fully connected neural
network for MNIST as a function of the bit error rate over the weights during
inference. Dark red curve: no weight error considered during training. Other
curves: the adapted training was used, each curve corresponding to a different
bit error rate on the weights during training.

We now check if this training approach leads to more robust
neural networks. We performed the adapted training procedure



with different error rates during training. Fig. 4 shows the test
error rate on the MNIST task, as a function of bit error rate
during testing, for several error rates during training. We see
that these curves exhibit a maximum when error rate during
testing matches the error rate during training: the network
indeed finds a structure particularly adapted to the number of
bit errors. The recognition rate at this maximum can be very
high. For a bit error rate of 0.15, the recognition rate is 95.9%.
If errors had not been taken into account during training (dark
red line), recognition rate would only be 30.4%. This is quite
astonishing that we can get the neural network to function so
well, with 15% of incorrect weights!

The fact that the recognition rate exhibits a maximum
as a function of bit error rate at test time seems counter
intuitive. This can however be understood due to the particular
properties of BNNs. In these networks, the value of the
neurons is binarized, following eq. (2). Having or not having
bit errors in the weight W; can shift the mean value of
POPCOUNT;(XNOR(W;, X;)). This effect is very strong
in the first layer of the neural network, because in MNIST,
the input pixels are mostly binary (black or white). Because
of this, there can be a situation where when the bit error rate
is shifted, the POPCOUNT value is always below threshold,
or always above threshold 7'. Then, the neuron always has the
same value and is useless for classification. For example, for
a training bit error rate of 0.3, and no bit error at test time,
48% of the first layer neurons are in this situation. Whereas
only 13% of these neurons are in this situation if the 0.3 bit
error rate is used both during training and testing.
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Fig. 5. Recognition rate on the test dataset of the convolutional neural
network for CIFAR10 as a function of the bit error rate over the weights
during inference. Navy curve: no weight error considered during training.
Other curves: the adapted training was used, each curve corresponding to a
different bit error rate on the weights during training.

Fig. 5 shows the results of the same study on the CIFAR10
dataset. The results look slightly different than the MNIST
case, in that the curves do not exhibit maxima: if the network
has been trained with a given bit error rate, having less bit
errors during testing is not detrimental.

This can be explained by going back to the principle

of BNNs. We observed that when presenting CIFARI0,
adding bit errors does not shift significantly the mean val-
ues of POPCOUNT; (X NOR(W;, X;)). The difference with
MNIST comes from the fact that MNIST images are mostly
black and white, whereas the CIFAR10 images feature rich
colors. Because of that, the error-induced shift of the mean
value of POPCOUNT,; (X NOR(W;, X)) is significant in the
case of the first layer of a neural network during MNIST, but
much less significant on CIFAR10.

Once again, using this procedure, extremely high amount
of bit errors can be tolerated. Bit error rates up to 4 x 1072
do not affect the recognition rate. For a bit error rate of 0.15,
the recognition rate is 81.5%, instead of 62.2% if errors had
not been taken into account during training (navy line).

When using RRAM devices, using the adapted training
procedure therefore allows us using directly the “weak” pro-
gramming conditions of Fig. 1 and Table I, despite its high
bit error rate. This can allow us to benefit from its low
programming energy, cell area and high endurance of more
than one million cycles.

V. CONCLUSION

The in-memory implementation of Binarized Neural Net-
works (BNNs) with emerging memories such as RRAM is
an exciting road for ultralow energy embedded artificial in-
telligence. A typical challenge of emerging memories is their
device variation, which can lead to bit errors. In this work, we
have seen that BNNs can tolerate a very high number of bit
errors. The BNN is trained in a conventional manner, up to
10~ bit error rate on the synaptic weights can be tolerated on
both MNIST and CIFAR task. If the BNN, was trained with a
specific procedure taking into account the fact that it will be
operated on error-prone hardware, up 4 x 1072 bit error rate
can be tolerated!

These results can have strong impact on emerging memory
design and optimization toward neural network implementa-
tion. If one accepts to increase device variability and bit error
rate, we saw that is is possible to increase the programming
energy efficiency by a factor of thirty, decrease the area and
increase the endurance of RRAM cells to more than one
million cycles. This can significantly enhance their benefits.
The results of this paper also highlight the robustness of neural
networks, even in the highly digital BNN form, and their
adaptability to the constrains of hardware.
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