
HAL Id: hal-02159011
https://hal.science/hal-02159011v1

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Syntactical and Semantical Aspects of Faust
Yann Orlarey, Dominique Fober, Stéphane Letz

To cite this version:
Yann Orlarey, Dominique Fober, Stéphane Letz. Syntactical and Semantical Aspects of Faust. Soft
Computing, 2004. �hal-02159011�

https://hal.science/hal-02159011v1
https://hal.archives-ouvertes.fr

Soft Computing manuscript No.
(will be inserted by the editor)

Syntactical and Semantical Aspects of Faust

Yann Orlarey, Dominique Fober, Stephane Letz

Grame, Centre National de Creation Musciale, Lyon, France

Received: date / Revised version: date

Abstract This paper presents some syntactical and seman-
tical aspects of FAUST (Functional AUdio STreams), a pro-
gramming language for real-time sound processing and syn-
thesis. The programming model of FAUST combines two ap-
proaches :functional programmingandblock-diagrams com-
position. It is based on ablock-diagram algebra. It has a well
defined formal semantic and can be compiled into efficient
C/C++ code.

Key words functional programming – real-time – signal
processing – dataflow – compiler

1 Introduction

FAUST (Functional AUdio STreams), is a programming lan-
guage for real-time signal processing and synthesis. It targets
high-performance signal processing applications and audio
plugins. It has been designed with three main goals in mind :
expressiveness, clean mathematical semantics and efficiency.

Expressiveness is achieved by combining two approaches:
functional programming and algebraic block-diagrams (ex-
tended function composition). This computation model has
also the advantage of a simple and well defined formal se-
mantics.

Having clean semantics is not just of academic interest. It
allows the Faust compiler to besemantically driven. Instead
of compiling the block-diagram itself, it compiles ”what the
block-diagram compute”. It also allows to discover simplifi-
cations and factorizations to produce efficient code.

Faust is build on top of ablock-diagram algebrathat we
will describe in the next section. This algebra is totally inde-
pendant of Faust and could be reused in a completely differ-
ent domain. This is why in section 2 we will first present it
without any reference to Faust and its signal processing se-
mantic.

It is only in section 3 that we will relate theblock-diagram
algebra to Faust and to the signal processing semantic. We

will also describe the complete set of primitives of the lan-
guage.

In section 4 we will give a concrete example of usage
of Faust with the Karplus-Strong algorithm. In section 5 we
will give an overview of how the Faust compiler works. We
will end the paper with some concluding remarks and future
directions of work.

2 The block-diagram algebra

Block-diagram formalisms are widely used in visual langua-
ges particularly in musical languages. The user creates pro-
grams (i.e. block-diagrams), by connecting graphicalblocks
which represent the functionalities of the system. In almost
every implementation, a block-diagram is represented inter-
nally as a graph, and interpreted as adataflowcomputation
(see [2] and[1] for historical papers on dataflow, and [7] or
[4] for surveys).

This very common approach has several drawbacks:

1. Due to their generality, the semantics of dataflow mod-
els can be quite complex. It depends on many technical
choices like for example, synchronous or asynchronous
computations, deterministic or non-deterministic behav-
ior, bounded or unbounded communication FIFOs, firing
rules, etc. Because of this complexity, the vast majority of
dataflow inspired music languages have noexplicit formal
semantic. The semantics is hidden in the dataflow engine.
The real behavior of a block-diagram can be difficult to
understand without a good knowledge of the implemen-
tation.

2. Dataflow models are difficult to implement efficiently and
most of the time no compiler exists, only an interpreter is
provided. In order to minimize interpretation overheads,
computations typically operate on block of samples in-
stead of individual samples. This comes with a cost : re-
cursive computations are nearly impossible to implement
and therefore many common signal processing operations
can’t be implemented and must be provided as primitives
or external plug-ins.

Yann Orlarey et al.
2

3. Graphs are complex to manipulate. For example it might
be desirable to algorithmically generate block-diagrams
using templates and macros. But this is very difficult if
the block diagram is represented by a graph. Moreover,
it can be very useful to provide, in addition to the visual
syntax, a textual syntax that can be edited with a simple
text editor and processed with standard tools.

As we will see in the following paragraphs, these prob-
lems can be solved giving up thegraph representationand
adopting an equivalenttree representationbased on a small
algebra ofcomposition operators[5].

This block-diagram algebra(BDA) is the heart of Faust.
But it is independent from it. Therefore in this section we will
focus on thetopological semanticof the BDA: how things
are connected, but not what they do. We will assume the exis-
tence of a set of primitive building blocks, but without further
details or any reference to the signal processing semantic of
Faust.

2.1 Definitions

Let B be a set of primitive blocks (this set is leaved undefined
at this stage) and letD be the set of block-diagrams build on
top of B. A block-diagramD ∈ D is either anidentityblock
(), acut block (!), a primitive blockB ∈ B, or composition
of two block-diagrams based on one of the five composition
operator of the algebra. More formally a block-diagramD ∈
D is defined recursively by the following syntactic rule :

D = |! | B | (D1 : D2) | (D1, D2)
| (D1 <: D2) | (D1 :> D2) | (D1 ∼ D2)

We will adopt a type-like notation :D : iD → oD to
indicate that block-diagramD ∈ D hasiD inputs andoD

outputs thus notated :

inputs(D) = {Din[0], Din[1], . . . , Din[iD − 1]}

outputs(D) = {Dout[0], Dout[1], . . . , Dout[oD − 1]}

2.2 Sequential composition(A : B)

The sequential compositionoperator is used to connect the
outputs ofA to the corresponding inputs ofB (such that
Aout[i] is connected toBin[i]). The inputs of(A : B) are
the inputs ofA and the outputs of(A : B) are the outputs of
B.

If the number of inputs and outputs are not the same,
the exceeding outputs ofA (resp. the exceeding inputs ofB)
form additional outputs (resp. inputs) of the resulting block-
diagram (see figure 1). The number of inputs and outputs of
the resulting block-diagram is given by the following three
rules :

A : iA → oA B : iB → oB oA = iB
(A : B) : iA → oB

A : iA → oA B : iB → oB oA > iB
(A : B) : iA → oB + oA − iB

A : iA → oA B : iB → oB oA < iB
(A : B) : iA + iB − oA → oB

Fig. 1 The sequential composition operator : possible cases accord-
ing to the number of outputs ofA and inputs ofB

2.3 Parallel composition(A,B)

Theparallel compositionoperator associates two block-dia-
grams one on top of the other, without connections. The in-
puts (resp. the outputs) of(A,B) are the inputs (resp. the
outputs) ofA andB as defined in the following rule :

A : iA → oA B : iB → oB

(A,B) : iA + iB → oA + oB

Fig. 2 The parallel composition operator

2.4 Split composition(A <: B)

This split compositionoperator is used to distribute the out-
puts ofA to several inputs ofB. It requires that the number
of inputs ofB is an exact multiple of the number of outputs
of A. For example ifA has 3 outputs andB has 6 inputs,
then each output ofA will be connected to 2 inputs ofB. The
general rule is that, ifA : iA → m andB : oA ∗ k → q
thenAout[i] is connected toBin[i + j ∗ oA] wherej < k.
The inputs (resp. the outputs) of(A <: B) are the inputs of
A (resp. the outputs of B) as defined in the following rule :

A : iA → oA B : oA ∗ k → oB

(A <: B) : iA → oB

3 2.6 Recursive composition(A ∼ B)

Because we suppose that the number of inputs ofB is an
exact multiple of the number of outputs ofA, the split compo-
sition is a partial function overD. It would have been easy to
extend the semantic of<: to cover all possible cases, but ex-
periments with Faust have proved that these restrictions are
useful to discover potential programming errors. The same
remark applies to the restrictions introduced in the:> and
∼ operators presented in the next paragraphs. Violations of
these restrictions are typically flagged by the compiler and
reported as typing errors.

Fig. 3 The split composition operator

Note that ifk = 1, thenA <: B is equivalent toA : B.

2.5 Merge composition(A :> B)

As suggested by the notation, themerge compositionopera-
tor does the inverse of the split operator. It is used to connect
several outputs ofA to the same inputs ofB. It requires that
the number of outputs ofA be an exact multiple of the num-
ber of inputs ofB. The general rule is that, ifA : iA → iB ∗k
andB : iB → oB thenAout[i+ j ∗ iB] is connected toBin[i]
wherej < k.

The inputs (resp. the outputs) of(A :> B) are the inputs
of A (resp. the outputs ofB). The number of outputs ofA
should be an exact multiple of the number of inputs ofB:

A : iA → iB ∗ k B : iB → oB

(A :> B) : iA → oB

Fig. 4 The merge composition operator

Note that ifk = 1, then(A :> B) is equivalent to(A : B)
.

2.6 Recursive composition(A ∼ B)

Therecursive compositionis used to create cycles in the block-
diagram in order to express recursive computations. Each in-
put ofB is connected to the corresponding output ofA. Each
output ofB is connected to the corresponding input ofA.

The inputs of(A ∼ B) are the remaining inputs ofA.
The outputs of(A ∼ B) are the outputs ofA. Two examples
of recursive composition are given in figure 5.

A : iA → oA B : iB → oB oB ≤ iA iB ≤ oA

(A ∼ B) : iA − oB → oA

Fig. 5 Two examples ofrecursive composition

2.7 Identity block and Cut block!

For the algebra to be complete we need to introduce two addi-
tional elements : theidentity block(a simple connection wire)
represented by the underscore symboland thecut block(a
connection ending) represented by the symbol!. These two
elements are represented figure 6. We have :

: 1 → 1

and

! : 1 → 0

The identity blockandcut blockare typically used to cre-
ate complex routings. For example to cross two connections,
that is to connectAout[0] to Bin[1] andAout[1] to Bin[0] one
can write :

A : (, <:!, , , !) : B

Fig. 6 The identityandcut primitive boxes

Yann Orlarey et al.
4

2.8 Precedence and associativity

In order to simplify the expressions and to avoid too many
parenthesis, we define a precedence and an associativity for
each operator as given in the following table :

Priority Symbol Name Associativity
3 ˜ recursive Left
2 , parallel Right
1 : , <: , : > sequential, split, merge Right

Based on these rules we can write :

a : b, c ∼ d, e : f

instead of
(a : (((b, (c ∼ d)), e) : f))

Moreover, the following properties hold :

((A : B) : C) = (A : (B : C))

((A,B), C) = (A, (B,C))

((A <: B) <: C) = (A <: (B <: C))

((A :> B) :> C) = (A :> (B :> C))

2.9 Stefanescu Algebra of Flownomials

Our block-diagram algebra is related to Gh. Stefanescu [6]
Algebra of Flownomials(AoF) proposed to represent directed
flowgraphs (blocks diagrams in general including flowcharts)
and their behaviors.

The AoF is presented as an extension of Kleene’s calculus
of regular expressions. It is based on three operations and var-
ious constants used to describe the branching structure of the
flowgraphs. They all have a direct translation into our BDA
as shown table 1.

Although the AoF and the BDA are equivalent in that
they can both represent any block-diagram, the AoF lacks the
high-level composition operations offered by the BDA and it
is less suited for a practical programming language.

AoF BDA

par. comp. A ++B A, B
seq. comp A.B A : B
feedback A ↑ A ∼ :!
identity I

transposition X , <:!, , , !
ramification ∧n

k (, . . .)n <: (, . . .)n∗k

∧0 !

identification ∨k
n (, . . .)n∗k :> (, . . .)n

Table 1 Correspondences between the algebra of Flownomials and
the block diagram algebra. Note :(, . . .)n means the composition
of n identity in parallel.

3 The Faust language

The Faust language is built on top of the BDA, extended with
a suitable set of primitives and some additional syntactic con-
structions allowing to define a Faust program as a list of def-
initions.

This section will start with some few definitions related to
the semantic of signal processor. Then the signal processing
semantic of the BDA will be presented. The section will end
with a description of Faust primitives.

3.1 Notations and definitions

A Faust block-diagram denotes asignal processortransform-
ing input signals into output signals. In this paragraph we de-
fine the notions ofsignal, of signal processorand some nota-
tions.

3.1.1 Signals A signal s is a discrete function of times :
N → R. The value of signals at timet is writtens(t). By con-
vention, the full range of the AD/DA converters corresponds
to samples values between−1.0 and+1.0. We denote byS
to be the set of all possible signals :S = N → R.

3.1.2 Constant SignalsA signal is aconstant signalif it
always delivers the same value :∃v ∈ R,∀t, s(t) = v. We
notateSk ⊂ S the subset ofconstant signals.

3.1.3 Integer Signals A signal is aninteger signalif it al-
ways delivers integer values :∀t, s(t) ∈ Z. We notateSi ⊂ S
the subset ofinteger signals. Moreover we haveSi = N → Z.

3.1.4 Constant Integer SignalsA signal is anconstant in-
teger signalif it always delivers the same integer value :
∃k ∈ Z,∀t, s(t) = k. We notateSik ⊂ S the subset ofcon-
stant integer signals. We haveSik = Si ∩ Sk.

3.1.5 Tuples of SignalsSignal processors operate ontuples
of signals. We will write (x1, . . . , xn) : an-tuple of signals el-
ement ofSn. Theempty tuple, single element ofS0 is notated
().

3.1.6 Signal processorsFaust primitives and block-diagrams
representsignal processors, functions transforminginput sig-
nals to produceoutput signals. A signal processorsp is a
function fromn-tuples of signals tom-tuples of signalsp :
Sn → Sm. We notateP the set of all signal processors :

P =
⋃
n,m

Sn → Sm

5 3.3 Faust Primitives

3.1.7 Semantic function In order to explicitly refer to the
mathematicalmeaningof a block-diagramD and to distin-
guish it from its syntactic representation we will usedseman-
tic brackets: [[]]. The notation[[D]] means :the signal pro-
cessor represented by block-diagramD. Therefore[[.]] as a
semantic functiontranslatingblock-diagramsinto signal pro-
cessors: [[.]] : D → P.

3.2 Semantic of the Block-Diagram Algebra

In the previous section we have informally presented thetopo-
logical semanticof the Block-Diagram Algebra, how things
are connected, but without any references to the actual mean-
ing of these connections. In this paragraph we will define the
signal processing semanticof the various composition oper-
ators.

3.2.1 Sequential compositionThe result of the sequential
composition ofD1 : n → m andD2 : p → q is defined by
different rules according tom andp :

[[D1]](x1, . . . , xn) = (s1, . . . , sm)
[[D2]](s1, . . . , sp) = (y1, . . . , yq)
(m = p)

[[D1 : D2]](x1, . . . , xn) = (y1, . . . , yq)

[[D1]](x1, . . . , xn) = (s1, . . . , sm)
[[D2]](s1, . . . , sm, z1, . . . , zp−m) = (y1, . . . , yq)
(m < p)

[[D1 : D2]](x1, . . . , xn, z1, . . . , zp−m) = (y1, . . . , yq)

[[D1]](x1, . . . , xn) = (s1, . . . , sp, sp+1, . . . , sm)
[[D2]](s1, . . . , sp) = (y1, . . . , yq)
(m > p)

[[D1 : D2]](x1, . . . , xn) = (y1, . . . , yq, sp+1, . . . , sm)

It is easy to deduce from the above rules that sequential com-
position is an associative operation :(D1 : D2) : D3 = D1 :
(D2 : D3)

3.2.2 Parallel composition The result of the parallel com-
position ofD1 : n → m andD2 : o → p is defined by
:

[[D1]](x1, . . . , xn) = (y1, . . . , ym)
[[D2]](s1, . . . , so) = (t1, . . . , tp)

[[D1, D2]](x1, . . . , xn, s1, . . . , so) = (y1, . . . , ym, t1, . . . , tp)

The associativity holds also for the parallel composition :
(D1, D2), D3 = D1, (D2, D3)

3.2.3 Split composition In the split composition, the output
signals ofD1 : n → m are duplicatedk times and distributed
to the inputs ofD2 : m.k → p :

[[D1]](x1, . . . xn) = (s1, . . . sm)

[[D2]](
1︷ ︸︸ ︷

s1, . . . sm, . . . ,

k︷ ︸︸ ︷
s1, . . . sm) = (y1, . . . yp)

[[D1 <: D2]](x1, . . . xn) = (y1, . . . yp)

3.2.4 Merge composition In the merge composition, the out-
put signals ofD1 : n → m.k are added together by groups of
k signals and sent to the corresponding input ofD2 : m → p
:

[[D1]](x1, . . . xn) = (s1, . . . sm.k)
[[D2]](

∑k−1
j=0 (s1+j.m), . . .

∑k−1
j=0 (sm+j.m)) = (y1, . . . , yp)

[[D1 :> D2]](x1, . . . xn) = (y1, . . . yp)

3.2.5 Recursive compositionIn the recursive composition
of D1 : v + n → u + m andD2 : u → v the firstu output
signals ofD1 are sent with a 1-sample delay to the corre-
sponding inputs ofD2. The outputs ofD2 are sent to the first
v inputs ofD1 :

[[D1]](r1, . . . , rv, x1, . . . , xn) = (y1, . . . , ym)
[[D2]](y−1

1 , . . . , y−1
u≤m) = (r1, . . . , rv)

[[(D1 ∼ D2)]](x1, . . . , xn) = (y1, . . . , ym)

For a signalx, the notationx−1, represents the signalx de-
layed by one sample such that :∀x ∈ S x−1(0) = 0 and
x−1(t+1) = x(t). The resulting tuple of signals(y1, . . . , ym)
is the least fixed point that satisfies the equation. This fixed
point always exists as we limit ourselves to recursive compu-
tation depending only of past values.

3.2.6 Identity box and Cut box! As shown in figure 6, the
identityprimitive () is essentially a simple wire representing
the identity function for signals :

[[]] : S → S
[[]](s) = (s)

Thecut box with one input and no output is used to end a
connection :

[[!]] : S → S0

[[!]](s) = ()

3.3 Faust Primitives

The setB of Faust primitives follows as much as possible
the set of C/C++ operators. In order to guarantee the role of
signal processing specification language of Faust, typical sig-
nal processing operations are not part of the primitives. They
are typically implemented in Faust and provided as external
libraries.

Yann Orlarey et al.
6

3.3.1 Arithmetic primitives Faust arithmetic primitives cor-
respond to the five C/C++ operators+ − × / % represented
figure 7. The semantics scheme of each of these primitives is
the same. For an operation? ∈ {+,−,×, /, %} we have :

[[?]] : S2 → S
[[?]](s1, s2) = (y)

y(t) = s1(t) ? s2(t)

Fig. 7 The arithmetic primitives

3.3.2 Comparison primitives The six comparison primitives
are also available :<,>,<=, >=, ! =,==. They compare
two signals and produce a boolean signal. For a comparison
./∈ {<,>,<=, >=, ! =,==} we have :

[[./]] : S2 → S
[[./]](s1, s2) = (y)

y(t) =
{

1 if s1(t) ./ s2(t)
0 else

3.3.3 Bitwise primitives Bitwise primitives corresponding
to the five C/C++ operators<<,>>, &, |,∧ are also pro-
vided. Again the semantics scheme of each of these primi-
tives is the same. For an operation? ∈ {<<,>>, &, |,∧}
we have :

[[?]] : S2 → S
[[?]](s1, s2) = (y)

y(t) = s1(t) ? s2(t)

3.3.4 Constants Constants are represented by boxes with
no input and a constant output signal (see figure 8). For a
numberk ∈ R we have

[[k]] : S0 → S
[[k]]() = (y)

y(t) = k

Fig. 8 The constant 10

3.3.5 Casting Two primitives : float and int are pro-
vided to cast signals to floats or integers.

Fig. 9 The int castandfloat castprimitive boxes

3.3.6 Foreign definitions Foreign definitions are used to in-
corporate externally defined C functions and constants. For-
eign functions are declared using the reserved keywordffunc-
tion , specifying the C prototype, the include file, and the
library to link against.

ffunction(prototype, include, library)

For example thesin function is declared :

ffunction(float sin(float), <math.h>, "-lm")

Foreign constants are declared using the reserved wordfcons-
tant :

fconstant(int fSamplingFreq, <math.h>)

3.3.7 Fixed delays Fixed delays are provided with two prim-
itives@andmem. More sophisticated delays are implemented
using the read-write tables. While@represent a fixed delay :

[[@]] : S× Sik → S
[[@]](x, d) = (y)

y(t + d(t)) = x(t)

Thememrepresent a 1-sample delay :

[[mem]] : S → S
[[mem]](x) = (y)

y(t + 1) = x(t)

We have∀s, [[mem]](x) = [[@]](x, 1).

Fig. 10 Themembox represents a one sample delay

3.3.8 Read-only table The read-only tablerdtable is a
primitive box with 3 inputs : a constant size signal, an initial-
ization signal and an index signal. It produce an output signal
by reading the content of the table.

[[rdtable]] : Sik × S× Si → S
[[rdtable]](n, v, i) = (y)

y(t) = v(i(t))

The size of the table is determined by the constant signaln.
The index signali is such that∀t, 0 ≤ i(t)<n.

3.3.9 Read-write table The read-write tablerwtable is
almost the same as therdtable box, except that the data
stored at initialization time can be modified. It has 2 more
inputs streams : the write index and the write signal.

7 3.3 Faust Primitives

Fig. 11 The read-only table primitive

Fig. 12 The read-write table primitive

3.3.10 Selectors The primitivesselect2 andselect3
allow to dynamically select between 2 or 3 signals accord-
ing to a selector signal. Theselect2 box receives 3 input
streams, the selection signal, and the two signals.

[[select2]] : Si × S2 → S
[[select2]](i, s[0], s[1]) = (y)

y(t) = s[i(t)](t)

The index signali is such that∀t, i(t) ∈ {O, 1}. Theselect3
box is exactly the same except that it selects between 3 sig-
nals :

[[select3]] : Si × S3 → S
[[select3]](i, s[0], s[1], s[2]) = (y)

y(t) = s[i(t)](t)

Fig. 13 Theselect2primitive box

3.3.11 Graphic user interfaceA Faust block-diagram can
contain user interface elements (buttons, sliders, etc.) grouped
together according to different layout strategies. Like every
thing in Faust, user interface elements deliver signals. It is
therefore possible to mix user interface elements with other
signal processing operations.

Thebutton primitive has the following syntax:

button(" label")

The signal delivered by the button reflects the user actions:

[[button(”label”)]] : S0 → S
[[button(”label”)]]() = (y)

y(t) =
{

1 when the button is pressed
0 otherwise

This box is a monostable trigger. It has no input, and one
output that is set to 1 if the user click the button, and else to
0.

Fig. 14 Thebuttonprimitive box

Thecheckbox is a bistable trigger. A mouse click sets
the output to 1. A second mouse click sets the output back to
0.

Fig. 15 Thecheckboxprimitive box

Here’s the syntax :

checkbox(" label")

The slider boxeshslider (horizontal) andvslider
(vertical) provide some powerful controls for the parameters.
Here’s the syntax :

hslider(" label", start, min, max, step)

This produces a slider, horizontal or vertical, that let the
user pick a value betweenmin and max−step. The initial
value isstart. When the user moves the slider, the value changes
by steps of the value ofstep. All the parameters can befloat s
or int s.

The associated box has no input, and one output which is
the value that the slider displays.

Fig. 16 Theslider primitive box

This primitive displays a numeric entry field on the GUI.
The output of this box is the value displayed in the field.

Yann Orlarey et al.
8

nentry(" label", start, min, max, step)

Fig. 17 Thenentryprimitive box

The layout of the user interface is controlled usinggroup
expressions. For example

hgroup(" label", D)

defines an horizontal layout for all the user interface elements
that appears inD. Similarly vgroup(" label", D) defines
a vertical layout andtgroup(" label", D) a tabular orga-
nization.

4 Example : the Karplus-Strong Algorithm

Karplus-Strong is a well known algorithm first presented by
Karplus and Strong in 1983 [3]. It can generate interesting
metallic plucked-string and drum sounds. While non com-
pletely trivial, the principle of the algorithm is simple enough
to be described in few lines of Faust.

An overview of the implementation is given figure 18.
It uses an impulse of noise that goes into a resonator based
on a delay line with feedback. The user interface contains a
button to trig the sound and allows to control the size of both
the resonator and the noise impulse, as well as the amount of
feedback.

Fig. 18 The Faust implementation

4.1 The noise generator

Thenoisegenerator is based on a very simplerandomnum-
ber generator which values are scaled down between−1 and
+1. The following Faust definitions correspond to the block-
diagram of figure 19.

random = (*(1103515245)+12345) ∼ ;
noise = random *(1.0/2147483647.0);

Fig. 19 The noise generator

4.2 The trigger

The trigger is used to deliver a one shot control signal every
time the user press on the play button. The control signal must
have a precise width that is independent of how long the user
press on the button.

impulse(x) = (x - mem(x)) > 0;
release(n) = + ∼(<: -(>(0)/n)) : >(0);
trigger(n) = impulse : release(n);

Impulse (figure 20) transforms the play button signal into
a one sample impulse. The areleaseis added to transform
this impulse into an-samples signal.

Fig. 20 impulse in charge of transforming a button signal into a
one sample impulse

4.3 The resonator

The resonator uses a delay line implemented using a rwtable
(see figure 21). It averages two consecutive samples with de-
lay d andd− 1 and feeds back the result with an attenuation
a into the table.

index(n) = &(n-1) ∼+(1);
delay(n,d) = rwtable(n, 0.0, index(n), ,
(index(n)-int(d)) & (n-1)) ;
resonator(d,a) = (+ <: (delay(4096, d-1)
+ delay(4096, d))/2.0) ∼*(1.0-a) ;

4.4 Putting all together

The description in now almost complete. We can put all the
pieces together with the user interface description and define

9 5.1 The compilation process

Fig. 21 The delay line

process that will produce the standalone application of fig-
ure 22.

dur = hslider("duration", 128, 2, 512, 1);
att = hslider("attenuation", 0.1, 0, 1, 0.01);

process = noise : *(button("play")
: trigger(dur)) : resonator(dur,att);

Fig. 22 The Karplus-Strong user interface automatically generated
from the Faust specification

5 The Faust Compiler

The role of the Faust compiler is to translate a signal pro-
cessor specification written in Faust into C/C++ code. Be-
cause we target high-performance real-time signal process-
ing applications, the main challenge is to generate efficient
code that can compete with hand-written one. The key idea
is not to compile the block diagram itself, butwhat it com-
putes. Driven by the semantic rules described in the previous
sections, the compiler starts by propagating symbolic signals

into the block diagram in order to discover how each out-
put signal can be expressed as a function of the input sig-
nals. These resulting signal expressions are then simplified
and common subexpressions are factorized. Finally they are
translated into C/C++ code resulting in a five methods class
that implements the specification.

5.1 The compilation process

The compilation process involves several phases that we de-
scribe briefly in the following paragraphs.

5.1.1 Parsing the source filesAs mentioned in the previ-
ous example, a faust program is an unordered list of defini-
tions that includes a definition of the keywordprocess , the
Faust equivalent to Cmain() . The first step is to parse all
the input files in order to produce a internal dictionary of defi-
nitions. Each definition is represented as an abstract syntactic
tree (AST). To simplify the discovery of common subtree, the
AST are implemented using hash-consing such that syntacti-
cally equal trees are always shared in memory.

5.1.2 Evaluation ofprocess The next step is to evaluate
the definition ofprocess stored in the dictionary. This step
is basically aλ-calculus interpreter with a strict evaluation
strategy. Names are replaced with their definition found in
the dictionary and applications of abstractions areβ-reduced.
The result is ”flat” block-block-diagram where everything have
been expanded.

5.1.3 Type annotation of block-diagramsUsing the rules
described in section 2, every subtreeD of the process tree
is annotated with its number of inputs and outputs :n → m.

5.1.4 Symbolic propagation In order to discover what the
block-diagram computes, symbolic signals are propagated through
it using the semantic rules described in section 3. This prop-
agation results in a list ofsignal expressionsexpressing how
each output signals is computed from the input signals.

5.1.5 Type annotation of signalsThe resulting signal ex-
pressions are type annotated according to several aspects :

1. thenatureof the signal :integerof float.
2. thecomputation timeof the signal: the signal can be com-

puted atcompilation time, at initialization timeor atexe-
cution time.

3. thespeedof the signal :constantsignals computed only
once,low speeduser interface signals computed once for
every block of samples,high speedaudio signals. com-
puted every samples.

4. parallelism of the signal :true is the samples of the signal
can be computed in parallel,falseotherwise.

References 10

5.1.6 Simplification and normalizationThe signal expres-
sions are rearranged and simplified by executing all the com-
putations that can be done at compilation time producing sig-
nal expressions in normal form.

5.1.7 Sharing of recursive signalsThe previous steps may
have produced different, butα-equivalent, representations of
recursive signals. Because they are syntactically different they
are not automatically shared by the hash-consing technique.
This step replaces allα-equivalent subtrees with a common
shared subtree.

5.1.8 Reuse annotationThe subtrees are annotated with a
reuseflag indicating if the computation should be stored in
a temporary variable to be later reused. The notion of reuse
can be quite subtle. It concerns expressions that have several
occurrences in the global expression (space reuse), but also
expressions with only one occurrence but in a higher speed
context (time reuse).

5.1.9 Code generation The compiler generates a C++ class
that implements the Faust specification. This class may be
wrapped into anarchitecture codethat implements a specific
type of application or plugin format. The compiler can op-
tionally generateSIMDcode using either ALTIVEC or SSE2
intrinsics.

5.2 Implementations and performances

An implementation of the Faust compiler, written in C++, is
available atsourceforge(http://faudiostream.sourceforge.net).
The code is quite portable and only depends on Lex and Yacc
for the parser code.

The performance of the code generate by the compiler is
quite good. In order to compare it with hand written code we
have reimplemented in Faust two audio effects:Freeverb, a
well known reverb written in C++, and Tapiir a multitap delay
also written in C++. Both applications are freely available on
Internet with the source code.

In both case, the Faust specification is far more compact
than the C++ code. The speed of both versions of the Free-
verb are equivalents (but the speed of the Faust version using
SIMD code generation is about twice faster). The Faust ver-
sion of Tapiir is twice faster than the original version even in
scalar mode.

6 Conclusion

We have presented both some syntactical and semantical as-
pects of Faust. The syntax of Faust is quite surprising at first
but it turns out to be very convenient. Once you get used to it,
it is both expressive and readable. The combination of func-
tional programming and block-diagram composition is also
really pleasant and natural to use.

Because of it simple and well defined semantic, the lan-
guage can be easily compiled into efficient C++ code. Pre-
liminary performance tests on the generated code are encour-
aging. In some cases the Faust code significantly outperforms
hand-written code.

The compiler can be improved in several ways, in par-
ticular by extending its capacities of symbolic simplification
and normalization and by improving the generation of SIMD
code.

The semantic of the language can also be enlarged. Right
now Faust only deals with scalar signals. The next step is
to add arbitrary data types in particular vectors and matrices
which are needed for image and video processing as well as
spectral based transformations.

References

1. J. B. Dennis and D. P. Misunas. A computer architecture for
highly parallel signal processing. InProceedings of the ACM
1974 National Conference, pages 402–409. ACM, November
1974.

2. G. Kahn. The semantics of a simple language for parallel pro-
gramming. InProceedings of the IFIP Congress 74. North-
Holland, 1974.

3. K. Karplus and A. Strong. Digital synthesis of plucked-string
and drum timbres.Computer Music Journal, 7(2):43–55, 1983.

4. E. A. Lee and T. M. Parks. Dataflow process networks. InPro-
ceedings of the IEEE, volume 83, pages 773–801, May 1995.

5. Y. Orlarey, D. Fober, and S. Letz. An algebra for block diagram
languages. In ICMA, editor,Proceedings of International Com-
puter Music Conference, pages 542–547, 2002.

6. Gheorghe Stefanescu. The algebra of flownomials part 1: Binary
flownomials; basic theory. Report, Technical University Munich,
November 1994.

7. Robert Stephens. A survey of stream processing.Acta Informat-
ica, 34(7):491–541, 1997.

