Mahdi Boukrouche 
  
Laetitia Paoli 
email: laetitia.paoli@univ-st-etienne.fr
  
Fatima Ziane 
  
Unsteady micropolar fluid flow in a thin domain with Tresca fluid-solid interface law

Keywords: Micropolar fluid, Tresca friction law, asymptotic analysis, two-scale convergence 2010 MSC: 35Q35, 76A05, 35K86, 76D08, 76M50

niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Description of the problem

Several industrial problems involve nowadays complex fluids like polymers, colloidal fluids, ferro-liquids or liquid crystals. Such fluids contain suspensions of rigid particles that undergo rotations and the classical Navier-Stokes theory is inadequate since it does not take into account the effects of the micro-structures. The micropolar fluid model has been introduced by A.C. Eringen in [START_REF] Eringen | Theory of micropolar fluids[END_REF] in order to describe the macroscopic behaviour of such fluids under the assumptions that the particles are randomly oriented or spherical and the deformation of the particles is neglected. The unknowns are the fluid velocity u = (u 1 , u 2 , u 3 ), the pressure p and the micro-rotation field ω = (ω 1 , ω 2 , ω 3 ) which can be interpreted as the angular velocity field of the micro-particles. Then the equilibrium of momentum, of mass and moment of momentum lead to a system of coupled partial differential equations for the triplet (u, p, ω) (see [START_REF] Eringen | Theory of micropolar fluids[END_REF] or [START_REF] Ariman | Microcontinuum fluid mechanics -A review[END_REF][START_REF] Ariman | Applications of microcontinuum fluid mechanics[END_REF][START_REF] Eringen | Microcontinuum field theories. I. Foundations and solids[END_REF][START_REF] Lukaszewicz | Micropolar fluids. Theory and Applications, Modeling and Simulation in Science[END_REF]).

Motivated by lubrication problems we consider a flow in an infinite journal bearing. The cross section of the domain is thus given by the gap between two non-concentric discs which is much smaller that the discs radii. After a radial cut the fluid domain can be represented as

Ω ε × (-∞, +∞), Ω ε = (z 1 , z 2 ) ∈ R 2 ; 0 < z 1 < L, 0 < z 2 < εh ε (z 1 )
where L > 0 and h ε is a function of class C ∞ which is L-periodic in z 1 such that 0 < h m ≤ h ε (z 1 ) ≤ h M for all z 1 ∈ R.

By assuming that the flow and the external excitation fields do not depend on the coordinate along the longitudinal axis of the bearing we obtain a 2D problem given by

u ε t -(ν + ν r )∆u ε + (u ε • ∇)u ε + ∇p ε = 2ν r rot(ω ε ) + f ε in (0, T ) × Ω ε (1) div(u ε ) = 0 in (0, T ) × Ω ε (2) 
ω ε t -α∆ω ε + (u ε • ∇)ω ε + 4ν r ω ε = 2ν r rot(u ε ) + g ε in (0, T ) × Ω ε (3) 
with the initial conditions

u ε (0, •) = u ε 0 , ω ε (0, •) = ω ε 0 in Ω ε
where T > 0, ν, ν r and α are three positive physical parameters and u ε = u ε 1 (t, z), u ε 2 (t, z) , ω ε = ω ε 3 (t, z). Let us emphasize that the choice ν r = 0 would allow to decouple the two first equations from the third one and we would recover the Navier-Stokes system for (u ε , p ε ). For this reason ν r is called the micro-rotation viscosity while ν is called the Newtonian viscosity of the microplolar fluid.

We decompose ∂Ω ε as Γ 0 = {z ∈ ∂Ω ε : z 2 = 0}, Γ ε 1 = {z ∈ ∂Ω ε : z 2 = εh ε (z 1 )}, and Γ ε L is the lateral part of the boundary. Due to the original geometry of the flow domain, we have u ε , ω ε , p ε L-periodic with respect to z 1 .

A first study for non-homogeneous Dirichlet conditions on Γ 0 and non-standard free boundary conditions on Γ ε 1 has been proposed in [START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF]. Nevertheless, experimental studies ( [START_REF] Magnin | Shear rheometry of fluids with a yield stress[END_REF][START_REF] Hervet | Flow with slip at the wall: from simple to complex fluids[END_REF]) have shown that non-linear slip boundary conditions of friction type are more realistic for such complex fluids. Hence we will consider in this paper non-homogeneous Dirichlet boundary conditions on Γ ε 1 and Tresca friction boundary conditions for the fluid velocity on Γ 0 i.e.

u ε = U 0 (t), 0 on (0, T ) × Γ ε 1 2
where U 0 is a given function of the time variable and

u ε • n = 0, τ • σ(u ε , p ε ) • n ≤ k ε on (0, T ) × Γ 0 with |τ • σ(u ε , p ε ) • n| < k ε ⇒ u ε • τ = s 0 (t) |τ • σ(u ε , p ε ) • n| = k ε ⇒ u ε • τ = s 0 (t) -λτ • σ(u ε , p ε ) • n, λ ≥ 0
where k ε is a positive given function defined on (0, T ) × Γ 0 and s 0 is a given function of the time variable corresponding to the Tresca friction threshold for the shear stress and the velocity of the inner cylinder of the journal bearing, respectively (see [START_REF] Duvaut | Les Inéquations en Mécanique et en Physique[END_REF]). We have denoted as τ and n the tangent and ouward normal unit vectors to the boundary and σ(u ε , p ε ) = (σ ij (u ε , p ε )) 1≤i,j≤2 is the Cauchy stress tensor defined as

σ ij (u ε , p ε ) = -p ε δ ij + (ν + ν r ) ∂u ε i ∂z j + ∂u ε j ∂z i , 1 ≤ i, j ≤ 2.
For the micro-rotation field we assume

ω ε = W 0 (t) on (0, T ) × Γ ε 1 , ω ε = 0 on (0, T ) × Γ 0
where W 0 is a given function of the time variable.

In order to obtain a variational formulation of the problem we introduce the following functional spaces. Let

V ε = v ∈ C ∞ (Ω ε ) 2 : v is L -periodic in z 1 , v | Γ ε 1 = 0, v • n |Γ 0 = 0 , H ε = closure of V ε in L 2 (Ω ε ) 2 , V ε = closure of V ε in H 1 (Ω ε ) 2 , V ε div = v ∈ V ε : div v = 0 in Ω ε ,
and for the micro-rotations

H 1,ε = Z ∈ C ∞ (Ω ε ) : Z is L -periodic in z 1 , Z | Γ 0 ∪Γ ε 1 = 0 H 0, ε = closure of H 1,ε in L 2 (Ω ε ), H 1, ε = closure of H 1,ε in H 1 (Ω ε ) endowed with the inner products v, Θ = ∇v, ∇ϕ + (∇Z, ∇ψ) for all v = (v, Z) and Θ = (ϕ, ψ) in V ε × H 1, ε , [v, Θ] = (v, ϕ) + (Z, ψ) for all v = (v, Z) and Θ = (ϕ, ψ) in H ε × H 0, ε , and the corresponding norms [v] (resp. [v]) for all v ∈ V ε × H 1, ε (resp. H ε × H 0, ε ). We introduce also a(v, Θ) = (ν + ν r ) ∇v, ∇ϕ + α(∇Z, ∇ψ), R(v, Θ) = -2ν r (rot Z, ϕ) -2ν r (rot v, ψ) + 4ν r (Z, ψ), where (•, •) denotes the inner product of L 2 (Ω ε ) d with d = 1, d = 2 or d = 4 and B(v, ū, Θ) = b(v, u, ϕ) + b 1 (v, w, ψ) = 2 i,j=1 Ω ε v i ∂u j ∂z i ϕ j dz + 2 i=1 Ω ε v i ∂w ∂z i ψdz for all v = (v, Z), ū = (u, w) and Θ = (ϕ, ψ) in V ε × H 1, ε .
Then we define new unknown velocity and micro-rotation fields as

v ε (t, z) = u ε (t, z) -U ε (t, z 2 )e 1 in (0, T ) × Ω ε , Z ε (t, z) = ω ε (t, z) -W ε (t, z 2 ) in (0, T ) × Ω ε ,
where U ε and W ε are two extensions of U 0 and W 0 given by

U ε (t, z 2 ) = s 0 (t) + U 0 (t) -s 0 (t) U ε (z 2 ) = s 0 (t) + U 0 (t) -s 0 (t) U z 2 ε , W ε (t, z 2 ) = W 0 (t)W ε (z 2 ) = W 0 (t)W z 2 ε , with functions U ∈ C ∞ (R) and W ∈ C ∞ (R) such that U(0) = U (0) = 0 = W(0), and 
U(X) = W(X) = 1 ∀X ∈ [h m , h M ].
It follows immediately that

U ε (t, 0) = s 0 (t), U ε (t, εh ε (z 1 )) = U 0 (t), ∂U ε ∂z 2 (t, 0) = 0, W ε (t, 0) = 0, W ε (t, εh ε (z 1 )) = W 0 (t), for all (t, z 1 ) ∈ (0, T ) × (0, L). Moreover σ(u ε , p ε ) = σ(v ε , p ε ) on (0, T ) × Γ 0 .
By multiplying (1) and (3) by test-functions and applying Green's formula we obtain the following variational formulation of the problem:

Problem (P ε ) Find (v ε , p ε , Z ε ) such that vε = (v ε , Z ε ) ∈ L ∞ (0, T ; H ε × H 0, ε ) ∩ L 2 (0, T ; V ε div × H 1, ε ), p ε ∈ H -1 (0, T ; L 2 0 (Ω ε )) and ∂ ∂t [v ε , Θ], θ D (0,T ),D(0,T ) + T 0 a(v ε , Θ)θ dt + T 0 B(v ε , vε , Θ)θ dt + T 0 R(v ε , Θ)θ dt + j ε (ϕθ + v ε ) -j ε (v ε ) ≥ T 0 (p ε , div ϕ)θ dt + T 0 (F(v ε ), Θ)θ dt ∀Θ = (ϕ, ψ) ∈ V ε × H 1, ε , ∀θ ∈ D(0, T ) with the initial condition vε (0, •) = vε 0 = (v ε 0 , Z ε 0 ) = u ε 0 -U ε (0, •)e 1 , ω ε 0 -W ε (0, •) , where (F(v ε (t)), Θ) = -a( ξε (t), Θ) -B( ξε (t), vε (t), Θ) -B(v ε (t), ξε (t), Θ) -R( ξε (t), Θ) -[ ∂ ξε ∂t (t), Θ] + [ f ε (t), Θ] with ξε = (U ε e 1 , W ε ), f ε = (f ε , g ε ) and j ε (w) = T 0 Γ0 k ε |w| dz 1 dt ∀w ∈ L 2 0, T ; L 2 (Γ 0 ) 2 .
Let us emphasize that we identify ϕθ + v ε and v ε with their trace on Γ 0 in the definition of j ε (ϕθ + v ε ) and j ε (v ε ).

The paper is organized as follows. In Section 2 we prove the existence and uniqueness of a solution to problem (P ε ) for any ε > 0. Then motivated by the asymptotic behaviour of thin flows we study the limit as ε tends to zero. Having in mind that the roughness of the domain depends also on ε, we consider the particular scaling of a roughness in inverse proportion of the thickness as usual in lubrication theory ( [START_REF] Boukrouche | Asymptotic behaviour of solutions of lubrication problem in a thin domain with a rough boundary and Tresca fluidsolid interface law[END_REF][START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF]). In Section 3 we establish some a priori estimates for the v ε , p ε and Z ε and we apply the two-scale convergence technique to get a limit velocity v 0 , pressure p 0 and micro-rotation Z 0 . Finally in Section 4 we derive the limit problem and we prove that v 0 , p 0 and Z 0 are uniquely determined through auxiliary well-posed problems.

Existence and uniqueness for (P

ε ) Theorem 1. Let (U 0 , W 0 , s 0 ) ∈ H 1 (0, T ) 3 , f ε ∈ (L 2 ((0, T ) × Ω ε )) 2 , g ε ∈ L 2 ((0, T ) × Ω ε ), k ε ∈ L ∞ (0, T ; L ∞ + (Γ 0 )) and (v ε 0 , Z ε 0 ) ∈ H ε × H 0, ε .
Then problem (P ε ) admits an unique solution.

Proof. In order to establish the existence of a solution we replace Tresca functional j ε by some regularization j ε η (η > 0) and we consider the condition "div v ε = 0" as a constraint. Hence we introduce the doubly penalized problem

Problem (P ε ηδ ) Find (v ε ηδ , Z ε ηδ ) such that vε ηδ = (v ε ηδ , Z ε ηδ ) ∈ L ∞ (0, T ; H ε × H 0, ε ) ∩ L 2 (0, T ; V ε × H 1, ε ) and ∂ ∂t [v ε ηδ , Θ], θ D (0,T ),D(0,T ) + T 0 a(v ε ηδ , Θ)θ dt + T 0 B(v ε ηδ , vε ηδ , Θ)θ dt + 1 2 T 0 (v ε ηδ div v ε ηδ , ϕ)θ dt + 1 2 T 0 (Z ε ηδ div v ε ηδ , ψ)θ dt + j ε η (v ε ηδ , ϕθ) = T 0 - 1 δ div v ε ηδ , divϕ θ dt + T 0 (F(v ε ηδ ), Θ)θ dt - T 0 R(v ε ηδ , Θ)θ dt ∀Θ = (ϕ, ψ) ∈ V ε × H 1, ε , ∀θ ∈ D(0, T ) with the initial condition vε ηδ (0) = vε 0 where j ε η (w) = T 0 Γ0 k ε η 2 + |w| 2 dz 1 dt ∀w ∈ L 2 0, T ; L 2 (Γ 0 )
2 and j ε η (w, ϕθ) denotes the Gateaux derivative of j ε η at w in the direction ϕθ.

Let us observe that -1 δ divv ε ηδ (δ > 0) can be interpreted as an approximate pressure while the two terms 1 2

T 0 (v ε ηδ div v ε ηδ , ϕ)θ dt and 1 2 
T 0 (Z ε ηδ div v ε ηδ , ψ)θ dt are added for technical reasons. Indeed, in this approximate problem the velocity is not anymore divergence free. Hence the trilinear term B(v ε ηδ , vε ηδ , Θ) does not vanish anymore when we choose Θ = vε ηδ and these two additional terms are introduced in order to cancel with B(v ε ηδ , vε ηδ , Θ) when Θ = vε ηδ .

Then we prove the existence of a solution to Problem (P ε ηδ ) by using a Galerkin method. Indeed let (Φ j ) j≥1 and (Ψ j ) j≥1 be Hilbertian bases of V ε and H 1, ε , respectively such that (Φ j ) j≥1 and (Ψ j ) j≥1 are orthogonal for the inner product of H 1 (Ω ε )

2 and H 1 (Ω ε ) and orthonormal for the inner product

of L 2 (Ω ε ) 2 and L 2 (Ω ε ), respectively. Then for all m = (m 1 , m 2 ) with m 1 ≥ 1 and m 2 ≥ 1 we let v ε ηδm1 (t, z) = m1 j1=1 v ε ηδj1 (t)Φ j1 (z), Z ε ηδm2 (t, z) = m2 j2=1 Z ε ηδj2 (t)Ψ j2 (z) such that vε ηδm = (v ε ηδm1 , Z ε ηδm2 ) satisfies ∂v ε ηδm ∂t , Θ j + a(v ε ηδm , Θ j ) + B(v ε ηδm , vε ηδm , Θ j ) + 1 2 (v ε ηδm div v ε ηδm , Φ j1 ) + 1 2 (Z ε ηδm div v ε ηδm , Ψ j2 ) + Γ0 k ε v ε ηδm • Φ j1 η 2 + v ε ηδm 2 dz 1 dt = - 1 δ divv ε ηδm , divΦ j1 + (F(v ε ηδm ), Θ j ) -R(v ε ηδm , Θ j ) ∀Θ j = (Φ j1 , Ψ j2 ), ∀(j 1 , j 2 ) ∈ {1, . . . , m 1 } × {1, . . . , m 2 } (4) with the initial condition vε ηδm (0) = vε 0m = (v ε 0m1 , Z ε 0m2 ) (5) 
where v ε 0m1 and Z ε 0m2 are the orthogonal projections of v ε 0 and Z ε 0 on the finitedimentional subspaces Φ 1 , . . . , Φ m1 and Ψ 1 , . . . , Ψ m2 with respect to the inner product of L 2 (Ω ε )

2 and L 2 (Ω ε ), respectively. The nonlinear differential system (4)-( 5) for the scalar functions

(v ε ηδj1 , Z ε ηδj2 ) 1≤j1≤m1,1≤j2≤m2 admits a unique maximal solution in H 1 (0, T m ) m1+m2 with T m ∈ (0, T ].
By choosing vε ηδm as test-function we obtain

∂v ε ηδm ∂t , vε ηδm + a(v ε ηδm , vε ηδm ) + Γ0 k ε v ε ηδm • v ε ηδm η 2 + v ε ηδm 2 dz 1 dt ≥0 = - 1 δ divv ε ηδm , divv ε ηδm + (F(v ε ηδm ), vε ηδm ) -R(v ε ηδm , vε ηδm )
and we recover the same energy inequality as in [START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF] i.e.

1 2

∂ ∂t v ε ηδm 2 (L 2 (Ω ε )) 2 + Z ε ηδm 2 L 2 (Ω ε ) + (ν + ν r ) ∇v ε ηδm 2 (L 2 (Ω ε )) 4 +α ∇Z ε ηδm 2 (L 2 (Ω ε )) 2 + 1 δ div v ε ηδm 2 L 2 (Ω ε ) ≤ (F(v ε ηδm ), vε ηδm ) -R(v ε ηδm , vε ηδm ).
Therefore we infer that that T m = T and there exists a constant C > 0 independent of m, δ and η such that

vε ηδm (t) 2 + k t 0 [v ε ηδm (s)] 2 ds + 2 δ t 0 div v ε ηδm (s) 2 ds ≤ C ∀t ∈ [0, T ]
where k = min{ν, α} (see Theorem 2.2 in [START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF]).

Moreover, for all Θ = (ϕ, ψ)

∈ V ε × H 1, ε , let Θ m = (ϕ m1 , ψ m2
) where ϕ m1 and ψ m2 are the projections of ϕ and ψ on Φ 1 , . . . , Φ m1 and Ψ 1 , . . . , Ψ m2 with respect to the inner product of H 1 (Ω ε )

2 and H 1 (Ω ε ), respectively. Since (Φ j ) j≥1 and (Ψ j ) j≥1 are orthonormal for the inner product of L 2 (Ω ε ) 2 and

L 2 (Ω ε ) we have ∂v ε ηδm ∂t , ϕ = ∂v ε ηδm ∂t , ϕ m1 , ∂Z ε ηδm ∂t , ψ = ∂Z ε ηδm ∂t , ψ m2
and with the same kind of computations as in Theorem 2.2 in [START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF] we obtain

∂v ε ηδm ∂t L 4/3 (0,T ;(V ε ) ) ≤ C, ∂Z ε ηδm ∂t L 4/3 (0,T ;(H 1,ε ) ) ≤ C.
where C > 0 is a constant independent of m and η (see also Lemma 4.2 in [START_REF] Boukrouche | Unsteady 3D-Navier-Stokes system with Tresca's friction law[END_REF]).

Then by using compactness arguments (see Theorem 2.2 in [START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF] and Theorem 4.4, Theorem 6.1 and Theorem 6.3 in [START_REF] Boukrouche | Unsteady 3D-Navier-Stokes system with Tresca's friction law[END_REF]) we pass to the limit as m 1 , m 2 tend to +∞, then as δ tends to zero and finally as η tends to zero.

In order to prove uniqueness of the solution to Problem (P ε ), we use Sobolev's inequalities. Indeed, since

Ω ε ⊂ R 2 , there exists a constant C(Ω ε ) > 0 such that b(u, u, w) = b(u, w, u) ≤ u 2 (L 4 (Ω ε )) 2 w (H 1 (Ω ε )) 2 ≤ C(Ω ε ) u (L 2 (Ω ε )) 2 u V ε w V ε ∀(u, w) ∈ V ε div × V ε , and b 1 (u, w, ψ) = b(u, ψ, w) ≤ u (L 4 (Ω ε )) 2 w L 4 (Ω ε ) ψ H 1 (Ω ε ) ≤ C(Ω ε ) u 1/2 (L 2 (Ω ε )) 2 u 1/2 V ε w 1/2 L 2 (Ω ε ) w 1/2 H 1,ε ψ H 1, ε ∀(u, w, ψ) ∈ V ε div × H 1, ε 2 . Hence B(v ε , vε , •) ∈ L 2 0, T ; (V ε ×H 1, ε )
. By using the same technique as in Lemma 3.1 and Proposition 3.1 in [START_REF] Boukrouche | Non-isotermal Navier-Stokes system with mixed boundary conditions and friction law: uniqueness and regularity properties[END_REF] we infer that

∂v ε ∂t ∈ L 2 (0, T ; (V ε div ×H 1, ε ) ) which implies uniqueness of the solution and vε ∈ C([0, T ]; H ε × H 1, ε ). Remark 1. Since ∂v ε ∂t ∈ L 2 (0, T ; (V ε div × H 1, ε ) ) we have ∂ ∂t [v ε , Θ], θ D (0,T ),D(0,T ) = T 0 ∂v ε ∂t , Θθ Θ (V ε div ×H 1, ε ) ,V ε div ×H 1, ε dt for all Θ ∈ V ε div × H 1,
ε and for all θ ∈ D(0, T ). By density of D(0,

T ) ⊗ (V ε div × H 1, ε ) into L 2 0, T ; V ε div × H 1, ε we may consider any test-function Θ ∈ L 2 0, T ; V ε div × H 1, ε .

A priori estimates and two-scale convergence limit

As usual in lubrication theory the roughness of the flow domain depends also on ε and is inversely proportional to its thickness (see [START_REF] Boukrouche | Asymptotic behaviour of solutions of lubrication problem in a thin domain with a rough boundary and Tresca fluidsolid interface law[END_REF][START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF]). Hence we assume from now on that h ε (z

1 ) = h z 1 , z 1 ε with L ε ∈ N, h : (z 1 , η 1 ) → h(z 1 , η 1 ) is L -periodic in z 1 and 1 -periodic in η 1 and h ∈ C ∞ (R 2
) is bounded from above and from below by two positive real numbers h M and h m . Let us observe that the roughness introduces a rapid scale variable z 1 ε in the horizontal direction. So motivated by the asymptotic behaviour as ε tends to zero we introduce the following scaling

y 1 = z 1 , y 2 = z 2 εh ε (z 1 )
which transforms Ω ε into the rectangle Ω = (0, L) × (0, 1) and we let Γ

1 = [0, L] × {1}, Γ L = {0, 1} × [0, 1].
With the chain rule we obtain

∂ ∂z 2 = 1 εh ε ∂ ∂y 2 , ∂ ∂z 1 = ∂ ∂y 1 ∂y 1 ∂z 1 + ∂ ∂y 2 ∂y 2 ∂z 1 = ∂ ∂y 1 + - y 2 h ε ∂h ε ∂y 1 ∂ ∂y 2
and we introduce the differential operator b ε • ∇ as

∂ ∂z 1 = 1, - y 2 h ε ∂h ε ∂y 1   ∂ ∂y1 ∂ ∂y2   def = b ε • ∇
We can now consider the unknown velocity, pressure and micro-rotation fields as functions of the time variable t and the original space variable (z 1 , z 2 ) or as functions of t and the new rescaled space variables (y 1 , y 2 ). For the sake of notational simplicity we will still denote them as v ε , p ε and Z ε whatever we choose as space variables i.e.

v ε (t, z 1 , z 2 ) = v ε (t, y 1 , εh ε (y 1 )y 2 ) ∀(t, z) ∈ (0, T ) × Ω ε := v ε (t, y 1 , y 2 ) ∀(t, y) ∈ (0, T ) × Ω,
and similarly

p ε (t, z) := p ε (t, y), Z ε (t, z) := Z ε (t, y) f ε (t, z) := f ε (t, y), g ε (t, z) := g ε (t, y).
We obtain the following a priori estimates.

Proposition 1. Let us assume that ε 2 f ε is bounded in L 2 (0, T ) × Ω 3 ,
εv ε 0 is bounded in L 2 (Ω) 3 and εk ε is bounded in L ∞ 0, T ; L ∞ + (Γ 0 )). Let (U 0 , W 0 , s 0 ) ∈ H 1 (0, T ) 3 .
Then there exists a constant C > 0 independent of ε such that

(εb ε • ∇v ε i ) L 2 ((0,T )×Ω) ≤ C, (εb ε • ∇Z ε ) L 2 ((0,T )×Ω) ≤ C, (6) 
∂v ε i ∂y 2 L 2 ((0,T )×Ω) ≤ C, ∂Z ε ∂y 2 L 2 ((0,T )×Ω) ≤ C, (7) 
∂v ε i ∂y 1 L 2 ((0,T )×Ω) ≤ C ε , ∂Z ε ∂y 1 L 2 ((0,T )×Ω) ≤ C ε , (8) 
v ε i L 2 ((0,T )×Ω) ≤ C, Z ε L 2 ((0,T )×Ω) ≤ C, ε 2 p ε H -1 (0,T ;L 2 (Ω)) ≤ C (9)
for i = 1, 2 and

v ε 1 L 2 ((0,T )×Γ0) ≤ C ( 10 
)
where v ε 1 is identified with its trace on Γ 0 .

Proof. In Problem (P ε ) we choose the test-function Θ = -v ε 1 |[0,s] with s ∈ [0, T ] and we get:

s 0 ∂v ε ∂t , vε (V ε div ×H 1, ε ) ,V ε div ×H 1, ε dt + s 0 a(v ε , vε ) dt + s 0 B(v ε , vε , vε ) =0 dt + s 0 R(v ε , vε ) dt + s 0 Γ0 k ε |v ε | ≥0 dz 1 dt ≤ s 0 (p ε , div v ε ) =0 dt - s 0 a( ξε , vε ) dt - s 0 B( ξε , vε , vε ) =0 dt - s 0 B(v ε , ξε , vε ) dt - s 0 R( ξε , vε ) dt - s 0 [ ∂ ξε ∂t , vε ] dt + s 0 [ f ε , vε ] dt.
Then we rewrite all these integrals by using the rescaled variables (y 1 , y 2 ) and we apply Young's inequality and Gronwall's lemma to derive ( 6)-( 9). The reader is referred to Proposition 3.2 and Proposition 3.3 in [START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF] for the detailed computations. Finally by using Poincaré's inequality

w 1 L 2 (Γ0) ≤ ∂w 1 ∂y 2 L 2 (Ω)
for all w in the closure in

H 1 (Ω) 2 of V with V = v ∈ C ∞ (Ω) 2 : v is L -periodic in y 1 , v |Γ 1 = 0, v • n |Γ 0 = 0
we obtain [START_REF] Eringen | Theory of micropolar fluids[END_REF].

In order to keep some information at the limit about the dependence of the flow with respect to the rapid scale oscillations of the boundary we choose to apply the two-scale convergence technique, introduced by G. Nguetseng ([18]) and G. Allaire ( [START_REF] Allaire | Homogenization and two-scale convergence[END_REF]) in the framework of elliptic partial differential equations and extended later on to time-dependent problems (see for instance [START_REF] Miller | Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence[END_REF][START_REF] Holmbom | Homogenization of parabolic equations: an alternative approach and some corrector-type results[END_REF][START_REF] Wright | Time-dependent Stokes flow through a randomly perforated porous medium[END_REF][START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF]). For the convenience of the reader let us recall the definition and main results of two-scale convergence.

Let O be an open bounded subset of Theorem 2 (Theorem 4.2 in [START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF]). Let (w ε ) ε>0 be bounded in L 2 (0, T )×O (resp. in H -1 0, T ; L 2 (O) ). There exists

R d with d ≥ 1, Y = [0, 1] d , C ∞ (Y ) = ϕ ∈ C ∞ (R d ) : ϕ is Y -periodic , and 
H 1 (Y ) = closure of C ∞ (Y ) in H 1 (Y ). Definition 1. A sequence (w ε ) ε>0 of L 2 (0, T ) × O (resp. H -1 0, T ; L 2 (O) ) two-scale converges to w 0 ∈ L 2 0, T ; L 2 (O × Y ) (resp. w 0 ∈ H -1 0, T ; L 2 (O × Y ) ) if
w 0 ∈ L 2 0, T ; L 2 (O × Y ) (resp. w 0 ∈ H -1 0, T ; L 2 (O × Y )
) such that, possibly extracting a subsequence still denoted (w ε ) ε>0 , we have

w ε →→ w 0 .
Then, having in mind the previous a priori estimates for v ε we obtain Proposition 2 (Two-scale limit of the velocity). Let us assume that ε

2 f ε is bounded in L 2 (0, T ) × Ω 3 , εv ε 0 is bounded in L 2 (Ω) 3 and εk ε is bounded in L ∞ 0, T ; L ∞ + (Γ 0 )). Let (U 0 , W 0 , s 0 ) ∈ H 1 (0, T ) 3 .
There exist

v 0 ∈ L 2 0, T ; L 2 (Ω; H 1 (Y )) 2 such that ∂v 0 ∂y 2 ∈ L 2 0, T ; L 2 (Ω × Y ) 2 and v 1 ∈ L 2 0, T ; L 2 Ω × (0, 1); H 1 (0, 1) /R ) 2
such that, for i = 1, 2:

v ε i →→ v 0 i , ∂v ε i ∂y 2 →→ ∂v 0 i ∂y 2 + ∂v 1 i ∂η 2 , ε ∂v ε i ∂y 1 →→ ∂v 0 i ∂η 1 .
Furthermore v 0 does not depend on η 2 , v 0 is divergence free in the following sense

h(y 1 , η 1 ) ∂v 0 1 ∂η 1 -y 2 ∂h ∂η 1 (y 1 , η 1 ) ∂v 0 1 ∂y 2 + ∂v 0 2 ∂y 2 = 0 in (0, T ) × Ω × (0, 1),
and satisfies the following boundary conditions

v 0 = 0 on (0, T ) × Γ 1 × (0, 1), v 0 • n = v 0 2 = 0 on (0, T ) × Γ 0 × (0, 1). Moreover v ε 1 →→ v 0 1 on (0, T ) × Γ 0 × (0, 1).
Proof. The first part of the result is obtained as in Proposition 4.3 in [START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF] and there remains only to establish the properties of v 0 on the boundary.

With [START_REF] Eringen | Theory of micropolar fluids[END_REF] we know that the sequence (v ε 1 (•, •, 0)) ε>0 is uniformly bounded in L 2 (0, T ) × Γ 0 = L 2 (0, T ) × (0, L) hence it admits a two-scale limit, denoted as ξ = ξ(t, y 1 , η 1 ). We choose ϕ ∈ C ∞ Ω; C ∞ (0, 1) and θ ∈ D(0, T ):

T 0 Ω ∂v ε 1 ∂y 2 (t, y)ϕ y, y 1 ε θ(t) dydt = - T 0 Ω v ε 1 (t, y) ∂ϕ ∂y 2 y, y 1 ε θ(t) dydt - T 0 L 0 v ε 1 (t, y 1 , 0)ϕ y 1 , 0, y 1 ε θ(t) dydt.
We pass to the limit as ε tends to zero:

T 0 Ω×Y ∂v 0 1 ∂y 2 (t, y, η 1 )ϕ(y, η 1 )θ(t) dηdydt + T 0 Ω×Y ∂v 1 1 ∂η 2 (t, y, η)ϕ(y, η 1 )θ(t) dηdydt =0 = - T 0 Ω×Y v 0 1 (t, y, η 1 ) ∂ϕ ∂y 2 (y, η 1 )θ(t) dηdydt - T 0 (0,L)×(0,1) ξ(t, y 1 , η 1 )ϕ(y 1 , 0, η 1 )θ(t) dη 1 dy 1 dt.
With Green's formula we get v 0 1 = ξ on (0, T ) × Γ 0 × (0, 1), v 0 1 = 0 on (0, T ) × Γ 1 × (0, 1).

Starting now from

T 0 Ω ∂v ε 2 ∂y 2 (t, y)ϕ y, y 1 ε θ(t) dydt we obtain also v 0 2 = 0 on (0, T ) × (Γ 0 ∪ Γ 1 ) × (0, 1).

Similarly we have

Proposition 3 (Two-scale limit of the micro-rotation). Assume that

ε 2 f ε is bounded in L 2 (0, T ) × Ω 3 , εv ε 0 is bounded in L 2 (Ω) 3 and εk ε is bounded in L ∞ 0, T ; L ∞ + (Γ 0 )). Let (U 0 , W 0 , s 0 ) ∈ H 1 (0, T ) 3 .
There exist

Z 0 ∈ L 2 0, T ; L 2 (Ω; H 1 (Y )) such that ∂Z 0 ∂y 2 ∈ L 2 0, T ; L 2 (Ω × Y ) and Z 1 ∈ L 2 0, T ; L 2 Ω × (0, 1); H 1 (0, 1) /R such that Z ε →→ Z 0 , ∂Z ε ∂y 2 →→ ∂Z 0 ∂y 2 + ∂Z 1 ∂η 2 , ε ∂Z ε ∂y 1 →→ ∂Z 0 ∂η 1 .
Furthermore Z 0 does not depend on η 2 , and Z 0 ≡ 0 on (0, T )×(Γ 0 ∪Γ 1 )×(0, 1).

Proposition 4 (Two-scale limit of the pressure). Let us assume that ε

2 f ε is bounded in L 2 (0, T ) × Ω 3 , εv ε 0 is bounded in L 2 (Ω) 3 and εk ε is bounded in L ∞ 0, T ; L ∞ + (Γ 0 )). Let (U 0 , W 0 , s 0 ) ∈ H 1 (0, T ) 3 .
There exists p 0 ∈ H -1 0, T ; L 2 (Ω × Y ) such that, possibly extracting a subsequence still denoted (p ε ) ε>0 , we have

ε 2 p ε →→ p 0 .
Moreover p 0 depends only on t and y 1 ,

p 0 ∈ H -1 0, T ; H 1 (0, L) , ∂p 0 ∂y 1 ∈ L 2 (0, T ) × (0, L) and L 0 p 0 (t, y 1 ) 1 0 h(y 1 , η 1 ) dη 1 dy 1 = 0 in D (0, T ).
Proof. The reader is referred to the proofs of Proposition 4.4 and Proposition 4.5 in [START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF].

The limit problem

There remains to identify the limit problem for (v 0 , p 0 , Z 0 ). Let us recall the definition of the differential operator b ε • ∇:

b ε • ∇ = 1, - y 2 h ε ∂h ε ∂y 1   ∂ ∂y1 ∂ ∂y2   .
We observe that

εb ε • ∇v ε i = ε ∂v ε i ∂y 1 (y) - y 2 h y 1 , y1 ε ε ∂h ∂y 1 y 1 , y 1 ε + ∂h ∂η 1 y 1 , y 1 ε ∂v ε i ∂y 2 (y) →→ ∂v 0 i ∂η 1 (y, η 1 ) - y 2 h(y 1 , η 1 ) ∂h ∂η 1 (y 1 , η 1 ) ∂v 0 i ∂y 2 (y, η 1 ) + ∂v 1 i ∂η 2 (y, η)
for i = 1, 2. Hence we get a limit differential operator defined as b

• ∇ = 1, - y 2 h ∂h ∂η 1   ∂ ∂η1 ∂ ∂y2   such that εb ε • ∇v ε i →→ b • ∇v 0 i - y 2 h ∂h ∂η 1 ∂v 1 i ∂η 2
and similarly

b ε • ∇Z ε →→ b • ∇Z 0 - y 2 h ∂h ∂η 1 ∂Z 1 ∂η 2 .
The appropriate functional framework for the limit problem is thus given by

V = ϕ ∈ C ∞ Ω; C ∞ (0, 1) 2 : ϕ is L -periodic in y 1 , ϕ | Γ 1 ×(0,1) = 0, ϕ • n | Γ 0 ×(0,1) = 0 , V div = ϕ ∈ V : h ∂ϕ 1 ∂η 1 -y 2 ∂h ∂η 1 ∂ϕ 1 ∂y 2 + ∂ϕ 2 ∂y 2 = 0 in Ω × (0, 1) , V div = closure of V div in L 2 [0, L]; F 2 , V 0,div = ϕ ∈ V div : ϕ | Γ 0 ×(0,1) = 0 , V 0,div = closure of V 0,div in L 2 [0, L]; F 2 ,
for the velocity field and for the micro-rotation field

H 1 = ψ ∈ C ∞ Ω; C ∞ (0, 1) : ψ is L -periodic in y 1 , ψ | (Γ 0 ∪Γ 1 )×(0,1) = 0 , H 1 0 = closure of H 1 in L 2 [0, L]; F , with F = ϕ ∈ L 2 (0, 1 
); H 1 (0, 1) : ∂ϕ ∂y 2 ∈ L 2 (0, 1) × (0, 1) .

Then we obtain first Proposition 5. Let (U 0 , W 0 , s 0 ) ∈ H 1 (0, T ) 3 and assume that εv ε 0 is bounded in L 2 (Ω) 3 . Let us assume moreover that there exist f ∈ (C([0, T ]; C(Ω; C (0, 1))) 2 , g ∈ C([0, T ]; C(Ω; C (0, 1)) and k ∈ C([0, T ]; C([0, L]; C (0, 1))) such that k takes its values in R + * , f , g and k are L-periodic in y 1 and

ε 2 f ε (t, y) = f t, y, y 1 ε , ε 2 g ε (t, y) = g t, y, y 1 ε , εk ε (t, y 1 ) = k t, y 1 , y 1 ε
for all (t, y) ∈ [0, T ] × Ω. Then v 0 , p 0 and Z 0 satisfy

(ν + ν r ) T 0 Ω×(0,1) 2 i=1 h(b • ∇v 0 i )(b • ∇ϕ i ) + 1 h ∂v 0 i ∂y 2 ∂ϕ i ∂y 2 θ dη 1 dydt +α T 0 Ω×(0,1) h(b • ∇Z 0 )(b • ∇ψ) + 1 h ∂Z 0 ∂y 2 ∂ψ ∂y 2 θ dη 1 dydt + T 0 Ω×(0,1) ∂p 0 ∂y 1 hϕ 1 θ dη 1 dydt = -(ν + ν r ) T 0 Ω×(0,1) h(b • ∇U )(b • ∇ϕ 1 ) + 1 h ∂U ∂y 2 ∂ϕ 1 ∂y 2 θ dη 1 dydt -α T 0 Ω×(0,1) h(b • ∇W )(b • ∇ψ) + 1 h ∂W ∂y 2 ∂ψ ∂y 2 θ dη 1 dydt + T 0 Ω×(0,1) f ϕθh dη 1 dydt + T 0 Ω×(0,1)
gψθh dη 1 dydt,

∀θ ∈ D(0, T ), ∀Θ = (ϕ, ψ) ∈ V 0,div × H 1 0, , (11) 
where

U (t, y 1 , y 2 , η 1 ) = s 0 (t) + (U 0 (t) -s 0 (t))U(h(y 1 , η 1 )y 2 ), W (t, y 1 , y 2 , η 1 ) = W 0 (t)W(h(y 1 , η 1 )y 2 ), for all (t, y 1 , y 2 , η 1 ) ∈ [0, T ] × Ω × [0, 1]. Proof. Let Θ = (ϕ, ψ) ∈ V 0,div × H 1 and let Θ ε = (ϕ ε , ψ ε ) with ϕ ε (z) = ϕ z 1 , z 2 εh ε (z 1 ) , z 1 ε + z 2 h ε (z 1 ) ∂h ∂y 1 z 1 , z 1 ε ϕ 1 z 1 , z 2 εh ε (z 1 ) , z 1 ε e 2 and ψ ε (z) = ψ z 1 , z 2 εh ε (z 1 ) , z 1 ε for all (z 1 , z 2 ) ∈ Ω ε . We can check immedi- ately that Θ ε ∈ V ε × H 1,ε
and for any θ ∈ D(0, T ) we have

j ε (±ϕ ε θ + v ε ) -j ε (v ε ) = T 0 Γ0 k ε | ± ϕ ε θ + v ε | -|v ε | dz 1 dt = 0.
We get

- T 0 [ vε , Θ ε ]θ dt + T 0 a(v ε , Θ ε )θ dt + T 0 B(v ε , vε , Θ ε )θ dt + T 0 R(v ε , Θ ε )θ dt = T 0 (p ε , div ϕ ε )θ dt + T 0 (F(v ε ), Θ ε )θ dt.
Hence we may perform the same computations as in Theorem 5.1 in [START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF]: we rewrite these integrals in terms of (y 1 , y 2 ), we multiply by ε and we pass to the limit as ε tends to zero.

We may observe that the time variable appears now as a parameter in [START_REF] Eringen | Microcontinuum field theories. I. Foundations and solids[END_REF]. Moreover by choosing test-functions Θ = (0, ψ) ∈ V 0,div × H 1 0, we obtain a variational equality for Z 0 leading to the following limit problem:

Problem (P Z 0 ) Find Z 0 ∈ L 2 (0, T ; H 1 0, ) such that α L 0 a y1 (Z 0 , ψ) dy 1 = -α L 0 a y1 W (t), ψ dy 1 + L 0 Y g(t, y 1 , •, •)h(y 1 , •)ψ dη 1 dy 2 dy 1 ∀ψ ∈ H 1 0, , ∀a.e. t ∈ [0, T ]
where a y1 is the bilinear symmetric form defined for all y 1 ∈ [0, L] by

a y1 (w, ψ) = Y h(y 1 , •)( b • ∇w)( b • ∇ψ) + 1 h(y 1 , •) ∂w ∂y 2 ∂ψ ∂y 2 dη 1 dy 2 ∀(w, ψ) ∈ F 2 .
Let us emphasize that we recover the same limit problem for Z 0 as in [START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF]: this is not surprising since the coupling terms in Problem (P ε ) involve only first order derivatives so they disappear at the limit leading to a decoupled problem for (v 0 , p 0 ) on one hand and Z 0 on the other hand. As a consequence we have: Proposition 6 (Proposition 5.2 in [START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF]). Under the assumptions of Proposition 5 the limit micro-rotation field Z 0 is uniquely given by Z 0 (t, y 1 , y 2 , η 1 ) = W 0 (t)z 1 y1 (y 2 , η 1 ) + z 2 t,y1 (y 2 , η 1 ) a.e. in (0, T ) × Ω × (0, 1) where z 1 y1 ∈ H 1 0,y1, and z 2 t,y1 ∈ H 1 0,y1, are the unique solutions of the following auxiliary cell problems:

a y1 (z 1 y1 , ψ) = -a y1 W h(y 1 , •)• , ψ ∀ψ ∈ H 1 0,y1, and 
a y1 (z 2 t,y1 , ψ) = α -1 Y g(t, y 1 , •, •)h(y 1 , •)ψ dη 1 dy 2 ∀ψ ∈ H 1 0,y1, with H 1 0,y1, = closure of ψ ∈ C ∞ [0, 1]; C ∞ (0, 1) : ψ | {0,1}×(0,1) = 0 in F .
Going back to [START_REF] Eringen | Microcontinuum field theories. I. Foundations and solids[END_REF] and choosing Θ = (ϕ, 0) ∈ V 0,div × H 1 0, we obtain

(ν + ν r ) T 0 Ω×(0,1) 2 i=1 h(b • ∇v 0 i )(b • ∇ϕ i ) + 1 h ∂v 0 i ∂y 2 ∂ϕ i ∂y 2 θ dη 1 dydt + T 0 Ω×(0,1) ∂p 0 ∂y 1 hϕ 1 θ dη 1 dydt = -(ν + ν r ) T 0 Ω×(0,1) h(b • ∇U )(b • ∇ϕ 1 ) + 1 h ∂U ∂y 2 ∂ϕ 1 ∂y 2 θ dη 1 dydt + T 0 Ω×(0,1) f ϕθh dη 1 dydt ∀θ ∈ D(0, T ), ∀ϕ ∈ V 0,div . (12) 
Here the test-functions do not satisfy the same boundary conditions as v 0 on Γ 0 so ( 12) is not a variational problem for (v 0 , p 0 ). Nevertheless, starting from [START_REF] Hervet | Flow with slip at the wall: from simple to complex fluids[END_REF] we introduce also well-posed auxiliary cell problems for the velocity. More precisely for all y 1 ∈ [0, L], we let

V y1 = ϕ ∈ C ∞ [0, 1]; C ∞ (0, 1) 2 : ϕ(1, •) = 0, ϕ 2 (0, •) = 0 on (0, 1) , V y1,div = ϕ ∈ V y1 : h(y 1 , •) ∂ϕ 1 ∂η 1 -y 2 ∂h ∂η 1 (y 1 , •) ∂ϕ 1 ∂y 2 + ∂ϕ 2 ∂y 2 = 0 in Y V 0y1,div = ϕ ∈ V y1,div : ϕ 1 (0, •) = 0 on (0, 1) , V y1,div = closure of V y1,div in F 2 , V 0y1,div = closure of V 0y1,div in F 2 and āy1 (w, ϕ) = (ν + ν r ) 2 i=1 a y1 (w i , ϕ i ) ∀(w, ϕ) ∈ V 2 y1,div .
Then, for all (t, y 1 )

∈ [0, T ] × [0, L], we define w 1 y1 , w 2 y1 , w 3 t,y1 in V 0y1,div as the unique solutions of āy1 (w 1 y1 , ϕ) = - Y h(y 1 , •)ϕ 1 dη 1 dy 2 ∀ϕ ∈ V 0y1,div āy1 (w 2 y1 , ϕ) = -ā y1 U h(y 1 , •)• e 1 , ϕ ∀ϕ ∈ V 0y1,div and āy1 (w 3 t,y1 , ϕ) = Y f (t, y 1 , •, •)h(y 1 , •)ϕ dη 1 dy 2 ∀ϕ ∈ V 0y1,div .
By observing that āy1 is coercive on V y1,div uniformly with respect to y 1 (see Proposition 5.2 in [START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF]), the continuity properties of h, U and f imply that the mappings y 1 → w 1 y1 and

y 1 → w 2 y1 belong to C [0, L]; V 0y1,div and (t, y 1 ) → w 3 t,y1 belongs to C [0, T ]; C [0, L]; V 0y1,div . So we decompose v 0 as v 0 (t, y 1 , y 2 , η 1 ) = ∂p 0 ∂y 1 (t, y 1 )w 1 y1 (y 2 , η 1 ) + U 0 (t) -s 0 (t) w 2 y1 (y 2 , η 1 ) +w 3 t,y1 (y 2 , η 1 ) + w * (t, y 1 , y 2 , η 1 ) a.e. in (0, T ) × Ω × (0, 1) (13) 
with w * ∈ L 2 (0, T ; V div ). With the definition of w 1 y1 , w 2 y1 and w 3 t,y1 we infer that

L 0 āy1 w * (t, y 1 , •, •), ϕ(y 1 , •, •) dy 1 = 0 ∀ϕ ∈ V 0,div , ∀a.e. t ∈ (0, T )
which may be interpreted as an orthogonality property with respect to V 0,div and we let

V * div = w ∈ V div : L 0 āy1 w(y 1 , •, •), ϕ(y 1 , •, •) dy 1 = 0 ∀ϕ ∈ V 0,div .
Then we obtain that the limit pressure p 0 satisfies a Reynolds equation. More precisely Proposition 7. Under the assumptions of Proposition 5 the limit pressure p 0 can be decomposed as p0 +p 1 h(y 1 , η 1 ) dη 1 dy 1 = 0 ∀a.e. t ∈ (0, T ) i = 0, 1.

Proof. Let θ ∈ D(0, T ), ψ ∈ C ∞ [0, L] and ψ ε (z) = ψ(z 1 ) for all z = (z 1 , z 2 ) ∈ Ω ε . Recalling that div z v ε = 0 in Ω ε we have

0 = 1 ε T 0 Ω ε ∂v ε 1 ∂z 1 (t, z) + ∂v ε 2 ∂z 2 (t, z) ψ ε (z)θ(t) dzdt = - 1 ε T 0 Ω ε v ε 1 (t, z) ∂ψ ε ∂z 1 (z)θ(t) dzdt = - T 0 Ω v ε 1 (t, y) ∂ψ ∂y 1 (y 1 )h y 1 , y 1 ε θ(t) dydt.
By passing to the limit as ε tends to zero we get

0 = T 0 Ω×(0,1)
v 0 1 (t, y, η 1 ) ∂ψ ∂y 1 (y 1 )h(y 1 , η 1 )θ(t) dη 1 dydt.

With [START_REF] Holmbom | Homogenization of parabolic equations: an alternative approach and some corrector-type results[END_REF] we infer that

L 0 ∂p 0 ∂y 1 ∂ψ ∂y 1 Y w 1 y1,1 h(y 1 , •) dη 1 dy 2 =-āy 1 (w 1 y 1 ,w 1 y 1 
)

dy 1 + L 0 U 0 (t) -s 0 (t) ∂ψ ∂y 1 Y w 2 y1,1 h(y 1 , •) dη 1 dy 2 =-āy 1 (w 1 y 1 ,w 2 y 1 
)

dy 1 + L 0 ∂ψ ∂y 1 Y w 3 t,y1,1 h(y 1 , •) dη 1 dy 2 =-āy 1 (w 1 y 1 ,w 3 t,y 1
)

dy 1 + L 0 ∂ψ ∂y 1 Y w * 1 (t, y 1 , •, •)h(y 1 , •) dη 1 dy 2 dy 1 = 0 ∀a.e. t ∈ (0, T ).
Moreover let ϕ y1 ∈ V 0y1,div be given by

ϕ y1 (y 2 , η 1 ) = y 2 2 (y 2 -1) h(y 1 , η 1 ) , ∂h ∂η 1 (y 1 , η 1 ) y 2 2 (y 2 2 -y 2 ) h(y 1 , η 1 ) ∀(y 2 , η 1 ) ∈ Y, ∀y 1 ∈ [0, L].
We have

1 12 = āy1 (w 1 y1 , ϕ y1 ) ≤ āy1 (w 1 y1 , w 1 y1 ) 1/2 āy1 (ϕ y1 , ϕ y1 ) 1/2 ∀y 1 ∈ [0, L]
and the mapping y 1 → āy1 (ϕ y1 , ϕ y1 ) is continuous from [0, L] to R + * . Hence 1 144 min y1∈[0,L] āy1 (ϕ y1 , ϕ y1 ) ≤ āy1 (w 1 y1 , w 1 y1 ) ∀y 1 ∈ [0, L] and we may conclude.

Remark 3. We may observe that p1 depends linearly and continuously on w * i.e. there exists

Q ∈ L c (V * div , H 1 (0, L) |R ) such that p1 = Q(w * ).
It remains to identify the limit problem for v 0 . 

ε 2 f ε (t, y) = f t, y, y 1 ε , ε 2 g ε (t, y) = g t, y, y 1 ε , εk ε (t, y 1 ) = k t, y 1 , y 1 ε
for all (t, y) ∈ [0, T ] × Ω. Let us assume moreover that εZ ε 0 is bounded in L 2 (Ω) and that u ε 0 satisfies the following compatibility condition: there exists U ∈ C ∞ (R) such that

U(0) = U (0) = 0, U(X) = 1 ∀X ∈ [h m , h M ] and u ε 0 = s 0 (0)e 1 + (U 0 (0) -s 0 (0))U z 2 ε e 1 .
Then the limit problem for v 0 is given by

Problem (P v 0 ) T 0 L 0 āy1 (v 0 , ϕ) dy 1 dt + T 0 L 0 ∂p 0 ∂y 1 Y h(y 1 , •)ϕ 1 dη 1 dy 2 dy 1 dt + T 0 (0,L)×(0,1) k(|ϕ + v 0 | -|v 0 |) dη 1 dy 1 dt ≥ - T 0 L 0 āy1 U e 1 , ϕ dy 1 dt + T 0 L 0 Y f hϕ dη 1 dy 2 dy 1 dt ∀ϕ ∈ L 2 (0, T ; V div ).
Proof. With the compatibility condition for u ε 0 we may choose the extension U ε given by

U ε (t, z 2 ) = s 0 (t) + (U 0 (t) -s 0 (t))U z 2 ε which implies v ε 0 = 0. Now let ϕ ∈ V div and Θ ε = (ϕ ε , 0) with ϕ ε (z) = ϕ z 1 , z 2 εh ε (z 1 ) , z 1 ε + z 2 h ε (z 1 ) ∂h ∂y 1 z 1 , z 1 ε ϕ 1 z 1 , z 2 εh ε (z 1 ) , z 1 ε e 2
for all (z 1 , z 2 ) ∈ Ω ε . We have Θ ε ∈ V ε × H 1,ε and we introduce this test-function in (P ε ). Then we introduce Θε = (-v ε , 0) as test-function in (P ε ) and we add the two inequalities. For all θ ∈ D(0, T ) we get

- T 0 [v ε , Θ ε ]θ dt + T 0 a(v ε , Θ ε )θ dt + T 0 B(v ε , vε , Θ ε )θ dt + T 0 R(v ε , Θ ε )θ dt - T 0 R vε , (v ε , 0) dt + j ε (ϕ ε θ + v ε ) -j ε (v ε ) ≤j ε (ϕ ε θ) ≥ j ε (v ε ) + T 0 (p ε , div ϕ ε )θ dt + T 0 (F(v ε ), Θ ε )θ dt - T 0 F(v ε ), (v ε , 0) dt + (ν + ν r ) T 0 (∇v ε , ∇v ε ) dt + 1 2 v ε (T ) 2 L 2 (Ω ε ) ≥0 .
We rewrite the integrals in terms of (y 1 , y 2 ) and we multiply by ε. Then we pass to the limit as ε tends to zero by using the same techniques as in Theorem 5.1 in [START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF] (see also Proposition 5), except for the quadratic term ε k(t, y 1 , η 1 ) |ϕ 1 (y 1 , 0, η 1 )θ(t)| dη 1 dy 1 dt thanks to Remark 2 and for the boundary term εj ε (v ε ) for which we apply the following lemma.

Lemma 4. Let (w ε ) ε>0 be a bounded sequence of L 2 0, T ; L 2 (0, L) and let us denote as w 0 ∈ L 2 0, T ; L 2 (0, L) × (0, 1) its two-scale limit. Then

lim inf →0 T 0 L 0 w ε (t, y 1 ) dy 1 dt ≥ T 0 (0,L)×(0,1)
w 0 (t, y 1 , η 1 ) dη 1 dy 1 dt.

Proof. Let us denote as φ the convex, proper and continuous function defined by φ(s) = |s| for all s ∈ R. The Yosida approximation of A = ∂φ is defined by

A λ = ∇φ λ with φ λ ∈ C 1 (R; R) given by φ λ (z) = inf s∈R φ(s) + |s -z| 2 2λ ∀z ∈ R, ∀λ > 0.
With the usual properties about the subdifferential of convex functions (see for instance Proposition 2.6 and Proposition 2.11 in [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert[END_REF]), we know that φ λ is convex,

∇φ λ is 1 λ -Lipschitz continuous and 0 ≤ φ λ (z) ≤ φ(z), lim λ→0 φ λ (z) = φ(z) ∀z ∈ R. (15) 
Now let λ > 0. For all ε > 0, by using the convexity of φ λ we have

T 0 L 0 φ w ε (t, y 1 ) dy 1 dt ≥ T 0 L 0 φ λ w ε (t, y 1 ) dy 1 dt ≥ T 0 L 0 φ λ w t, y 1 , y 1 ε dy 1 dt + T 0 L 0 ∇φ λ w t, y 1 , y 1 ε w ε (t, y 1 ) -w t, y 1 , y 1 ε dy 1 dt
for all w ∈ D (0, T ) × (0, L) × (0, 1) . Then we pass to the limit as ε tends to zero: the left hand side of the previous inequality is bounded, so it admits a limit inf while the right hand side admits a limit and we obtain

lim inf ε→0 T 0 L 0 φ w ε (t, y 1 ) dy 1 dt ≥ T 0 (0,L)×(0,1) φ λ (w (t, y 1 , η 1 )) dy 1 dt + T 0 (0,L)×(0,1)
∇φ λ (w (t, y 1 , η 1 )) w 0 (t, y 1 , η 1 ) -w (t, y 1 , η 1 ) dy 1 dt.

Using again the convexity of φ λ we infer ∇φ λ w 0 (t, y 1 , η 1 ) -∇φ λ (w (t, y 1 , η 1 ))

× w(t, y 1 , η 1 ) -w 0 (t, y 1 , η 1 ) dy 1 dt.

Since w 0 ∈ L 2 0, T ; L 2 (0, L)×(0, 1) = L 2 (0, T )×(0, L)×(0, 1) we may consider a sequence (w 0 k ) k∈N ∈ D (0, T ) × (0, L) × (0, 1) which converges strongly to w 0 in L 2 (0, T ) × (0, L) × (0, 1) . Thus φ λ w 0 (t, y 1 , η 1 ) dy 1 dt for all λ > 0. Finally we pass to the limit as λ tends to zero with Lebesgue's theorem.

We obtain f (ϕθ -v 0 )h dη 1 dy 1 dt ∀θ ∈ D(0, T ), ∀ϕ ∈ V div and we conclude by using the density of D(0, T ) ⊗ V div into L 2 (0, T ; V div ) and ( 14).

Remark 4. We may weaken the compatibility condition on u ε 0 by assuming only that (εu ε 0 ) ε>0 converges to zero in L 2 (Ω) 2 .

By replacing v 0 by its decomposition (13) we obtain a limit problem for w * and we have for all ϕ ∈ L 2 (0, T ; V * div ) and for all w ∈ L 2 (0, T ; V * div ).

Proof. With straighforward computations we obtain [START_REF] Magnin | Shear rheometry of fluids with a yield stress[END_REF] and it remains only to prove that ( 16) admits a unique solution. Since Q ∈ L c (V * div , H 1 (0, L) |R ) it is clear that b is a bilinear continuous mapping on L 2 (0, T ; V * div ). Moreover āy1 is coercive on V y1,div for all y 1 ∈ [0, L] uniformly with respect to y 1 (see Proposition 5.2 in [START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF]) which implies that b is coercive on L 2 (0, T ; V * div ) and we may conclude by applying for instance Theorem 8.5 in [START_REF] Lions | Quelques méthodes de résolution de problèmes aux limites non linéaires[END_REF].

As a consequence of the uniqueness of w * , we can state: Then the whole sequences (ε 2 p ε ) ε>0 , (v ε ) ε>0 and (Z ε ) ε>0 satisfy the following convergence:

εp ε →→ p0 + p1 v ε →→ v 0 = ∂ p0 ∂y 1 w 1 y1 + (U 0 -s 0 )w 2 y1 + w 3 t,y1 + ∂ p1 ∂y 1 w 1 y1 + w * Z ε →→ Z 0 = W 0 z 1 y1 + z 2 t,y1 .

Remark 2 .

 2 ε (t, y)ϕ y, y ε θ(t) dydt = T 0 O×Y w 0 (t, y, η)ϕ(y, η)θ(t) dηdydt for all θ ∈ D(0, T ), for all ϕ ∈ D O; C ∞ (Y ) . In such a case we will denote w ε →→ w 0 . We may consider less regular test-functions namely test-functions in C [0, T ]; C O; C (Y ) (resp. C 1 0 [0, T ]; C O; C (Y ) ). With Lemma 1.3 in [1] we obtain immediately that any sequence (w ε ) ε>0 with w ε (t, y) = w t, y, y ε for all (t, y) ∈ (0, T ) × O and w ∈ C [0, T ]; C O; C (Y ) two-scale converges to w.

Theorem 3 .

 3 Let (U 0 , W 0 , s 0 ) ∈ H 1 (0, T ) 3 and f ∈ (C([0, T ]; C(Ω; C (0, 1))) 2 , g ∈ C([0, T ]; C(Ω; C (0, 1)) and k ∈ C([0, T ]; C([0, L]; C (0, 1))) such that k takes its values in R + * , f , g and k are L-periodic in y 1 and

T 0 (

 0 ∇v ε , ∇v ε ) dt for which we apply Proposition 1.6 in[START_REF] Allaire | Homogenization and two-scale convergence[END_REF], the boundary term εj ε (ϕ ε θ)

φ λ w 0 (t, y 1 , η 1 )
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  ε (t, y 1 ) dy 1 dt ≥

1 Y

 1 0 , ϕθ -v 0 ) dy 1 dt + h(y 1 , •)ϕ 1 dη 1 dy 2 θ dy 1 dt + T 0 (0,L)×(0,1) k(|ϕθ| -|v 0 |) dη 1 dy 1 dt ≥ -1 , ϕθ -v 0 dy 1 dt +

Proposition 8 .∂y 1 Yhϕ 1

 811 Under the assumptions of Theorem 3, w * ∈ L 2 (0, T ; V * div ) is the unique solution of the variational inequality b w * , ϕ + T 0 (0,L)×(0,1)k |ϕ + w * | -|w * | dη 1 dy 1 dt + T (ϕ) ≥ 0 ∀ϕ ∈ L 2 (0, T ; V * div ) dη 1 dy 2 dy 1 dt + 1 dy 2 dy 1 dt

Theorem 5 .

 5 Let (U 0 , W 0 , s 0 ) ∈ H 1 (0, T ) 3 and f ∈ (C([0, T ]; C(Ω; C (0, 1))) 2 , g ∈ C([0, T ]; C(Ω; C (0, 1)) and k ∈ C([0, T ]; C([0, L]; C (0, 1))) such that k takes its values in R + * , f , g and k are L-periodic in y 1 and ε 2 f ε (t, y) = f t, y, y 1 ε , ε 2 g ε (t, y) = g t, y, y 1 ε , εk ε (t, y 1 ) = k t, y 1 , y 1 ε for all (t, y) ∈ [0, T ] × Ω.Let us assume moreover that εZ ε 0 is bounded in L 2 (Ω) and that u ε 0 satisfies the following compatibility condition: there existsU ∈ C ∞ (R) such that U(0) = U (0) = 0, U(X) = 1 ∀X ∈ [h m , h M ]and u ε 0 = s 0 (0)e 1 + (U 0 (0) -s 0 (0

  with p0 (t, •) and p1 (t, •) given as the unique solutions in H 1 (0, L) |R of the stationary Reynolds problems (t, y 1 , •, •)h(y 1 , •) dη 1 dy 2 dy 1

	0	L	∂ p0 ∂y 1	∂ψ ∂y 1	āy1 (w 1 y1 , w 1 y1 ) dy 1 = -U 0 (t) -s 0 (t)	0	L	∂ψ ∂y 1	āy1 w 1 y1 , w 2 y1 dy 1
	-	0	L	∂ψ ∂y 1	āy1 w 1 y1 , w 3 t,y1 dy 1	
	and								
	L 1 for all ψ ∈ H 1 (0, L) such that 0 ∂ p1 ∂y 1 ∂ψ ∂y 1 āy1 (w 1 y1 , w 1 y1 ) dy 1 = L 0 ∂ψ ∂y 1 Y w *	
	L						1	
		pi (t, y 1 )		
	0							0