Yann Orlarey
email: orlarey@grame.fr

Stephane Letz
email: letz@grame.fr

Dominique Fober Grame

Adding Automatic Parallelization to Faust

Keywords: Faust, OpenMP, Parallelism

Faust 0.9.9.5 introduces new compilation options to do automatic parallelization of code using OpenMP. This paper explains how the automatic parallelization is done and presents some benchmarks.

Introduction

Faust is a programming language for real-time signal processing and synthesis designed from scratch to be a compiled language. Being efficiently compiled allows Faust to provide a viable high-level alternative to C/C++ to develop high-performance signal processing applications, libraries or audio plug-ins.

Until recently the computation code generated by the compiler was organized quite traditionally as a single sample processing loop. This scheme works very well but it doesn't take advantages of multicore architectures. Moreover it can generate code that exceeds the autovectorization capabilities of current C++ compilers.

We have recently extended the compiler with two new schemes : the vector and the parallel schemes. The vector scheme simplifies the autovectorization work of the C++ compiler by splitting the sample processing loop into several simpler loops. The parallel scheme analyzes the dependencies between these loops and add OpenMP pragmas to indicate those that can be computed in parallel.

These new schemes can produce interesting performance improvements. The goal of the paper is to present these new compilation schemes and to provide some benchmarks comparing their performances. The paper is organized as follow : the next section will give a brief overview of Faust language, The third section will present the three code generation schemes and the last section will introduce the benchmarks used and the results obtained.

Faust overview

In this section we give a brief overview of Faust with some examples of code.

A Faust program describes a signal processor, something that transforms some input signals and produces some output signals. The programming model used combines a functional programming approach with a blockdiagram syntax. The functional programming approach provides a natural framework for signal processing. Digital signals are modeled as discrete functions of time, and signal processors as second order functions that operate on them. Moreover Faust's block-diagram composition operators, used to combine signal processors together, fit in the same picture as third order functions.

The Faust compiler translates Faust programs into equivalent C++ programs. It uses several optimization techniques in order to generate the most efficient code. The resulting code can usually compete with, and sometimes outperform, DSP code directly written in C/C++. It is also self-contained and doesn't depend on any DSP runtime library.

Thanks to specific architecture files, a single Faust program can be used to produce code for a variety of platforms and plug-in formats. These architecture files act as wrappers and describe the interactions with the host audio and GUI system. Currently more than 10 architectures are supported (see Table 1) and new ones can be easily added. In the following subsections we give a short and informal introduction to the language through the example of a simple noise generator. Interested readers can refer to [START_REF] Orlarey | Syntactical and semantical aspects of faust[END_REF] for a more complete description.

A simple noise generator

A Faust program describes a signal processor by combining primitive operations on signals (like +, -, * , /, √ , sin, cos, . . .) using an algebra of high level composition operators [START_REF] Orlarey | An algebra for block diagram languages[END_REF] (see Table 2). You can think of these composition operators as a generalization of mathematical function composition f • g. The first definition describes a (pseudo) random number generator. Each new random number is computed by multiplying the previous one by 1103515245 and adding to the result 12345.

f ∼ g recursive composition f , g parallel composition f : g sequential composition f <: g split composition f :> g merge composition
The expression +(12345) denotes the operation of adding 12345 to a signal. It is an example of a common technique in functional programming called partial application: the binary operation + is here provided with only one of its arguments. In the same way * (1103515245) denotes the multiplication of a signal by 1103515245.

The two resulting operations are recursively composed using the ∼ operator. This operator connects in a feedback loop the output of +(12345) to the input of * (1103515245) (with an implicit 1-sample delay) and the output of * (1103515245) to the input of +(12345).

The second definition transforms the random signal into a noise signal by scaling it between -1.0 and +1.0.

Finally, the definition of process adds a simple user interface to control the production of the sound. The noise signal is multiplied by the value delivered by a slider to control its volume.

Invoking the compiler

The role of the compiler is to translate Faust programs into equivalent C++ programs. The key idea to generate efficient code is not to compile the block diagram itself, but what it computes.

Driven by the semantic rules of the language the compiler starts by propagating symbolic signals into the block diagram, in order to discover how each output signal can be expressed as a function of the input signals.

These resulting signal expressions are then simplified and normalized, and common subexpressions are factorized. Finally these expressions are translated into a self contained C++ class that implements all the required computation.

To compile our noise generator example we use the following command :

$ faust noise.dsp
This command generates the following C++ code on the standard output :

class mydsp : public dsp { private: int iRec0[2]; float fslider0; public: static void metadata(Meta * m) { } virtual int getNumInputs() { return 0; } virtual int getNumOutputs() { return 1; } static void classInit(int samplingFreq) { } virtual void instanceInit(int samplingFreq) { fSamplingFreq = samplingFreq; for (int i=0; i<2; i++) iRec0[i] = 0; fslider0 = 0.0f; } virtual void init(int samplingFreq) { classInit(samplingFreq); instanceInit(samplingFreq); } virtual void buildUserInterface(UI * interface) {
interface->openVerticalBox("noise"); interface->declare(&fslider0, "style" , "knob"); interface->addVerticalSlider("noise", &fslider0, 0.0f, 0.0f, 100.0f, 0.1f); interface->closeBox();

} virtual void compute (int count, float ** input, float ** output) { float fSlow0 = (4.656613e-12f * fslider0); float * output0 = output[0]; for (int i=0; i<count; i++) { iRec0[0] = 12345+1103515245 * iRec0[1]; output0[i] = fSlow0 * iRec0[0]; // post processing iRec0[1] = iRec0[0]; } } };
The generated class contains seven methods. Among these methods getNumInputs() and getNumOutputs() return the number of input and output signals required by our signal processor. init() initializes the internal state of the signal processor. buildUserInterface() can be seen as a list of high level commands, independent of any toolkit, to build the user interface. The method compute() does the actual signal processing. It takes 3 arguments: the number of frames to compute, the addresses of the input buffers and the addresses of the output buffers, and computes the output samples according to the input samples.

Generating a full application

The faust command accepts several options to control the generated code. Two of them are widely used. The option -o outputfile specifies the output file to be used instead of the standard output. The option -a architecturefile defines the architecture file used to wrap the generate C++ class.

For example the command faust -a jack-qt.cpp -o noise.cpp noise.dsp generates a full jack application using QT4.4 as a graphic toolkit. The figure 1 is a screenshot of our noise application running. It is interesting to note the difference between the block diagram and the generated C++ code. The block diagram involves one addition, two multiplications and two divisions. The generated C++ program only involves one addition and two multiplications per samples. The compiler was able to optimize the code by factorizing and reorganizing the operations.

As already said, the key idea here is not to compile the block diagram itself, but what it computes.

Code generation

In this section we describe how the Faust compiler generates its code. We will first introduce the so called scalar generation of code which was the only one until version Figure 2: Graphic block-diagram of the noise generator produced with the -svg option 0.9.9.5. Then we will present the vector generation of code where the code is organized into several loops that operates on vectors, and finally the parallel generation of code where these vector loops are parallelized using OpenMP directives.

Preliminary steps

Before reaching the stage of the C++ code generation, the Faust compiler have to carry on several steps that we describe briefly here.

Parsing source files

The first one is to recursively parse all the source files involved. Each source file contains a set of definitions and possibly some import directives for other source files. The result of this phase is a list of definitions : [(name 1 = def inition 1), (name 2 = def inition 2), . . .]. This list is actually a set, as redefinitions of symbols are not allowed.

Evaluating block-diagrams

Among the names defined there must be process, the analog of main in C/C++. This definition has to be evaluated as Faust allows algorithmic block-diagram definitions.

For example the algorithmic definition : This description is said to be in normal form.

Discovering the mathematical equations

Faust doesn't compile a block-diagram directly. It uses a phase of symbolic propagation to first discover its mathematical semantic (what it computes). The principle is to propagate symbolic signals through the inputs of the block-diagram in order to get, at the other end, the mathematical equation of each output signal.

These equations are then normalized so that different block-diagrams, but computing mathematically equivalent signals, result in the same output equations.

Here is a very simple example where the input signal is divided by 2 and then delayed by 10 samples: process = /(2) : @(10); This is equivalent to having the input signal first multiplied by 2, then delayed by 7 samples, then divided by 4 and then delayed by 3 samples. process = * (2) : @(7) : /(4): @(3);

Both lead to the following signal equation :

Y (t) = 0.5 * X(t -10)
Faust applies several rules to simplify and normalize output signal equations. For example one of theses rules says that it is better to multiply a signal by a constant after a delay than before. It gives the compiler more opportunities to share and reuse the same delay line. Another rule says that two consecutive delays can be combined into a single one.

Typing the mathematical equations

The next phase is to assign types to the resulting signal equations. This will not only help the compiler to detect errors but also to generate the most efficient code. Several aspects are considered :

1. the nature of the signal : integer of float. 5. parallelism of the signal : true if the samples of the signal can be computed in parallel, false when the signal have recursive dependencies requiring its samples to be computed sequentially.

interval of values

Occurrence analysis

The role of this last preparation phase is to analyze in which context each subexpression is used and to discover common subexpressions. If an expensive common subexpression is discovered, an assignment to a cache variable float fTemp = <common subexpression code>;

is generated, and the cache variable fTemp is used in its enclosing expressions. Otherwise the subexpression code is used in-lined.

The occurrence analysis proceeds by a top-down visit of the signal expression. The first time a subexpression is visited, it is annotated with a counter. The next time, the counter will be increased and its visit skipped.

Subexpressions with several occurrences are candidates to be cached in variables. However in some circumstances expressions with a single occurrence need also to be cached if they occur in a faster context. For example a constant expression occurring in a low speed user interface expression or a user interface expression occurring in a high speed audio expression will generally required to be cached.

It is only after this phase that the generation of the C++ code can start.

Scalar Code generation

The generation of the C++ code is made by populating a klass object (representing a C++ class), with strings representing C++ declarations and lines of code. In scalar mode these lines of code are organized in a single sample computation loop, while they can be splitted in several loops with the new vector and parallel schemes.

The code generation relies basically on two functions: a translation function [[]] that translate a signal expression into a string of C++ code, and a cache function C() that checks if a variable is needed.

We don't have the space to go in too much details but here is the translation rule for the addition of two signal expressions :

[[E 1]] → S 1 [[E 2]] → S 2 [[E 1 + E 2]] → C((S 1 + S 2))
It says that to compile the addition of two signals we compile each of these signals and concat the resulting strings with a + sign in between. The string obtained is passed to the cache function that will check if the expression is shared or not.

Let say that the string passed to the cache function C() is (input0[i] + input1[i]

). If the expression is shared, the cache function will allocate a fresh variable name fTemp0, add the line of code float fTemp0 = (input0[i] + input1[i]); to the klass object and return fTemp0 as a string to be used when compiling enclosing expressions. If the expression is not shared it will simply return the string

(input0[i] + input1[i]) unmodified.
To illustrate this, lets take two simple examples. The first one convert a stereo signal into a mono signal by adding the two input signals :

process = +;
In this case (input0[i] + input1[i]) is not shared and the generated C++ code is the following :

virtual void compute (int count, float ** input, float ** output) { float * input0 = input[0]; float * input1 = input[1]; float * output0 = output[0]; for (int i=0; i<count; i++) { output0[i] = (input0[i] + input1[i]); } }
But when the sum of the two input signals is duplicated on two output signals as in :

process = + <: _,_; then (input0[i] + input1[i]
) will be cached in a temporary variable :

virtual void compute (int count, float ** input, float ** output) { float * input0 = input[0]; float * input1 = input[1]; float * output0 = output[0]; float * output1 = output[1]; for (int i=0; i<count; i++) { float fTemp0 = (input0[i] + input1[i]); output0[i] = fTemp0; output1[i] = fTemp0; } }

Vector Code generation

Modern C++ compiler are able to do autovectorization, that is to use SIMD instructions to speedup the code. These instructions can typically operate in parallel on short vectors of 4 simple precision floating point numbers thus leading to a theoretical speedup of x4. Autovectorization of C/C+ programs is a difficult task. Current compilers are very sensitive to the way the code is arranged. In particular too complex loops can prevent autovectorization. The goal of the new vector code generation is to rearrange the C++ code in a way that facilitates the autovectorization job of the C++ compiler. Instead of generating a single sample computation loop, it splits the computation into several simpler loops that communicates by vectors.

The vector code generation is activated by passing the --vectorize (or -vec) option to the Faust compiler. Two additional options are available : --vec-size <n> controls the size of the vector (by default 32 samples) and --loop-variant 0/1 gives some additional control on the loops.

To illustrate the difference between scalar code and vector code, let's take the computation of the RMS (Root Mean Square) value of a signal. Here is the Faust code that computes the Root Mean Square of a sliding window of 1000 samples : The results of figure 10 show a real benefit for the vectorized version with a speedup exceeding x2 on the 3 machines. There is also a positive impact of the parallelization even if more limited. As usual gcc delivers good scalar code but poor results on vectorized and OpenMP code. This test implements an 8-channels fractional delay. Each channel has a volume control in dB as well as a delay control in fractions of samples. The interpolation is based on a fifth-order Lagrange interpolation from Julius Smith's Faust filter library.

import("filter.lib"); line(i) = vgroup("line %i",fdelay5(128,d): * (g)) with{ g = vslider("gain (dB)",-60,-60,4,0.1) : db2linear : smooth(0.995); d = nentry("delay (samp)",10,10,128,0.1)

: smooth(0.995); }; process = hgroup("", par(i, 8, line(i)));

The results are presented figure 11. The Macpro exhibits a good speedup of x2.5 for its parallel version. The parallel speedup for the XPS machine is more limited and there is no speedup at all on the Vaio. The Faust source of rms.dsp was presented section 3.3. It is a purely sequential algorithm therefore the performances of the parallel versions are very bad. But, as indicates figure 12, the vectorisation gives a real boost to the performances, particularly on the vaio.

Benchmark: rms8.dsp

This test computes the RMS value on 8 channels in parallel. The Faust code is : process = par(i,8,component("rms.dsp")) ;

We have obviously a good amount of parallelism here that icc is able to exploit as indicated by the results figure 13. Compared to the scalar performances, the parallel version exhibits a speedup of nearly x3 on the Mac, while the speedup for the XPS exceed x2.5. But the record is for the Vaio with a speedup of x2.

Conclusion

We have presented two new compilation schemes recently introduced in the Faust compiler. The vector scheme simplifies the autovectorization work of the C++ compiler by splitting the sample processing loop into several simpler loops. The parallel scheme analyzes the dependencies between these loops and add OpenMP pragmas to indicate those that can be computed in parallel.

Figure 14 shows the speedup obtained with the vectorized code. With a good autovectorizing C++ compiler like Intel icc 11.0 we can obtain very significants im- provements in many cases. On the contrary gcc 4.3.2 was not able to generate SIMD instructions, leading to a degradation of the performances. We therefore highly recommend icc to compile vectorized code. That is a pity considering the excellent results of gcc on scalar code.

Following the so called Amdahl's law, the speedup obtained with the parallelized code is highly dependent of the quantity of parallelism available (see figure 15. On purely parallel programs like fdelay8 and rms8 a speedup exceeding x2.5 was observed on the mac. This is a little bit disappointing for a 8-cores machine, but in phase with its relatively limited memory bandwidth. Here too we recommend icc to compile OpenMP applications.

Obviously all these results are dependent of many choices and settings, in particular compiler's options. The options we have retained were the best we could find, but the parameters space is huge and we have only explored a little part of it. It may be the case that the gcc results could be improved by changing the settings. This would be a good news and the authors are interested by any suggestions on that point.

There is also a lot of possible improvements in the code generated by Faust. While it is easy to discover all the potential parallelism of a Faust program 1 , generating efficient OpenMP programs is much more difficult due to the overheads introduced and the additional pressure on the shared memory.

The tradeoff between parallelism and overhead + memory pressure is something that we will have to improve in future versions. It will be also interesting to explore the possibilities of GPGPU and their high-level program-1 parallel programming is probably the chance of functional programming languages compared to imperative languages

Figure 1 :

 1 Figure 1: Screenshot of the noise example generated with the jack-qt.cpp architecture

Listing 1 :

 1 example of algorithmic definition foo(n) = * (10+n); process = par(i,3, foo(i)); will be translated in a flat block-diagram description that contains only primitive blocks: process = (_,10: *),(_,11: *),(_,12: *);

 of the signal : the minimum and maximum values that a signal can take 3. the computation time of the signal: the signal can be computed at compilation time, at initialization time or at execution time. 4. the speed of the signal : constant signals are computed only once, low speed user interface signals are computed once for every block of samples, high speed audio signals are computed every samples.

Figure 8 :Figure 9 :

 89 Figure 8: Freeverb.dsp benchmark

 import("music.lib"); smooth(c) = * (1-c) : +~*(c); vol = * (vslider("fader", 0, -60, 4, 0.1) : db2linear : smooth(0.99)); mute = * (1 -checkbox("mute")); vumeter(x) = attach(x, env(x) : vbargraph("",0,1)) with { env = abs:min(0.99):max ~-(1.0/SR); }; pan = _ <: * (sqrt(1-c)), * (sqrt(c)) with { c = (nentry("pan",0,-8,8,1)-8)/-16 : smooth(0.99); }; voice(v) = vgroup("voice %v", mute : hgroup("", vol : vumeter) : pan); stereo = hgroup("stereo out", vol, vol); process = hgroup("mixer", par(i,8,voice(i)) :> stereo);

 Figure 10: mixer.dsp benchmark

 Figure 11: fdelay8.dsp benchmark

 Figure 12: rms.dsp benchmark

Figure 14 :

 14 Figure14: Speedup ratio between vector and scalar code (using icc)

Figure 15 :

 15 Figure15: Speedup ratio between parallel and scalar code (using icc)

Table 1 :

 1 Some architecture files available for Faust

	alsa-gtk.cpp	ALSA application + GTK
	alsa-qt.cpp	ALSA application + QT4
	jack-gtk.cpp	JACK application + GTK
	jack-qt.cpp	JACK application + QT4
	ca-qt.cpp	CoreAudio application + QT4
	ladspa.cpp	LADSPA plug-in
	max-msp.cpp	Max MSP plug-in
	supercollider.cpp Supercollider plug-in
	vst.cpp	VST plug-in
	q.cpp	Q language plug-in

Table 2 :

 2 The five high level block-diagram composition operators used in Faust A Faust program is organized as a set of definitions with at least one for the keyword process (the equivalent of main in C).

	Our noise generator example noise.dsp only involves
	three very simple definitions. But it also shows some
	specific aspects of the language:
	random = +(12345) ~*(1103515245);
	noise	= random/2147483647.0;
	process = noise * vslider("noise", 0, 0,
		100, 0.1)/100;

The compute() method generated in scalar mode is the following : The -vec option leads to the following reorganization of the code :

While the second version of the code is more complex it turn out to be much easier to vectorize efficiently by the C++ compiler. Using Intel icc 11.0, with the exact same compilation options : -O3 -xHost -ftz -fno-alias -fp-model fast=2, the scalar version leads to a throughput performance of 129. The vector code generation is built on top of the scalar code generation (see figure 3). Every time an expression needs to be compiled, the compiler checks to see if it needs to be in a separate loop not. It applies some simple rules for that. Expressions that are shared (and are complex enough) are good candidates to be compiled in a separate loop, as well as recursive expressions and expressions used in delay lines.

The result is a directed graph in which each node is a computation loop. This graph is stored in the klass object and a topological sort is applied to it before printing the code.

Parallel Code generation

The parallel code generation is activated by passing the --openMP (or -omp) option to the Faust compiler. It implies the -vec options as the parallel code generation is built on top of the vector code generation by inserting appropriate OpenMP directives in the C++ code. OpenMP (http://wwww.openmp.org) is a well established API that is used to explicitly define direct multithreaded, shared memory parallelism. It is based on a fork-join model of parallelism (see figure 4). Parallel regions are delimited by using the #pragma omp parallel construct. At the entrance of a parallel region a team of parallel threads is activated. The code within a parallel region is executed by each thread of the parallel team until the end of the region.

The OpenMP API

#pragma omp parallel {

// the code here is executed simultaneously by // every thread of the parallel team ... }

In order not to have every thread doing redundantly the exact same work, OpemMP provides specific worksharing directives. For example #pragma omp sections allows to break the work into separate, discrete sections. Each section being executed by one thread :

Adding OpenMP directives

As already said the parallel code generation is built on top of the vector code generation. The graph of loops produced by the vector code generator is topologically sorted in order to detect the loops that can be computed in parallel. The first set L 0 contains the loops that don't depend of any other loops, the set L 1 contains the loops that only depend of loops of L 0 , etc.. As all the loops of a given set L n can be computed in parallel, the compiler will generate a sections construct with a section for each loop. If a given set constains only one loop, then the compiler checks to see if the loop can be parallelized (no recursive dependencies) or not. If it can be parallelized, it generates :

#pragma omp for for (...) { // Loop code } otherwise it generates a single construct so that only one thread will execute the loop :

#pragma omp single for (...) { // Loop code }

Example of parallel code

To illustrate how Faust utilises the OpenMP directives, here is a very simple example, two 1-pole filters in parallel connected to an adder (see figure 5

This code appeals for some comments :

1. The parallel construct #pragma omp parallel is the fundamental construct that starts parallel execution. The number of parallel threads is generally the number of CPU cores but it can be controlled in several ways.

2. variables external to the parallel region are shared by default. The firstprivate(fRec0,fRec1) clause indicates that each thread should have its private copy of fRec0 and fRec1. The reason is that accessing shared variables requires an indirection and is very inefficient compared to private copies.

3. The top level loop for (int index = 0;...)... is executed by all threads simultaneously. The subsequent work-sharing directives inside the loop will indicate how the work must be shared between the threads.

4. Please note that an implied barrier exists at the end of each work-sharing region. All threads must have executed the barrier before any of them can continue.

The work-sharing directive #pragma omp single

indicates that this first section will be executed by only one thread (any of them).

6. The work-sharing directive #pragma omp sections indicates that each corresponding #pragma omp section, here our two filters, will be executed in parallel.

7. The loop construct #pragma omp for specifies that the iterations of the associated loop will be executed in parallel. The iterations of the loop are distributed across the parallel threads. For example if we have two threads the first one can compute indices between 0 and count/2 and the other between count/2 and count.

8. Finally #pragma omp single in section 3 indicates that this last section will be executed by only one thread (any of them).

Benchmarks

To compare the performances of these three types of code generation in a realistic situation we have implemented a special alsa-gtk-bench.cpp architecture file that measures the duration of the compute() method. Here is a fragment of this architecture file: The methodology is the following. The duration of the compute method is measured by reading the TSC (Time Stamp Counter) register. A total of 128+2048 measures are made by run. The first 128 measures are considered a warm-up period and are skipped. The median value of the following 2048 measures is computed. This median value, expressed in processors cycles, is first converted in a duration, and then in number of bytes produced per second considering the audio buffer size (in our test 2048) and the number of output channels. This throughput performance is a good indicator. The memory bandwidth is a strong limiting factor for today's processors, and it has to be shared among the processors. In other words, on a SMP machine a realtime audio program can never go faster than the memory bandwidth. And if a sequential program already utilises all the available memory bandwidth, there is no room for improvement. In this case a parallel version can only perform worth.

Machines and compilers used

In order to compare the scalar code generation with the new vector and parallel code generation we have compiled with Faust 0.9.9.5b2 a series of test in three different versions. The following commands were used : -GCC version 4.3.2 with options :

-O3 -march=native -mfpmath=sse -msse -msse2 -msse3 -ffast-math -ftree-vectorize. (-fopenmp added for OpenMP).

-ICC version 11.0.074 with options : -O3 -xHost -ftz -fno-alias -fp-model fast=2.

(-openmp is added for OpenMP).

All the tests were run on three different machines :

vaio : a Sony Vaio SZ3VP laptop, with an Intel T7400 dual core processor at 2167 MHz, 2GB of Ram, running an Ubuntu 7.10 distribution with a 2.6.22-15-generic kernel.

xps : a Dell XPS machine with an Intel Q9300 quad core processor at 2500 MHz, 4GB of Ram, running an Ubuntu 8.10 distribution with a 2.6.22-15generic kernel.

macpro : an Apple Macpro with two Intel Xeon X5365 quad core processors at 3000 MHz, 2GB of Ram, running an Ubuntu 8.10 distribution with a 2.6.27-12-generic kernel 4.2 Benchmark: copy1.dsp

The goal of this first test is to measure the memory bandwidth. We use a very simple Faust program copy1.dsp that simply copies the input signal to the output signal:

The results we have obtained are summarized figure 6. The horizontal axes corresponds to the three faust compilation schemes : scalar , vector and parallel, combined with the two C++ compilers : gcc and icc. The vertical axes is the throughput : how many bytes of samples each tested program is able to produce per second (higher values are the better).

It is interesting to note how catastrophic are the performances of the parallel versions. The scalar and vector versions are quite similar with a little advantage to the scalar version. The code generated by icc performs better. The memory bandwidth of the Macpro is disappointing specially considering that it has to be shared by 8 cores.

How stable are these measures ? Figure 7 compares the performances of copy1 (compiled with icc) on the Macpro on 5 different runs. As we can see the stability is reasonably good.

Benchmark: freeverb.dsp

The second test is freeverb.dsp, a Faust implementation of the Freeverb (the source can be found in the Faust distribution).

The results are given figure 8. Here gcc gives very good results in scalar code and outperforms icc in 2 of the 3 cases. But the performances of gcc are still very poor on vector and parallel code. Despite the fact that freeverb has a limited amount of parallelism, icc gives quite convincing results with a reasonable speedup on vector and parallel code on the Vaio and the XPS machines. It is also interesting to note that on parallel version the 8 3GHz cores of the macpro were slower than 4 2.5Ghz cores of the XPS ! 4.4 Benchmark: karplus32.dsp Karplus32.dsp is a generalized version of Karplus-Strong algorithm with 32 slightly detuned strings in parallel (the source can be found in the Faust distribution). Figure 9 gives the results. Again excellent performances