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Abstract

We consider a micropolar fluid flow in a two-dimensional domain. We as-
sume that the velocity field satisfies a non-linear slip boundary condition of
friction type on a part of the boundary while the micro-rotation field satisfies
non-homogeneous Dirichlet boundary conditions. We prove the existence and
uniqueness of a solution. Then motivated by lubrication problems we assume
that the thickness and the roughness of the domain are of order 0 < ε << 1
and we study the asymptotic behaviour of the flow as ε tends to zero. By using
the two-scale convergence technique we derive the limit problem which is totally
decoupled for the limit velocity and pressure (v0, p0) on one hand and the limit
micro-rotation Z0 on the other hand. Moreover we prove that v0, p0 and Z0

are uniquely determined via auxiliary well-posed problems.

Keywords: Micropolar fluid, Tresca friction law, asymptotic analysis,
two-scale convergence
2010 MSC: 35Q35, 76A05, 35K86, 76D08, 76M50

1. Description of the problem

Several industrial problems involve nowadays complex fluids like polymers,
colloidal fluids, ferro-liquids or liquid crystals. Such fluids contain suspensions
of rigid particles that undergo rotations and the classical Navier-Stokes theory is
inadequate since it does not take into account the effects of the micro-structures.
The micropolar fluid model has been introduced by A.C. Eringen in [10] in order
to describe the macroscopic behaviour of such fluids under the assumptions
that the particles are randomly oriented or spherical and the deformation of the
particles is neglected. The unknowns are the fluid velocity u = (u1, u2, u3), the
pressure p and the micro-rotation field ω = (ω1, ω2, ω3) which can be interpreted
as the angular velocity field of the micro-particles. Then the equilibrium of
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momentum, of mass and moment of momentum lead to a system of coupled
partial differential equations for the triplet (u, p, ω) (see [10] or [2, 3, 11, 15]).

Motivated by lubrication problems we consider a flow in an infinite journal
bearing. The cross section of the domain is thus given by the gap between two
non-concentric discs which is much smaller that the discs radii. After a radial
cut the fluid domain can be represented as

Ωε × (−∞,+∞), Ωε =
{

(z1, z2) ∈ R2; 0 < z1 < L, 0 < z2 < εhε(z1)
}

where L > 0 and hε is a function of class C∞ which is L-periodic in z1 such that

0 < hm ≤ hε(z1) ≤ hM for all z1 ∈ R.

By assuming that the flow and the external excitation fields do not depend on
the coordinate along the longitudinal axis of the bearing we obtain a 2D problem
given by

uεt − (ν + νr)∆u
ε + (uε · ∇)uε +∇pε = 2νrrot(ωε) + fε in (0, T )× Ωε (1)

div(uε) = 0 in (0, T )× Ωε (2)

ωεt − α∆ωε + (uε · ∇)ωε + 4νrω
ε = 2νrrot(uε) + gε in (0, T )× Ωε (3)

with the initial conditions

uε(0, ·) = uε0, ωε(0, ·) = ωε0 in Ωε

where T > 0, ν, νr and α are three positive physical parameters and uε =(
uε1(t, z), uε2(t, z)

)
, ωε = ωε3(t, z). Let us emphasize that the choice νr = 0

would allow to decouple the two first equations from the third one and we
would recover the Navier-Stokes system for (uε, pε). For this reason νr is called
the micro-rotation viscosity while ν is called the Newtonian viscosity of the
microplolar fluid.

We decompose ∂Ωε as Γ0 = {z ∈ ∂Ωε : z2 = 0}, Γε1 = {z ∈ ∂Ωε : z2 =
εhε(z1)}, and ΓεL is the lateral part of the boundary. Due to the original geom-
etry of the flow domain, we have

uε, ωε, pε L-periodic with respect to z1.

A first study for non-homogeneous Dirichlet conditions on Γ0 and non-standard
free boundary conditions on Γε1 has been proposed in [7]. Nevertheless, experi-
mental studies ([16, 12]) have shown that non-linear slip boundary conditions of
friction type are more realistic for such complex fluids. Hence we will consider
in this paper non-homogeneous Dirichlet boundary conditions on Γε1 and Tresca
friction boundary conditions for the fluid velocity on Γ0 i.e.

uε =
(
U0(t), 0

)
on (0, T )× Γε1
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where U0 is a given function of the time variable and

uε · n = 0,
∣∣τ · σ(uε, pε) · n

∣∣ ≤ kε on (0, T )× Γ0

with{
|τ · σ(uε, pε) · n| < kε ⇒ uε · τ = s0(t)
|τ · σ(uε, pε) · n| = kε ⇒ uε · τ = s0(t)− λτ · σ(uε, pε) · n, λ ≥ 0

where kε is a positive given function defined on (0, T ) × Γ0 and s0 is a given
function of the time variable corresponding to the Tresca friction threshold for
the shear stress and the velocity of the inner cylinder of the journal bearing,
respectively (see [9]). We have denoted as τ and n the tangent and ouward
normal unit vectors to the boundary and σ(uε, pε) = (σij(u

ε, pε))1≤i,j≤2 is the
Cauchy stress tensor defined as

σij(u
ε, pε) = −pεδij + (ν + νr)

(
∂uεi
∂zj

+
∂uεj
∂zi

)
, 1 ≤ i, j ≤ 2.

For the micro-rotation field we assume

ωε = W0(t) on (0, T )× Γε1, ωε = 0 on (0, T )× Γ0

where W0 is a given function of the time variable.
In order to obtain a variational formulation of the problem we introduce the

following functional spaces. Let

Ṽ ε =
{
v ∈

(
C∞(Ωε)

)2
: v is L− periodic in z1, v|Γε

1
= 0, v · n|Γ0

= 0
}
,

Hε = closure of Ṽ ε in
(
L2(Ωε)

)2
, V ε = closure of Ṽ ε in

(
H1(Ωε)

)2
,

V εdiv =
{
v ∈ V ε : div v = 0 in Ωε

}
,

and for the micro-rotations

H̃1,ε =
{
Z ∈ C∞(Ωε) : Z is L− periodic in z1, Z|Γ0∪Γε

1
= 0
}

H0,ε = closure of H̃1,ε in L2(Ωε), H1,ε = closure of H̃1,ε in H1(Ωε)

endowed with the inner products[[
v̄,Θ

]]
=
(
∇v,∇ϕ

)
+ (∇Z,∇ψ) for all v̄ = (v, Z) and Θ = (ϕ,ψ) in V ε ×H1,ε,

[v̄,Θ] = (v, ϕ) + (Z,ψ) for all v̄ = (v, Z) and Θ = (ϕ,ψ) in Hε ×H0,ε,

and the corresponding norms
[
[v̄]
]

(resp. [v̄]) for all v̄ ∈ V ε × H1,ε (resp.

Hε ×H0,ε). We introduce also

a(v̄,Θ) = (ν + νr)
(
∇v,∇ϕ

)
+ α(∇Z,∇ψ),

R(v̄,Θ) = −2νr(rotZ,ϕ)− 2νr(rot v, ψ) + 4νr(Z,ψ),
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where (·, ·) denotes the inner product of
(
L2(Ωε)

)d
with d = 1, d = 2 or d = 4

and

B(v̄, ū,Θ) = b(v, u, ϕ) + b1(v, w, ψ) =

2∑
i,j=1

∫
Ωε

vi
∂uj
∂zi

ϕjdz +

2∑
i=1

∫
Ωε

vi
∂w

∂zi
ψdz

for all v̄ = (v, Z), ū = (u,w) and Θ = (ϕ,ψ) in V ε ×H1,ε.
Then we define new unknown velocity and micro-rotation fields as

vε(t, z) = uε(t, z)− Uε(t, z2)e1 in (0, T )× Ωε,
Zε(t, z) = ωε(t, z)−W ε(t, z2) in (0, T )× Ωε,

where Uε and W ε are two extensions of U0 and W 0 given by

Uε(t, z2) = s0(t) +
(
U0(t)− s0(t)

)
Uε(z2) = s0(t) +

(
U0(t)− s0(t)

)
U
(z2

ε

)
,

W ε(t, z2) = W0(t)Wε(z2) = W0(t)W
(z2

ε

)
,

with functions U ∈ C∞(R) and W ∈ C∞(R) such that

U(0) = U ′(0) = 0 =W(0),

and

U(X) =W(X) = 1 ∀X ∈ [hm, hM ].

It follows immediately that

Uε(t, 0) = s0(t), Uε(t, εhε(z1)) = U0(t),
∂Uε

∂z2
(t, 0) = 0,

W ε(t, 0) = 0, W ε(t, εhε(z1)) = W0(t),

for all (t, z1) ∈ (0, T )× (0, L). Moreover σ(uε, pε) = σ(vε, pε) on (0, T )× Γ0.

By multiplying (1) and (3) by test-functions and applying Green’s formula
we obtain the following variational formulation of the problem:

Problem (P ε) Find (vε, pε, Zε) such that

v̄ε = (vε, Zε) ∈ L∞(0, T ;Hε ×H0,ε) ∩ L2(0, T ;V εdiv ×H1,ε),

pε ∈ H−1(0, T ;L2
0(Ωε))

and〈 ∂
∂t

[v̄ε,Θ], θ
〉
D′(0,T ),D(0,T )

+

∫ T

0

a(v̄ε,Θ)θ dt+

∫ T

0

B(v̄ε, v̄ε,Θ)θ dt

+

∫ T

0

R(v̄ε,Θ)θ dt+ jε(ϕθ + vε)− jε(vε) ≥
∫ T

0

(pε, divϕ)θ dt

+

∫ T

0

(F(v̄ε),Θ)θ dt ∀Θ = (ϕ,ψ) ∈ V ε ×H1,ε, ∀θ ∈ D(0, T )
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with the initial condition

v̄ε(0, ·) = v̄ε0 = (vε0, Z
ε
0) =

(
uε0 − Uε(0, ·)e1, ω

ε
0 −W ε(0, ·)

)
,

where

(F(v̄ε(t)),Θ) = −a(ξ̄ε(t),Θ)−B(ξ̄ε(t), v̄ε(t),Θ)−B(v̄ε(t), ξ̄ε(t),Θ)

−R(ξ̄ε(t),Θ)− [
∂ξ̄ε

∂t
(t),Θ] + [f̄ε(t),Θ]

with ξ̄ε = (Uεe1,W
ε), f̄ε = (fε, gε) and

jε(w) =

∫ T

0

∫
Γ0

kε|w| dz1dt ∀w ∈ L2
(
0, T ;

(
L2(Γ0)

)2)
.

Let us emphasize that we identify ϕθ + vε and vε with their trace on Γ0 in the
definition of jε(ϕθ + vε) and jε(vε).

The paper is organized as follows. In Section 2 we prove the existence and
uniqueness of a solution to problem (P ε) for any ε > 0. Then motivated by the
asymptotic behaviour of thin flows we study the limit as ε tends to zero. Having
in mind that the roughness of the domain depends also on ε, we consider the
particular scaling of a roughness in inverse proportion of the thickness as usual
in lubrication theory ([6, 7]). In Section 3 we establish some a priori estimates
for the vε, pε and Zε and we apply the two-scale convergence technique to
get a limit velocity v0, pressure p0 and micro-rotation Z0. Finally in Section
4 we derive the limit problem and we prove that v0, p0 and Z0 are uniquely
determined through auxiliary well-posed problems.

2. Existence and uniqueness for (P ε)

Theorem 1. Let (U0,W0, s0) ∈
(
H1(0, T )

)3
, fε ∈ (L2((0, T ) × Ωε))2, gε ∈

L2((0, T ) × Ωε), kε ∈ L∞(0, T ;L∞+ (Γ0)) and (vε0 , Z
ε
0) ∈ Hε × H0,ε. Then

problem (P ε) admits an unique solution.

Proof. In order to establish the existence of a solution we replace Tresca
functional jε by some regularization jεη (η > 0) and we consider the condi-
tion “div vε = 0” as a constraint. Hence we introduce the doubly penalized
problem

Problem (P εηδ) Find (vεηδ, Z
ε
ηδ) such that

v̄εηδ = (vεηδ, Z
ε
ηδ) ∈ L∞(0, T ;Hε ×H0,ε) ∩ L2(0, T ;V ε ×H1,ε)
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and〈 ∂
∂t

[v̄εηδ,Θ], θ
〉
D′(0,T ),D(0,T )

+

∫ T

0

a(v̄εηδ,Θ)θ dt+

∫ T

0

B(v̄εηδ, v̄
ε
ηδ,Θ)θ dt

+
1

2

∫ T

0

(vεηδdiv vεηδ , ϕ)θ dt+
1

2

∫ T

0

(Zεηδdiv vεηδ , ψ)θ dt+ j′
ε
η(vεηδ, ϕθ)

=

∫ T

0

(
−1

δ
div vεηδ , divϕ

)
θ dt+

∫ T

0

(F(v̄εηδ),Θ)θ dt−
∫ T

0

R(v̄εηδ,Θ)θ dt

∀Θ = (ϕ,ψ) ∈ V ε ×H1,ε, ∀θ ∈ D(0, T )

with the initial condition

v̄εηδ(0) = v̄ε0

where

jεη(w) =

∫ T

0

∫
Γ0

kε
√
η2 + |w|2 dz1dt ∀w ∈ L2

(
0, T ;

(
L2(Γ0)

)2)
and j′

ε
η(w,ϕθ) denotes the Gateaux derivative of jεη at w in the direction ϕθ.

Let us observe that −1

δ
divvεηδ (δ > 0) can be interpreted as an approximate pres-

sure while the two terms
1

2

∫ T

0

(vεηδdiv vεηδ , ϕ)θ dt and
1

2

∫ T

0

(Zεηδdiv vεηδ , ψ)θ dt

are added for technical reasons. Indeed, in this approximate problem the veloc-
ity is not anymore divergence free. Hence the trilinear term B(v̄εηδ, v̄

ε
ηδ, Θ̄) does

not vanish anymore when we choose Θ̄ = v̄εηδ and these two additional terms

are introduced in order to cancel with B(v̄εηδ, v̄
ε
ηδ, Θ̄) when Θ̄ = v̄εηδ.

Then we prove the existence of a solution to Problem (P εηδ) by using a
Galerkin method. Indeed let (Φj)j≥1 and (Ψj)j≥1 be Hilbertian bases of V ε

and H1,ε, respectively such that (Φj)j≥1 and (Ψj)j≥1 are orthogonal for the

inner product of
(
H1(Ωε)

)2
and H1(Ωε) and orthonormal for the inner product

of
(
L2(Ωε)

)2
and L2(Ωε), respectively. Then for all m = (m1,m2) with m1 ≥ 1

and m2 ≥ 1 we let

vεηδm1
(t, z) =

m1∑
j1=1

vεηδj1(t)Φj1(z), Zεηδm2
(t, z) =

m2∑
j2=1

Zεηδj2(t)Ψj2(z)

such that v̄εηδm = (vεηδm1
, Zεηδm2

) satisfies[
∂v̄εηδm
∂t

,Θj

]
+ a(v̄εηδm,Θj) +B(v̄εηδm, v̄

ε
ηδm,Θj) +

1

2
(vεηδmdiv vεηδm , Φj1)

+
1

2
(Zεηδmdiv vεηδm , Ψj2) +

∫
Γ0

kε
vεηδm · Φj1√
η2 +

∣∣vεηδm∣∣2 dz1dt

=
(
−1

δ
divvεηδm , divΦj1

)
+ (F(v̄εηδm),Θj)−R(v̄εηδm,Θj)

∀Θj = (Φj1 ,Ψj2), ∀(j1, j2) ∈ {1, . . . ,m1} × {1, . . . ,m2}

(4)
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with the initial condition

v̄εηδm(0) = v̄ε0m = (vε0m1
, Zε0m2

) (5)

where vε0m1
and Zε0m2

are the orthogonal projections of vε0 and Zε0 on the finite-
dimentional subspaces 〈Φ1, . . . ,Φm1

〉 and 〈Ψ1, . . . ,Ψm2
〉 with respect to the

inner product of
(
L2(Ωε)

)2
and L2(Ωε), respectively. The nonlinear differential

system (4)-(5) for the scalar functions (vεηδj1 , Z
ε
ηδj2

)1≤j1≤m1,1≤j2≤m2
admits a

unique maximal solution in
(
H1(0, Tm)

)m1+m2
with Tm ∈ (0, T ].

By choosing v̄εηδm as test-function we obtain[
∂v̄εηδm
∂t

, v̄εηδm

]
+ a(v̄εηδm, v̄

ε
ηδm) +

∫
Γ0

kε
vεηδm · vεηδm√
η2 +

∣∣vεηδm∣∣2 dz1dt

︸ ︷︷ ︸
≥0

=
(
−1

δ
divvεηδm , divvεηδm

)
+ (F(v̄εηδm), v̄εηδm)−R(v̄εηδm, v̄

ε
ηδm)

and we recover the same energy inequality as in [7] i.e.

1

2

∂

∂t

(
‖vεηδm‖2(L2(Ωε))2 + ‖Zεηδm‖2L2(Ωε)

)
+ (ν + νr)‖∇vεηδm‖2(L2(Ωε))4

+α‖∇Zεηδm‖2(L2(Ωε))2 +
1

δ
‖div vεηδm‖2L2(Ωε) ≤ (F(v̄εηδm), v̄εηδm)−R(v̄εηδm, v̄

ε
ηδm).

Therefore we infer that that Tm = T and there exists a constant C > 0 inde-
pendent of m, δ and η such that

[
v̄εηδm(t)

]2
+ k

∫ t

0

[
[v̄εηδm(s)]

]2
ds+

2

δ

∫ t

0

∥∥div vεηδm(s)
∥∥2
ds ≤ C ∀t ∈ [0, T ]

where k = min{ν, α} (see Theorem 2.2 in [7]).
Moreover, for all Θ = (ϕ,ψ) ∈ V ε ×H1,ε, let Θm = (ϕm1 , ψm2) where ϕm1

and ψm2
are the projections of ϕ and ψ on 〈Φ1, . . . ,Φm1

〉 and 〈Ψ1, . . . ,Ψm2
〉

with respect to the inner product of
(
H1(Ωε)

)2
and H1(Ωε), respectively. Since

(Φj)j≥1 and (Ψj)j≥1 are orthonormal for the inner product of
(
L2(Ωε)

)2
and

L2(Ωε) we have(
∂vεηδm
∂t

, ϕ

)
=

(
∂vεηδm
∂t

, ϕm1

)
,

(
∂Zεηδm
∂t

, ψ

)
=

(
∂Zεηδm
∂t

, ψm2

)
and with the same kind of computations as in Theorem 2.2 in [7] we obtain∥∥∥∥∂vεηδm∂t

∥∥∥∥
L4/3(0,T ;(V ε)′)

≤ C,
∥∥∥∥∂Zεηδm∂t

∥∥∥∥
L4/3(0,T ;(H1,ε)′)

≤ C.

where C > 0 is a constant independent of m and η (see also Lemma 4.2 in [5]).
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Then by using compactness arguments (see Theorem 2.2 in [7] and Theorem
4.4, Theorem 6.1 and Theorem 6.3 in [5]) we pass to the limit as m1, m2 tend
to +∞, then as δ tends to zero and finally as η tends to zero.

In order to prove uniqueness of the solution to Problem (P ε), we use Sobolev’s
inequalities. Indeed, since Ωε ⊂ R2, there exists a constant C(Ωε) > 0 such that∣∣b(u, u, w)

∣∣ =
∣∣b(u,w, u)

∣∣ ≤ ‖u‖2(L4(Ωε))2‖w‖(H1(Ωε))2

≤ C(Ωε)‖u‖(L2(Ωε))2‖u‖V ε‖w‖V ε ∀(u,w) ∈ V εdiv × V ε,

and ∣∣b1(u,w, ψ)
∣∣ =

∣∣b(u, ψ,w)
∣∣ ≤ ‖u‖(L4(Ωε))2‖w‖L4(Ωε)‖ψ‖H1(Ωε)

≤ C(Ωε)‖u‖1/2(L2(Ωε))2‖u‖1/2V ε ‖w‖1/2L2(Ωε)‖w‖
1/2
H1,ε‖ψ‖H1,ε

∀(u,w, ψ) ∈ V εdiv ×
(
H1,ε

)2
.

HenceB(v̄ε, v̄ε, ·) ∈ L2
(
0, T ; (V ε×H1,ε)′

)
. By using the same technique as in

Lemma 3.1 and Proposition 3.1 in [4] we infer that
∂v̄ε

∂t
∈ L2(0, T ; (V εdiv×H1,ε)′)

which implies uniqueness of the solution and v̄ε ∈ C([0, T ];Hε ×H1,ε). �

Remark 1. Since
∂v̄ε

∂t
∈ L2(0, T ; (V εdiv ×H1,ε)′) we have

〈 ∂
∂t

[v̄ε,Θ], θ
〉
D′(0,T ),D(0,T )

=

∫ T

0

〈∂v̄ε
∂t

, Θθ︸︷︷︸
Θ̄

〉
(V ε

div×H1,ε)′,V ε
div×H1,ε

dt

for all Θ ∈ V εdiv × H1,ε and for all θ ∈ D(0, T ). By density of D(0, T ) ⊗
(V εdiv ×H1,ε) into L2

(
0, T ;V εdiv ×H1,ε

)
we may consider any test-function Θ̄ ∈

L2
(
0, T ;V εdiv ×H1,ε

)
.

3. A priori estimates and two-scale convergence limit

As usual in lubrication theory the roughness of the flow domain depends also
on ε and is inversely proportional to its thickness (see [6, 7]). Hence we assume

from now on that hε(z1) = h
(
z1,

z1

ε

)
with

L

ε
∈ N, h : (z1, η1) 7→ h(z1, η1) is L− periodic in z1 and 1− periodic in η1

and h ∈ C∞(R2) is bounded from above and from below by two positive real
numbers hM and hm.

Let us observe that the roughness introduces a rapid scale variable
z1

ε
in the

horizontal direction. So motivated by the asymptotic behaviour as ε tends to
zero we introduce the following scaling

y1 = z1, y2 =
z2

εhε(z1)

8



which transforms Ωε into the rectangle Ω = (0, L) × (0, 1) and we let Γ1 =
[0, L]× {1}, ΓL = {0, 1} × [0, 1]. With the chain rule we obtain

∂

∂z2
=

1

εhε
∂

∂y2
,

∂

∂z1
=

∂

∂y1

∂y1

∂z1
+

∂

∂y2

∂y2

∂z1
=

∂

∂y1
+

(
− y2

hε
∂hε

∂y1

)
∂

∂y2

and we introduce the differential operator bε · ∇ as

∂

∂z1
=

(
1,− y2

hε
∂hε

∂y1

) ∂
∂y1

∂
∂y2

 def
= bε · ∇

We can now consider the unknown velocity, pressure and micro-rotation
fields as functions of the time variable t and the original space variable (z1, z2)
or as functions of t and the new rescaled space variables (y1, y2). For the sake
of notational simplicity we will still denote them as vε, pε and Zε whatever we
choose as space variables i.e.

vε(t, z1, z2) = vε(t, y1, εh
ε(y1)y2) ∀(t, z) ∈ (0, T )× Ωε

:= vε(t, y1, y2) ∀(t, y) ∈ (0, T )× Ω,

and similarly

pε(t, z) := pε(t, y), Zε(t, z) := Zε(t, y)
fε(t, z) := fε(t, y), gε(t, z) := gε(t, y).

We obtain the following a priori estimates.

Proposition 1. Let us assume that ε2f̄ε is bounded in
(
L2
(
(0, T ) × Ω

))3
,

εv̄ε0 is bounded in
(
L2(Ω)

)3
and εkε is bounded in L∞

(
0, T ;L∞+ (Γ0)). Let

(U0,W0, s0) ∈
(
H1(0, T )

)3
. Then there exists a constant C > 0 independent

of ε such that∥∥(εbε · ∇vεi )
∥∥
L2((0,T )×Ω)

≤ C,
∥∥(εbε · ∇Zε)

∥∥
L2((0,T )×Ω)

≤ C, (6)

∥∥∥∥∂vεi∂y2

∥∥∥∥
L2((0,T )×Ω)

≤ C,
∥∥∥∥∂Zε∂y2

∥∥∥∥
L2((0,T )×Ω)

≤ C, (7)

∥∥∥∥∂vεi∂y1

∥∥∥∥
L2((0,T )×Ω)

≤ C

ε
,

∥∥∥∥∂Zε∂y1

∥∥∥∥
L2((0,T )×Ω)

≤ C

ε
, (8)

‖vεi ‖L2((0,T )×Ω) ≤ C, ‖Zε‖L2((0,T )×Ω) ≤ C, ε2‖pε‖H−1(0,T ;L2(Ω)) ≤ C (9)

for i = 1, 2 and

‖vε1‖L2((0,T )×Γ0) ≤ C (10)

where vε1 is identified with its trace on Γ0.
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Proof. In Problem (P ε) we choose the test-function Θ̄ = −v̄ε1|[0,s] with s ∈
[0, T ] and we get:∫ s

0

〈∂v̄ε
∂t

, v̄ε
〉

(V ε
div×H1,ε )′,V ε

div×H1,ε dt+

∫ s

0

a(v̄ε, v̄ε) dt

+

∫ s

0

B(v̄ε, v̄ε, v̄ε)︸ ︷︷ ︸
=0

dt+

∫ s

0

R(v̄ε, v̄ε) dt+

∫ s

0

∫
Γ0

kε|vε|︸ ︷︷ ︸
≥0

dz1dt

≤
∫ s

0

(pε , div vε)︸ ︷︷ ︸
=0

dt−
∫ s

0

a(ξ̄ε, v̄ε) dt−
∫ s

0

B(ξ̄ε, v̄ε, v̄ε)︸ ︷︷ ︸
=0

dt

−
∫ s

0

B(v̄ε, ξ̄ε, v̄ε) dt−
∫ s

0

R(ξ̄ε, v̄ε) dt−
∫ s

0

[
∂ξ̄ε

∂t
, v̄ε] dt+

∫ s

0

[f̄ε, v̄ε] dt.

Then we rewrite all these integrals by using the rescaled variables (y1, y2)
and we apply Young’s inequality and Gronwall’s lemma to derive (6)-(9). The
reader is referred to Proposition 3.2 and Proposition 3.3 in [7] for the detailed
computations. Finally by using Poincaré’s inequality

‖w1‖L2(Γ0) ≤
∥∥∥∥∂w1

∂y2

∥∥∥∥
L2(Ω)

for all w in the closure in
(
H1(Ω)

)2
of Ṽ with

Ṽ =
{
v ∈

(
C∞(Ω)

)2
: v is L− periodic in y1, v|Γ1

= 0, v · n|Γ0
= 0
}

we obtain (10). �

In order to keep some information at the limit about the dependence of the
flow with respect to the rapid scale oscillations of the boundary we choose to
apply the two-scale convergence technique, introduced by G. Nguetseng ([18])
and G. Allaire ([1]) in the framework of elliptic partial differential equations and
extended later on to time-dependent problems (see for instance [17, 13, 19, 7]).
For the convenience of the reader let us recall the definition and main results of
two-scale convergence.

Let O be an open bounded subset of Rd with d ≥ 1, Y = [0, 1]d,

C∞] (Y ) =
{
ϕ ∈ C∞(Rd) : ϕ is Y -periodic

}
,

and

H1
] (Y ) = closure of C∞] (Y ) in H1(Y ).

Definition 1. A sequence (wε)ε>0 of L2
(
(0, T )×O

)
(resp. H−1

(
0, T ;L2(O)

)
)

two-scale converges to w0 ∈ L2
(
0, T ;L2(O×Y )

)
(resp. w0 ∈ H−1

(
0, T ;L2(O×

Y )
)
) if and only if

lim
ε→0

∫ T

0

∫
O
wε(t, y)ϕ

(
y,
y

ε

)
θ(t) dydt =

∫ T

0

∫
O×Y

w0(t, y, η)ϕ(y, η)θ(t) dηdydt

10



for all θ ∈ D(0, T ), for all ϕ ∈ D
(
O; C∞] (Y )

)
. In such a case we will denote

wε →→ w0.

Remark 2. We may consider less regular test-functions namely test-functions
in C

(
[0, T ]; C

(
O; C](Y )

))
(resp. C1

0

(
[0, T ]; C

(
O; C](Y )

))
). With Lemma 1.3 in [1]

we obtain immediately that any sequence (wε)ε>0 with wε(t, y) = w
(
t, y,

y

ε

)
for all (t, y) ∈ (0, T )×O and w ∈ C

(
[0, T ]; C

(
O; C](Y )

))
two-scale converges to

w.

Theorem 2 (Theorem 4.2 in [7]). Let (wε)ε>0 be bounded in L2
(
(0, T )×O

)
(resp. in H−1

(
0, T ;L2(O)

)
). There exists w0 ∈ L2

(
0, T ;L2(O × Y )

)
(resp.

w0 ∈ H−1
(
0, T ;L2(O × Y )

)
) such that, possibly extracting a subsequence still

denoted (wε)ε>0, we have

wε →→ w0.

Then, having in mind the previous a priori estimates for vε we obtain

Proposition 2 (Two-scale limit of the velocity). Let us assume that ε2f̄ε

is bounded in
(
L2
(
(0, T )×Ω

))3
, εv̄ε0 is bounded in

(
L2(Ω)

)3
and εkε is bounded

in L∞
(
0, T ;L∞+ (Γ0)). Let (U0,W0, s0) ∈

(
H1(0, T )

)3
.

There exist v0 ∈
(
L2
(
0, T ;L2(Ω;H1

] (Y ))
))2

such that
∂v0

∂y2
∈
(
L2
(
0, T ;L2(Ω×

Y )
))2

and v1 ∈
(
L2
(
0, T ;L2

(
Ω× (0, 1);H1

] (0, 1)/R)
))2

such that, for i = 1, 2:

vεi →→ v0
i ,

∂vεi
∂y2
→→ ∂v0

i

∂y2
+
∂v1

i

∂η2
, ε

∂vεi
∂y1
→→ ∂v0

i

∂η1
.

Furthermore v0 does not depend on η2, v0 is divergence free in the following
sense

h(y1, η1)
∂v0

1

∂η1
− y2

∂h

∂η1
(y1, η1)

∂v0
1

∂y2
+
∂v0

2

∂y2
= 0 in (0, T )× Ω× (0, 1),

and satisfies the following boundary conditions

v0 = 0 on (0, T )× Γ1 × (0, 1), v0 · n = v0
2 = 0 on (0, T )× Γ0 × (0, 1).

Moreover

vε1 →→ v0
1 on (0, T )× Γ0 × (0, 1).

Proof. The first part of the result is obtained as in Proposition 4.3 in [7] and
there remains only to establish the properties of v0 on the boundary.
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With (10) we know that the sequence (vε1(·, ·, 0))ε>0 is uniformly bounded in
L2
(
(0, T )×Γ0

)
= L2

(
(0, T )× (0, L)

)
hence it admits a two-scale limit, denoted

as ξ = ξ(t, y1, η1). We choose ϕ ∈ C∞
(
Ω; C∞] (0, 1)

)
and θ ∈ D(0, T ):∫ T

0

∫
Ω

∂vε1
∂y2

(t, y)ϕ
(
y,
y1

ε

)
θ(t) dydt = −

∫ T

0

∫
Ω

vε1(t, y)
∂ϕ

∂y2

(
y,
y1

ε

)
θ(t) dydt

−
∫ T

0

∫ L

0

vε1(t, y1, 0)ϕ
(
y1, 0,

y1

ε

)
θ(t) dydt.

We pass to the limit as ε tends to zero:∫ T

0

∫
Ω×Y

∂v0
1

∂y2
(t, y, η1)ϕ(y, η1)θ(t) dηdydt

+

∫ T

0

∫
Ω×Y

∂v1
1

∂η2
(t, y, η)ϕ(y, η1)θ(t) dηdydt︸ ︷︷ ︸

=0

= −
∫ T

0

∫
Ω×Y

v0
1(t, y, η1)

∂ϕ

∂y2
(y, η1)θ(t) dηdydt

−
∫ T

0

∫
(0,L)×(0,1)

ξ(t, y1, η1)ϕ(y1, 0, η1)θ(t) dη1dy1dt.

With Green’s formula we get

v0
1 = ξ on (0, T )× Γ0 × (0, 1), v0

1 = 0 on (0, T )× Γ1 × (0, 1).

Starting now from

∫ T

0

∫
Ω

∂vε2
∂y2

(t, y)ϕ
(
y,
y1

ε

)
θ(t) dydt we obtain also

v0
2 = 0 on (0, T )× (Γ0 ∪ Γ1)× (0, 1).

�

Similarly we have

Proposition 3 (Two-scale limit of the micro-rotation). Assume that ε2f̄ε

is bounded in
(
L2
(
(0, T )×Ω

))3
, εv̄ε0 is bounded in

(
L2(Ω)

)3
and εkε is bounded

in L∞
(
0, T ;L∞+ (Γ0)). Let (U0,W0, s0) ∈

(
H1(0, T )

)3
.

There exist Z0 ∈ L2
(
0, T ;L2(Ω;H1

] (Y ))
)

such that
∂Z0

∂y2
∈ L2

(
0, T ;L2(Ω× Y )

)
and Z1 ∈ L2

(
0, T ;L2

(
Ω× (0, 1);H1

] (0, 1)/R
))

such that

Zε →→ Z0,
∂Zε

∂y2
→→ ∂Z0

∂y2
+
∂Z1

∂η2
, ε

∂Zε

∂y1
→→ ∂Z0

∂η1
.

Furthermore Z0 does not depend on η2, and Z0 ≡ 0 on (0, T )×(Γ0∪Γ1)×(0, 1).
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Proposition 4 (Two-scale limit of the pressure). Let us assume that ε2f̄ε

is bounded in
(
L2
(
(0, T )×Ω

))3
, εv̄ε0 is bounded in

(
L2(Ω)

)3
and εkε is bounded

in L∞
(
0, T ;L∞+ (Γ0)). Let (U0,W0, s0) ∈

(
H1(0, T )

)3
.

There exists p0 ∈ H−1
(
0, T ;L2(Ω × Y )

)
such that, possibly extracting a subse-

quence still denoted (pε)ε>0, we have

ε2pε →→ p0.

Moreover p0 depends only on t and y1, p0 ∈ H−1
(
0, T ;H1

] (0, L)
)
,
∂p0

∂y1
∈

L2
(
(0, T )× (0, L)

)
and∫ L

0

p0(t, y1)

(∫ 1

0

h(y1, η1) dη1

)
dy1 = 0 in D′(0, T ).

Proof. The reader is referred to the proofs of Proposition 4.4 and Proposition
4.5 in [7].

4. The limit problem

There remains to identify the limit problem for (v0, p0, Z0). Let us recall
the definition of the differential operator bε · ∇:

bε · ∇ =

(
1,− y2

hε
∂hε

∂y1

) ∂
∂y1

∂
∂y2

 .

We observe that

εbε · ∇vεi = ε
∂vεi
∂y1

(y)− y2

h
(
y1,

y1

ε

) (ε ∂h
∂y1

(
y1,

y1

ε

)
+

∂h

∂η1

(
y1,

y1

ε

)) ∂vεi
∂y2

(y)

→→ ∂v0
i

∂η1
(y, η1)− y2

h(y1, η1)

∂h

∂η1
(y1, η1)

(
∂v0

i

∂y2
(y, η1) +

∂v1
i

∂η2
(y, η)

)
for i = 1, 2. Hence we get a limit differential operator defined as

b̄ · ∇ =

(
1,−y2

h

∂h

∂η1

) ∂
∂η1

∂
∂y2


such that

εbε · ∇vεi →→ b̄ · ∇v0
i −

y2

h

∂h

∂η1

∂v1
i

∂η2

and similarly

bε · ∇Zε →→ b̄ · ∇Z0 − y2

h

∂h

∂η1

∂Z1

∂η2
.
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The appropriate functional framework for the limit problem is thus given by

˜̃
V =

{
ϕ ∈

(
C∞
(
Ω; C∞] (0, 1)

))2
: ϕ is L− periodic in y1, ϕ|Γ1×(0,1)

= 0,

ϕ · n|Γ0×(0,1)
= 0
}
,

Ṽdiv =

{
ϕ ∈ ˜̃V : h

∂ϕ1

∂η1
− y2

∂h

∂η1

∂ϕ1

∂y2
+
∂ϕ2

∂y2
= 0 in Ω× (0, 1)

}
,

Vdiv = closure of Ṽdiv in
(
L2
(
[0, L];F

))2

,

Ṽ0,div =
{
ϕ ∈ Ṽdiv : ϕ|Γ0×(0,1)

= 0
}
, V0,div = closure of Ṽ0,div in

(
L2
(
[0, L];F

))2

,

for the velocity field and for the micro-rotation field

H̃1 =
{
ψ ∈ C∞

(
Ω; C∞] (0, 1)

)
: ψ is L− periodic in y1, ψ|(Γ0∪Γ1)×(0,1)

= 0
}
,

H1
0] = closure of H̃1 in L2

(
[0, L];F

)
,

with

F =

{
ϕ ∈ L2

(
(0, 1);H1

] (0, 1)
)

:
∂ϕ

∂y2
∈ L2

(
(0, 1)× (0, 1)

)}
.

Then we obtain first

Proposition 5. Let (U0,W0, s0) ∈
(
H1(0, T )

)3
and assume that εv̄ε0 is bounded

in
(
L2(Ω)

)3
. Let us assume moreover that there exist f ∈ (C([0, T ]; C(Ω; C](0, 1)))2,

g ∈ C([0, T ]; C(Ω; C](0, 1)) and k ∈ C([0, T ]; C([0, L]; C](0, 1))) such that k takes
its values in R+

∗ , f , g and k are L-periodic in y1 and

ε2fε(t, y) = f
(
t, y,

y1

ε

)
, ε2gε(t, y) = g

(
t, y,

y1

ε

)
, εkε(t, y1) = k

(
t, y1,

y1

ε

)
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for all (t, y) ∈ [0, T ]× Ω. Then v0, p0 and Z0 satisfy

(ν + νr)

∫ T

0

∫
Ω×(0,1)

2∑
i=1

(
h(b · ∇v0

i )(b · ∇ϕi) +
1

h

∂v0
i

∂y2

∂ϕi
∂y2

)
θ dη1dydt

+α

∫ T

0

∫
Ω×(0,1)

(
h(b · ∇Z0)(b · ∇ψ) +

1

h

∂Z0

∂y2

∂ψ

∂y2

)
θ dη1dydt

+

∫ T

0

∫
Ω×(0,1)

∂p0

∂y1
hϕ1θ dη1dydt

= −(ν + νr)

∫ T

0

∫
Ω×(0,1)

(
h(b · ∇U)(b · ∇ϕ1) +

1

h

∂U

∂y2

∂ϕ1

∂y2

)
θ dη1dydt

−α
∫ T

0

∫
Ω×(0,1)

(
h(b · ∇W )(b · ∇ψ) +

1

h

∂W

∂y2

∂ψ

∂y2

)
θ dη1dydt

+

∫ T

0

∫
Ω×(0,1)

fϕθh dη1dydt+

∫ T

0

∫
Ω×(0,1)

gψθh dη1dydt,

∀θ ∈ D(0, T ), ∀Θ = (ϕ,ψ) ∈ V0,div ×H1
0,],

(11)

where

U(t, y1, y2, η1) = s0(t) + (U0(t)− s0(t))U(h(y1, η1)y2),

W (t, y1, y2, η1) = W0(t)W(h(y1, η1)y2),

for all (t, y1, y2, η1) ∈ [0, T ]× Ω× [0, 1].

Proof. Let Θ = (ϕ,ψ) ∈ Ṽ0,div × H̃1 and let Θε = (ϕε, ψε) with

ϕε(z) = ϕ

(
z1,

z2

εhε(z1)
,
z1

ε

)
+

z2

hε(z1)

∂h

∂y1

(
z1,

z1

ε

)
ϕ1

(
z1,

z2

εhε(z1)
,
z1

ε

)
e2

and ψε(z) = ψ

(
z1,

z2

εhε(z1)
,
z1

ε

)
for all (z1, z2) ∈ Ωε. We can check immedi-

ately that Θε ∈ Ṽ ε × H̃1,ε and for any θ ∈ D(0, T ) we have

jε(±ϕεθ + vε)− jε(vε) =

∫ T

0

∫
Γ0

kε
(
| ± ϕεθ + vε| − |vε|

)
dz1dt = 0.

We get

−
∫ T

0

[v̄ε,Θε]θ′ dt+

∫ T

0

a(v̄ε,Θε)θ dt+

∫ T

0

B(v̄ε, v̄ε,Θε)θ dt+

∫ T

0

R(v̄ε,Θε)θ dt

=

∫ T

0

(pε, divϕε)θ dt+

∫ T

0

(F(v̄ε),Θε)θ dt.

Hence we may perform the same computations as in Theorem 5.1 in [7]: we
rewrite these integrals in terms of (y1, y2), we multiply by ε and we pass to the
limit as ε tends to zero. �
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We may observe that the time variable appears now as a parameter in (11).
Moreover by choosing test-functions Θ = (0, ψ) ∈ V0,div × H1

0,] we obtain a

variational equality for Z0 leading to the following limit problem:

Problem (PZ0) Find Z0 ∈ L2(0, T ;H1
0,]) such that

α

∫ L

0

ay1
(Z0, ψ) dy1 = −α

∫ L

0

ay1

(
W (t), ψ

)
dy1

+

∫ L

0

(∫
Y

g(t, y1, ·, ·)h(y1, ·)ψ dη1dy2

)
dy1 ∀ψ ∈ H1

0,], ∀a.e. t ∈ [0, T ]

where ay1
is the bilinear symmetric form defined for all y1 ∈ [0, L] by

ay1(w,ψ) =

∫
Y

(
h(y1, ·)(b̄ · ∇w)(b̄ · ∇ψ) +

1

h(y1, ·)
∂w

∂y2

∂ψ

∂y2

)
dη1dy2

∀(w,ψ) ∈ F 2.

Let us emphasize that we recover the same limit problem for Z0 as in [7]:
this is not surprising since the coupling terms in Problem (P ε) involve only first
order derivatives so they disappear at the limit leading to a decoupled problem
for (v0, p0) on one hand and Z0 on the other hand. As a consequence we have:

Proposition 6 (Proposition 5.2 in [7]). Under the assumptions of Proposi-
tion 5 the limit micro-rotation field Z0 is uniquely given by

Z0(t, y1, y2, η1) = W0(t)z1
y1

(y2, η1) + z2
t,y1

(y2, η1) a.e. in (0, T )× Ω× (0, 1)

where z1
y1
∈ H1

0,y1,]
and z2

t,y1
∈ H1

0,y1,]
are the unique solutions of the following

auxiliary cell problems:

ay1
(z1
y1
, ψ) = −ay1

(
W
(
h(y1, ·)·

)
, ψ
)
∀ψ ∈ H1

0,y1,]

and

ay1(z2
t,y1

, ψ) = α−1

∫
Y

g(t, y1, ·, ·)h(y1, ·)ψ dη1dy2 ∀ψ ∈ H1
0,y1,]

with

H1
0,y1,] = closure of

{
ψ ∈ C∞

(
[0, 1]; C∞] (0, 1)

)
: ψ|{0,1}×(0,1)

= 0
}

in F .

Going back to (11) and choosing Θ = (ϕ, 0) ∈ V0,div ×H1
0,] we obtain

(ν + νr)

∫ T

0

∫
Ω×(0,1)

2∑
i=1

(
h(b · ∇v0

i )(b · ∇ϕi) +
1

h

∂v0
i

∂y2

∂ϕi
∂y2

)
θ dη1dydt

+

∫ T

0

∫
Ω×(0,1)

∂p0

∂y1
hϕ1θ dη1dydt

= −(ν + νr)

∫ T

0

∫
Ω×(0,1)

(
h(b · ∇U)(b · ∇ϕ1) +

1

h

∂U

∂y2

∂ϕ1

∂y2

)
θ dη1dydt

+

∫ T

0

∫
Ω×(0,1)

fϕθh dη1dydt ∀θ ∈ D(0, T ), ∀ϕ ∈ V0,div.

(12)
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Here the test-functions do not satisfy the same boundary conditions as v0

on Γ0 so (12) is not a variational problem for (v0, p0). Nevertheless, starting
from (12) we introduce also well-posed auxiliary cell problems for the velocity.
More precisely for all y1 ∈ [0, L], we let

Ṽy1
=
{
ϕ ∈

(
C∞
(
[0, 1]; C∞] (0, 1)

))2
: ϕ(1, ·) = 0, ϕ2(0, ·) = 0 on (0, 1)

}
,

Ṽy1,div =

{
ϕ ∈ Ṽy1 : h(y1, ·)

∂ϕ1

∂η1
− y2

∂h

∂η1
(y1, ·)

∂ϕ1

∂y2
+
∂ϕ2

∂y2
= 0 in Y

}

Ṽ0y1,div =
{
ϕ ∈ Ṽy1,div : ϕ1(0, ·) = 0 on (0, 1)

}
,

Vy1,div = closure of Ṽy1,div in F 2, V0y1,div = closure of Ṽ0y1,div in F 2

and

āy1
(w,ϕ) = (ν + νr)

2∑
i=1

ay1
(wi, ϕi) ∀(w,ϕ) ∈ V 2

y1,div.

Then, for all (t, y1) ∈ [0, T ] × [0, L], we define w1
y1
, w2

y1
, w3

t,y1
in V0y1,div as

the unique solutions of

āy1(w1
y1
, ϕ) = −

∫
Y

h(y1, ·)ϕ1 dη1dy2 ∀ϕ ∈ V0y1,div

āy1(w2
y1
, ϕ) = −āy1

(
U
(
h(y1, ·)·

)
e1, ϕ

)
∀ϕ ∈ V0y1,div

and

āy1
(w3

t,y1
, ϕ) =

∫
Y

f(t, y1, ·, ·)h(y1, ·)ϕdη1dy2 ∀ϕ ∈ V0y1,div.

By observing that āy1 is coercive on Vy1,div uniformly with respect to y1 (see
Proposition 5.2 in [7]), the continuity properties of h, U and f imply that the
mappings y1 7→ w1

y1
and y1 7→ w2

y1
belong to C]

(
[0, L];V0y1,div

)
and (t, y1) 7→

w3
t,y1

belongs to C
(
[0, T ]; C]

(
[0, L];V0y1,div

))
. So we decompose v0 as

v0(t, y1, y2, η1) =
∂p0

∂y1
(t, y1)w1

y1
(y2, η1) +

(
U0(t)− s0(t)

)
w2
y1

(y2, η1)

+w3
t,y1

(y2, η1) + w∗(t, y1, y2, η1) a.e. in (0, T )× Ω× (0, 1)
(13)

with w∗ ∈ L2(0, T ;Vdiv). With the definition of w1
y1

, w2
y1

and w3
t,y1

we infer that∫ L

0

āy1

(
w∗(t, y1, ·, ·), ϕ(y1, ·, ·)

)
dy1 = 0 ∀ϕ ∈ V0,div, ∀a.e. t ∈ (0, T )
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which may be interpreted as an orthogonality property with respect to V0,div

and we let

V ∗div =

{
w ∈ Vdiv :

∫ L

0

āy1

(
w(y1, ·, ·), ϕ(y1, ·, ·)

)
dy1 = 0 ∀ϕ ∈ V0,div

}
.

Then we obtain that the limit pressure p0 satisfies a Reynolds equation.
More precisely

Proposition 7. Under the assumptions of Proposition 5 the limit pressure p0

can be decomposed as p̄0+p̄1 with p̄0(t, ·) and p̄1(t, ·) given as the unique solutions
in H1

] (0, L)|R of the stationary Reynolds problems∫ L

0

∂p̄0

∂y1

∂ψ

∂y1
āy1

(w1
y1
, w1

y1
) dy1 = −

(
U0(t)− s0(t)

) ∫ L

0

∂ψ

∂y1
āy1

(
w1
y1
, w2

y1

)
dy1

−
∫ L

0

∂ψ

∂y1
āy1

(
w1
y1
, w3

t,y1

)
dy1

and∫ L

0

∂p̄1

∂y1

∂ψ

∂y1
āy1(w1

y1
, w1

y1
) dy1 =

∫ L

0

∂ψ

∂y1

(∫
Y

w∗1(t, y1, ·, ·)h(y1, ·) dη1dy2

)
dy1

for all ψ ∈ H1
] (0, L) such that∫ L

0

p̄i(t, y1)

(∫ 1

0

h(y1, η1) dη1

)
dy1 = 0 ∀a.e. t ∈ (0, T ) i = 0, 1.

Proof. Let θ ∈ D(0, T ), ψ ∈ C∞]
(
[0, L]

)
and ψε(z) = ψ(z1) for all z = (z1, z2) ∈

Ωε. Recalling that divzv
ε = 0 in Ωε we have

0 =
1

ε

∫ T

0

∫
Ωε

(
∂vε1
∂z1

(t, z) +
∂vε2
∂z2

(t, z)

)
ψε(z)θ(t) dzdt

= −1

ε

∫ T

0

∫
Ωε

vε1(t, z)
∂ψε

∂z1
(z)θ(t) dzdt

= −
∫ T

0

∫
Ω

vε1(t, y)
∂ψ

∂y1
(y1)h

(
y1,

y1

ε

)
θ(t) dydt.

By passing to the limit as ε tends to zero we get

0 =

∫ T

0

∫
Ω×(0,1)

v0
1(t, y, η1)

∂ψ

∂y1
(y1)h(y1, η1)θ(t) dη1dydt. (14)
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With (13) we infer that∫ L

0

∂p0

∂y1

∂ψ

∂y1

(∫
Y

w1
y1,1h(y1, ·) dη1dy2

)
︸ ︷︷ ︸

=−āy1
(w1

y1
,w1

y1
)

dy1

+

∫ L

0

(
U0(t)− s0(t)

) ∂ψ
∂y1

(∫
Y

w2
y1,1h(y1, ·) dη1dy2

)
︸ ︷︷ ︸

=−āy1
(w1

y1
,w2

y1
)

dy1

+

∫ L

0

∂ψ

∂y1

(∫
Y

w3
t,y1,1h(y1, ·) dη1dy2

)
︸ ︷︷ ︸

=−āy1
(w1

y1
,w3

t,y1
)

dy1

+

∫ L

0

∂ψ

∂y1

(∫
Y

w∗1(t, y1, ·, ·)h(y1, ·) dη1dy2

)
dy1 = 0 ∀a.e. t ∈ (0, T ).

Moreover let ϕy1 ∈ Ṽ0y1,div be given by

ϕy1
(y2, η1) =

(
y2

2(y2 − 1)

h(y1, η1)
,
∂h

∂η1
(y1, η1)

y2
2(y2

2 − y2)

h(y1, η1)

)
∀(y2, η1) ∈ Y, ∀y1 ∈ [0, L].

We have

1

12
= āy1(w1

y1
, ϕy1) ≤

(
āy1(w1

y1
, w1

y1
)
)1/2(

āy1(ϕy1 , ϕy1)
)1/2 ∀y1 ∈ [0, L]

and the mapping y1 7→ āy1
(ϕy1

, ϕy1
) is continuous from [0, L] to R+

∗ . Hence

1

144 miny1∈[0,L] āy1
(ϕy1

, ϕy1
)
≤ āy1

(w1
y1
, w1

y1
) ∀y1 ∈ [0, L]

and we may conclude. �

Remark 3. We may observe that p̄1 depends linearly and continuously on w∗

i.e. there exists Q ∈ Lc(V ∗div, H1
] (0, L)|R) such that p̄1 = Q(w∗).

It remains to identify the limit problem for v0.

Theorem 3. Let (U0,W0, s0) ∈
(
H1(0, T )

)3
and f ∈ (C([0, T ]; C(Ω; C](0, 1)))2,

g ∈ C([0, T ]; C(Ω; C](0, 1)) and k ∈ C([0, T ]; C([0, L]; C](0, 1))) such that k takes
its values in R+

∗ , f , g and k are L-periodic in y1 and

ε2fε(t, y) = f
(
t, y,

y1

ε

)
, ε2gε(t, y) = g

(
t, y,

y1

ε

)
, εkε(t, y1) = k

(
t, y1,

y1

ε

)
for all (t, y) ∈ [0, T ] × Ω. Let us assume moreover that εZε0 is bounded in
L2(Ω) and that uε0 satisfies the following compatibility condition: there exists
U ∈ C∞(R) such that

U(0) = U ′(0) = 0, U(X) = 1 ∀X ∈ [hm, hM ]
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and

uε0 = s0(0)e1 + (U0(0)− s0(0))U
(z2

ε

)
e1.

Then the limit problem for v0 is given by

Problem (Pv0)∫ T

0

∫ L

0

āy1
(v0, ϕ) dy1dt+

∫ T

0

∫ L

0

∂p0

∂y1

(∫
Y

h(y1, ·)ϕ1 dη1dy2

)
dy1dt

+

∫ T

0

∫
(0,L)×(0,1)

k(|ϕ+ v0| − |v0|) dη1dy1dt ≥ −
∫ T

0

∫ L

0

āy1

(
Ue1, ϕ

)
dy1dt

+

∫ T

0

∫ L

0

(∫
Y

fhϕdη1dy2

)
dy1dt ∀ϕ ∈ L2(0, T ;Vdiv).

Proof. With the compatibility condition for uε0 we may choose the extension
Uε given by

Uε(t, z2) = s0(t) + (U0(t)− s0(t))U
(z2

ε

)
which implies vε0 = 0.

Now let ϕ ∈ Ṽdiv and Θε = (ϕε, 0) with

ϕε(z) = ϕ

(
z1,

z2

εhε(z1)
,
z1

ε

)
+

z2

hε(z1)

∂h

∂y1

(
z1,

z1

ε

)
ϕ1

(
z1,

z2

εhε(z1)
,
z1

ε

)
e2

for all (z1, z2) ∈ Ωε. We have Θε ∈ Ṽ ε×H̃1,ε and we introduce this test-function
in (P ε). Then we introduce Θ̄ε = (−vε, 0) as test-function in (P ε) and we add
the two inequalities. For all θ ∈ D(0, T ) we get

−
∫ T

0

[v̄ε,Θε]θ′ dt+

∫ T

0

a(v̄ε,Θε)θ dt+

∫ T

0

B(v̄ε, v̄ε,Θε)θ dt

+

∫ T

0

R(v̄ε,Θε)θ dt−
∫ T

0

R
(
v̄ε, (vε, 0)

)
dt+ jε(ϕεθ + vε)− jε(vε)︸ ︷︷ ︸

≤jε(ϕεθ)

≥ jε(vε) +

∫ T

0

(pε, divϕε)θ dt+

∫ T

0

(F(v̄ε),Θε)θ dt

−
∫ T

0

(
F(v̄ε), (vε, 0)

)
dt+ (ν + νr)

∫ T

0

(∇vε,∇vε) dt+
1

2
‖vε(T )‖2L2(Ωε)︸ ︷︷ ︸

≥0

.

We rewrite the integrals in terms of (y1, y2) and we multiply by ε. Then we pass
to the limit as ε tends to zero by using the same techniques as in Theorem 5.1

in [7] (see also Proposition 5), except for the quadratic term ε

∫ T

0

(∇vε,∇vε) dt

for which we apply Proposition 1.6 in [1], the boundary term εjε(ϕεθ) which
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converges to

∫ T

0

∫
(0,L)×(0,1)

k(t, y1, η1) |ϕ1(y1, 0, η1)θ(t)| dη1dy1dt thanks to Re-

mark 2 and for the boundary term εjε(vε) for which we apply the following
lemma.

Lemma 4. Let (wε)ε>0 be a bounded sequence of L2
(
0, T ;L2(0, L)

)
and let us

denote as w0 ∈ L2
(
0, T ;L2

(
(0, L)× (0, 1)

))
its two-scale limit. Then

lim inf
ε→0

∫ T

0

∫ L

0

∣∣wε(t, y1)
∣∣ dy1dt ≥

∫ T

0

∫
(0,L)×(0,1)

∣∣w0(t, y1, η1)
∣∣ dη1dy1dt.

Proof. Let us denote as φ the convex, proper and continuous function defined
by φ(s) = |s| for all s ∈ R. The Yosida approximation of A = ∂φ is defined by
Aλ =

{
∇φλ

}
with φλ ∈ C1(R;R) given by

φλ(z) = inf
s∈R

(
φ(s) +

|s− z|2

2λ

)
∀z ∈ R, ∀λ > 0.

With the usual properties about the subdifferential of convex functions (see for
instance Proposition 2.6 and Proposition 2.11 in [8]), we know that φλ is convex,

∇φλ is
1

λ
-Lipschitz continuous and

0 ≤ φλ(z) ≤ φ(z), lim
λ→0

φλ(z) = φ(z) ∀z ∈ R. (15)

Now let λ > 0. For all ε > 0, by using the convexity of φλ we have∫ T

0

∫ L

0

φ
(
wε(t, y1)

)
dy1dt ≥

∫ T

0

∫ L

0

φλ
(
wε(t, y1)

)
dy1dt

≥
∫ T

0

∫ L

0

φλ

(
w
(
t, y1,

y1

ε

))
dy1dt

+

∫ T

0

∫ L

0

∇φλ
(
w
(
t, y1,

y1

ε

))(
wε(t, y1)− w

(
t, y1,

y1

ε

))
dy1dt

for all w ∈ D
(
(0, T ) × (0, L) × (0, 1)

)
. Then we pass to the limit as ε tends to

zero: the left hand side of the previous inequality is bounded, so it admits a
limit inf while the right hand side admits a limit and we obtain

lim infε→0

∫ T

0

∫ L

0

φ
(
wε(t, y1)

)
dy1dt ≥

∫ T

0

∫
(0,L)×(0,1)

φλ (w (t, y1, η1)) dy1dt

+

∫ T

0

∫
(0,L)×(0,1)

∇φλ (w (t, y1, η1))
(
w0(t, y1, η1)− w (t, y1, η1)

)
dy1dt.

Using again the convexity of φλ we infer

lim infε→0

∫ T

0

∫ L

0

φ
(
wε(t, y1)

)
dy1dt ≥

∫ T

0

∫
(0,L)×(0,1)

φλ
(
w0 (t, y1, η1)

)
dy1dt

+

∫ T

0

∫
(0,L)×(0,1)

(
∇φλ

(
w0 (t, y1, η1)

)
−∇φλ (w (t, y1, η1))

)
×
(
w(t, y1, η1)− w0 (t, y1, η1)

)
dy1dt.
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Since w0 ∈ L2
(
0, T ;L2

(
(0, L)×(0, 1)

))
= L2

(
(0, T )×(0, L)×(0, 1)

)
we may con-

sider a sequence (w0
k)k∈N ∈ D

(
(0, T )× (0, L)× (0, 1)

)
which converges strongly

to w0 in L2
(
(0, T )× (0, L)× (0, 1)

)
. Thus

lim inf
ε→0

∫ T

0

∫ L

0

φ
(
wε(t, y1)

)
dy1dt ≥

∫ T

0

∫
(0,L)×(0,1)

φλ
(
w0 (t, y1, η1)

)
dy1dt

for all λ > 0. Finally we pass to the limit as λ tends to zero with Lebesgue’s
theorem. �

We obtain∫ T

0

∫ L

0

āy1
(v0, ϕθ − v0) dy1dt+

∫ T

0

∫ L

0

∂p0

∂y1

(∫
Y

h(y1, ·)ϕ1 dη1dy2

)
θ dy1dt

+

∫ T

0

∫
(0,L)×(0,1)

k(|ϕθ| − |v0|) dη1dy1dt ≥ −
∫ T

0

∫ L

0

āy1

(
Ue1, ϕθ − v0

)
dy1dt

+

∫ T

0

∫
(0,L)×Y

f(ϕθ − v0)h dη1dy1dt ∀θ ∈ D(0, T ), ∀ϕ ∈ Ṽdiv

and we conclude by using the density of D(0, T ) ⊗ Ṽdiv into L2(0, T ;Vdiv) and
(14). �

Remark 4. We may weaken the compatibility condition on uε0 by assuming

only that (εuε0)ε>0 converges to zero in
(
L2(Ω)

)2
.

By replacing v0 by its decomposition (13) we obtain a limit problem for w∗

and we have

Proposition 8. Under the assumptions of Theorem 3, w∗ ∈ L2(0, T ;V ∗div) is
the unique solution of the variational inequality

b
(
w∗, ϕ

)
+

∫ T

0

∫
(0,L)×(0,1)

k
(
|ϕ+ w∗| − |w∗|

)
dη1dy1dt+ T (ϕ) ≥ 0

∀ϕ ∈ L2(0, T ;V ∗div)

(16)

with

b(w,ϕ) =

∫ T

0

∫ L

0

āy1
(w,ϕ) dy1dt+

∫ T

0

∫ L

0

∂Q(w)

∂y1

∂Q(ϕ)

∂y1
āy1

(w1
y1
, w1

y1
) dy1dt

and

T (ϕ) =

∫ T

0

∫ L

0

∂p̄0

∂y1

(∫
Y

hϕ1 dη1dy2

)
dy1dt+

∫ T

0

∫ L

0

āy1

(
Ue1, ϕ

)
dy1dt

−
∫ T

0

∫ L

0

(∫
Y

fhϕdη1dy2

)
dy1dt

for all ϕ ∈ L2(0, T ;V ∗div) and for all w ∈ L2(0, T ;V ∗div).
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Proof. With straighforward computations we obtain (16) and it remains only
to prove that (16) admits a unique solution. Since Q ∈ Lc(V ∗div, H1

] (0, L)|R)

it is clear that b is a bilinear continuous mapping on L2(0, T ;V ∗div). Moreover
āy1

is coercive on Vy1,div for all y1 ∈ [0, L] uniformly with respect to y1 (see
Proposition 5.2 in [7]) which implies that b is coercive on L2(0, T ;V ∗div) and we
may conclude by applying for instance Theorem 8.5 in [14]. �

As a consequence of the uniqueness of w∗, we can state:

Theorem 5. Let (U0,W0, s0) ∈
(
H1(0, T )

)3
and f ∈ (C([0, T ]; C(Ω; C](0, 1)))2,

g ∈ C([0, T ]; C(Ω; C](0, 1)) and k ∈ C([0, T ]; C([0, L]; C](0, 1))) such that k takes
its values in R+

∗ , f , g and k are L-periodic in y1 and

ε2fε(t, y) = f
(
t, y,

y1

ε

)
, ε2gε(t, y) = g

(
t, y,

y1

ε

)
, εkε(t, y1) = k

(
t, y1,

y1

ε

)
for all (t, y) ∈ [0, T ] × Ω. Let us assume moreover that εZε0 is bounded in
L2(Ω) and that uε0 satisfies the following compatibility condition: there exists
U ∈ C∞(R) such that

U(0) = U ′(0) = 0, U(X) = 1 ∀X ∈ [hm, hM ]

and

uε0 = s0(0)e1 + (U0(0)− s0(0))U
(z2

ε

)
e1.

Then the whole sequences (ε2pε)ε>0, (vε)ε>0 and (Zε)ε>0 satisfy the following
convergence:

εpε →→ p̄0 + p̄1

vε →→ v0 =
∂p̄0

∂y1
w1
y1

+ (U0 − s0)w2
y1

+ w3
t,y1

+
∂p̄1

∂y1
w1
y1

+ w∗

Zε →→ Z0 = W0z
1
y1

+ z2
t,y1

.
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Dunod, Paris, 1972.

[10] A.C. Eringen, Theory of micropolar fluids, J. Math. Mech. 16 (1) (1966)
1–16.

[11] A.C. Eringen, Microcontinuum field theories. I. Foundations and solids,
Springer-Verlag, New York, 1999.
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