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ABSTRACT

Predicting the acoustics of objects from computational
models is of interest to instrument designers who increas-
ingly use Computer Assisted Design. We examine tech-
niques to carry out these estimates using a database of im-
pulse responses from 3D printed models and a custom al-
gorithm for mode interpolation within a geometrical ma-
trix. Test geometries are organized as a function of their
physical characteristics and placed into a multidimensional
space/matrix whose boundaries are defined by the objects
at each corner. Finite Element Analyses is integrated into
the open-source CAD environment to provide estimates of
material vibrations also compared to measurements on the
fabricated counterparts. Finally, predicted parameters in-
form physical models for aural comparisons between fab-
ricated targets and computational estimates. These hybrid
methods are reliable for predicting early modes as they co-
vary with changes in scale and shape in our test matrix.

1. INTRODUCTION

In the last decade we have seen numerous attempts to use
3D printing to produce musical instruments [1–3]. Print
resolution increases, material limitations are overcome,
and machine costs have come down for entry level print-
ers, dissolving barriers for modern luthiers interested in
such techniques. The use of Computer Assisted Design
(CAD) softwares such as SolidWorks, 1 Rhino, 2 Open-
Scad, 3 etc. is a necessary step in the digital fabrication
process. 4 Musical instruments must therefore be modeled
first on a computer before being printed.

We believe that physical/acoustical modeling has an im-
portant role to play in this context by allowing luthiers to
listen to a digital version of their instrument before materi-
alizing it. Additionally, 3D printing presents a unique op-
portunity to test existing physical modeling techniques in a

1 http://www.solidworks.com/ (All the URLs presented in
this paper were verified on March 6, 2018)

2 https://www.rhino3d.com/
3 http://www.openscad.org/
4 Error prone 3D scanning may be used to derive geometries from pre-

existing objects, however modifying these meshes for novel designs re-
quires much more expensive software.
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highly controlled environment where the physical proper-
ties (e.g., material, shape, etc.) of the objects to be modeled
can be precisely controlled.

The idea of using physical modeling to tune the charac-
teristics of musical instruments before making them is not
new and has been investigated in the framework of vari-
ous projects [4,5], but absent from these earlier efforts was
the ability of the maker to listen to a virtual version of the
instrument when prototyping it on a computer.

Physical modeling of musical instruments has made sig-
nificant progress in recent years and realistic virtual ver-
sions of existing instruments can be implemented. How-
ever, each instrument presents different challenges and
there doesn’t exist a lightweight generic solution to model
any instrument from knowledge of its geometry and mate-
rials that can be represented in a CAD model.

In this paper, we investigate the use of various tech-
niques to predict and approximate the sound of an object
before printing it. We focus on simplified string instru-
ment bodies/resonators to facilitate comparisons between
the printed objects and their virtual version.

Rather than an exhaustive approach, we focus on sim-
ple techniques wary of how emerging challenges would
increase with more complex instruments.

First, we present the 3D printed objects used for our ex-
periments. Next, we analyze their impulse response by
extracting modal information from them. We then com-
pare the modal profiles computed with the Finite Element
Method (FEM) on their 3D models to the measurements
from their physical counterparts. After this, we introduce a
new modeling method using mode morphing on a database
of impulse response and we compare the modal profiles
computed using this technique to the ones measured on
the 3D printed objects. We also demonstrate how the data
acquired using these various techniques can be used in a
practical context with open-source softwares. Finally, we
discuss the results of our experiments and give future di-
rections for this type of work.

2. MATRIX OF SIMPLE RESONATORS

The experiments presented in the following sections of this
paper are all based on a matrix of 3D objects implementing
simple musical instrument bodies/resonators. These ob-
jects are essentially “open boxes” of different shapes and
sizes. Figure 1 gives an overview of how the objects are
organized in the matrix: the x axis defines the shape of
the objects (from circular to square) and the y axis their
scale/size. Objects are scaled on this axis which means that



Figure 1. Matrix of 3D printed instrument bodies with their
corresponding shape.

Diam./ Hole
Object Scale Width Height Walls Diam.
Large 2 130 54 4 32
Medium 1.5 81.5 40.5 3 24
Small 1 65 27 2 16

Table 1. Dimensions in millimeters of the objects pre-
sented in Figure 1.

all their parameters (including their “wall” thickness) are
changed. A scaling factor of 2 was applied to the largest
objects of the matrix compared to the smallest ones. Ta-
ble 1 summarizes the dimension of the objects presented
in Figure 1. Note that the size of objects is the same for
objects of different shapes.

A generic OpenScad model 5 was implemented and used
to make the model of each object. The nine resonators
were 3D printed on a Ultimaker 2 Extended + 6 which is
a Fused Deposition Modeling (FDM) printer. The material
used for the prints was PolyLactic Acid (PLA).

This matrix provides an environment for testing different
physical parameters in the framework of physical model-
ing. Therefore, the impact of the scale of the object and of
their basic shape on the quality of the models is tested in

5 The source code of this model is available on the project
web-page: https://ccrma.stanford.edu/˜rmichon/
3d-printing-modeling.

6 https://ultimaker.com/en/products/
ultimaker-2-plus
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Figure 2. Spectrum and detected modes (numbered and
represented by circles) of the large square object of Fig-
ure 1.

§4-5. Intermediate elements (e.g., resonators with rounded
corners and scale factor 1.5) will also serve as a proof for
some of the predictions made by the technique presented
in §5.

3. IMPULSE RESPONSE ANALYSIS

The impulse response of each object of Figure 1 was mea-
sured in order to compare the acoustics of the printed ob-
jects with their modeled version (see §4) and also to make
the models presented in §5. Measurements were made in
an anechoic chamber using a force hammer and a probe
microphone. Impulse responses were measured in differ-
ent physical locations on the objects but due to the clarity
of the recordings, we decided to use the one made at the
center of their back plate for experiments presented in this
paper.

After deconvolving the signal of the force hammer and
the microphone from the overall impulse response, the
frequency domain position of the modes and their ampli-
tude was automatically estimated by detecting peaks in the
spectrum. Figure 2 gives an example of this process by
plotting the spectrum of the impulse response of the large
square object with the modes detected by our system. Only
modes below 5KHz are plotted as the spectrum of the im-
pulse responses tends to become more chaotic beyond this
frequency.

The T60 (resonance duration) of each mode was esti-
mated by tracking their respective decays within spectro-
grams.

The mode parameters (frequency, gain, and T60) of each
object when excited at the center of their back plate were
stored in a database to be used in the experiments presented
in the following sections. All these operations were done
in Matlab.

4. MODELING USING FINITE ELEMENT
METHOD

The Finite Element Method is a known technique for mod-
eling the dynamic deformation of an object and synthesiz-
ing the sound emitted by the object after an excitation [6].



Figure 3. Reworked mesh of the large square instrument
body ready for finite element analysis.

It has been successfully used to model the body of string
instruments [7] such as the violin [8,9]. FEM is now com-
monly employed by modern luthiers as an analysis tool
when designing new instruments [10].

In a previous publication, we introduced mesh2faust
which is an open-source tool [11] to generate modal physi-
cal model [12] for the FAUST programming language [13].
mesh2faust takes a volumetric mesh of a 3D object as
its main argument, carries out a finite element analysis us-
ing the Vega FEM Library [14], and generates the corre-
sponding FAUST modal physical model. We wish to keep
the tool-chain presented in this paper fully open source
to facilitate its use by other members of the community,
which is why we decided to use mesh2faust.

4.1 Meshing

The optimized meshes produced by OpenScad for each ob-
ject presented in Figure 1 were re-meshed using Mesh-
Lab 7 in order to create uniform volumetric meshes (see
Figure 3). Indeed, even though the stl file gener-
ated by OpenScad already hosts a mesh compatible with
mesh2faust, it is highly optimized and it will not
work properly with finite element analysis (see Figure 4).
Acousticians using this technique don’t necessarily face
this issue as they typically draw the optimized mesh di-
rectly without using a CAD software. Also, some propri-
etary (and absurdly expensive) CAD softwares have built-
in tools to carry out this task but it is not the case of Open-
Scad which is open source.

Producing a uniform mesh is challenging as we must
strike a balance between a tractable number of faces and
a plausible representation of the object. Considering
this tradeoff, all square objects have 15980 faces, semi-
circular objects have 39964 faces and circular objects have
53980 faces. For reference, computing the modes of a
mesh with 50000 faces takes approximately ten minutes in
mesh2faust on a single core (2.7GHz) Intel i7-2620M
CPU.

7 http://www.meshlab.net/

Figure 4. Optimized mesh of the large square instrument
body generated by OpenScad.

Young’s
Modulus Poisson Density

Object (N/m2) Ratio (kg/m3)
Circular Large 3.3 0.36 1280
Circular Mid 3.5 0.36 1250
Circular Small 3.3 0.36 1250
Semi Circular Large 3.5 0.36 1240
Semi Circular Mid 3.5 0.36 1240
Semi Circular Small 3.3 0.36 1260
Square Large 3.5 0.36 1250
Square Mid 3.5 0.36 1260
Square Large 3.5 0.36 1260

Table 2. Material properties used for the finite element
analysis of each object of Figure 1.

4.2 Material Properties

Material properties must be specified in order for
mesh2faust to carry out finite element analysis. The
material used for printing the objects modeled here is PLA
(see §1). The standard properties of this type of material
(Young’s Modulus: 3.5N/m2, Poisson’s Ratio: 0.36, Den-
sity: 1240kg/m3) [15] were fine-tuned for each object to
best match their impulse response (see Figure 5). Due to
inhomogeneous extrusions in fusion deposition modeling,
material properties tend to slightly change from one print
to another. The material properties used for each object are
summarized in Table 2.

4.3 Comparing the FEM Modes to the Impulse
Response of the 3D Printed Objects

The mode parameters (i.e., frequency and gain) computed
by mesh2faust when exciting the models at the center
of their back plate are compared to the modes estimated
from the impulse response measured at the same location
on the 3D printed objects (see §3) in Figure 5.

The results of this experiment are similar for most ob-
jects. mesh2faust only computes eigen modes, there-
fore the first few measured modes (generally 1 to 4) are not



found as they are probably Helmholtz (“air”) modes [8].
On the other hand, the frequency of the following modes
was accurately computed by mesh2faust, at least up to
3KHz. Beyond this point, the number of modes yielded by
the FEM analysis becomes much higher making it harder
to compare FEM and measured modes. We want to em-
phasize the fact that we had to adjust the material proper-
ties used for the analysis independently for each object in
order to obtain theses results (see §4.2).

5. IMPULSE-RESPONSE-BASED MODULAR
MODELING

In a previous publication [16], we investigated the use
of mode parameter interpolation as a method to predict
the acoustics of simple resonators similar to the one pre-
sented in Figure 1. This idea was based on previous works
on morphing musical instrument body models [17]. It
was also greatly inspired by the famous experiment con-
ducted by Carleen Hutchins in the early 1980s where she
compared acoustical differences between scaled violins
through labour intensive lutherie, at a time when 3D print-
ing was an emerging and obscure technology [18].

The resonator matrix presented in Figure 1 can be seen as
a two dimensional space whose boundaries are defined by
the objects at each corner. The idea behind the work pre-
sented in this section is to use mode morphing to compute
the modal profile of any object within the boundaries of
the matrix. Intermediate objects (e.g., intermediate scale
and squares with rounded corners) are used in a first step
to verify the accuracy of the system, and then to improve
its resolution.

5.1 Modes Pairing and Morphing

The modes of each object of Figure 1 were identified using
the technique presented in §3. Modes are defined by 3 dif-
ferent parameters: frequency, amplitude, and T60. Mode
morphing consists of linearly interpolating mode param-
eters from one object to another. For this operation to
be perceptually realistic, the modes of one object must be
paired to the modes of the other [17]. In other words, it is
necessary to identify the position in the frequency domain
where a mode is translated and vice versa.

While modes generally translate well when a scaling op-
eration is carried out [18], it is not necessarily the case
when modifying the shape of an object. Therefore, the
modes of the various objects of the matrix of Figure 1
were paired on the y axis (scale) by trying to predict the
frequency of the modes of each object by doubling their
frequency. Modes were paired only if they translated in
a bidirectional way. For example, the modes of the small
circular object were paired to the large circular one first
by doubling the frequency of the modes of the small one.
If their frequencies matched the measured ones, the corre-
sponding modes were associated. A similar operation was
then carried out in the other direction (from large to small)
by halving the modal frequencies of the large object. If
modes matched in both direction, we considered them as

“paired modes” and they were used with our morphing al-
gorithm.

Even though modes are less likely to translate on the x
axis of our matrix (shape), we used the same technique to
pair modes in this direction. After this operation, some
modes were discarded and the number of modes was the
same for each object. This algorithm was implemented in a
Matlab script that also generated the corresponding FAUST
physical model described in §6.

5.2 Comparing the Morphed Modes to the Measured
Ones

Figure 6 compares the modes predicted using the technique
presented in §5.1 to the modes measured on intermediate
objects for all possible object couples at the corners of the
matrix (e.g., square - large, square - small, circular - large,
and circular - small). Modes beyond 3KHz are not plot-
ted for clarity but similar results were observed for modes
between 3KHz and 5KHz.

As expected [18], the modal profile of intermediate ob-
jects can be predicted somewhat accurately when morph-
ing is done on the y axis (scale), at least for the first few
modes. On the other hand, results are not as convincing
when morphing is carried out on the x axis (shape) even
though the frequency of some modes did match.

6. APPLICATIONS

The mode parameters of the experiments presented in §4
and §5 were used to implement modal synthesizers [12]
compatible with the FAUST Physical Modeling Library
(FPML) [19].

The modal synthesizers corresponding to each object pre-
sented in Figure 1 using the mode parameters computed
by mesh2faust in §4 were added to FPML. Indeed,
mesh2faust is able to generate “ready-to-use” modal
models without any additional step. Since mesh2faust
is currently not able to compute the T60s of the modes (see
§4), those were adjusted by hand.

On the other hand, a generic model based on the system
described in §5 was implemented from scratch in FAUST.
Two of its parameters allow for the control the current x/y
position in the matrix of objects by carrying out linear in-
terpolation between mode parameters. The modal data of
all the objects of the matrix (including the intermediate one
used for proofing in §5) are used in this model to improve
its accuracy.

A series of simple physical models of string instruments
based on the modal synthesizers described in the previous
paragraphs were implemented and integrated to FPML.
They’re all based on a template similar to:

model = chain(
guitarNuts :
steelString(stringL,pluckPosition,

stringExcitation) :
guitarBridge :
inRightWave(bodyExcitation) :
modularInterpBody(nBodyModes,shape,

scale) :



out);

In FPML, chain allows for the creation of bidirectional
connections between elements. A generic guitar bridge
and nuts were used to terminate a steel string and to cou-
ple it to the modal models. Here, modularInterpBody
corresponds to the generic model based on the system de-
scribed in §5, stringExcitation is an excitation sig-
nal to drive the virtual steel string and bodyExcitation
is an excitation signal to drive the modal model directly.

A series of web-apps were generated using these models
and can be played online on the project’s webpage. 8 They
constitute a very convenient and interactive way to listen
to the results of the experiments presented in this paper.

7. DISCUSSION AND CONCLUSIONS

The combination of 3D printing and physical modeling
blurs the boundaries between the physical/acoustical and
virtual/digital domains. Digital and traditional lutherie re-
inforce each other by placing CAD softwares at the inter-
section of these two worlds.

The initial set of experiments presented in this paper ap-
proach these concepts form different angles. §4 uses a stan-
dard technique for modeling the objects directly from their
graphical representation while §5 introduces a system us-
ing a database of measurements made on a series of printed
objects within a space with defined boundaries to estimate
the acoustics of other objects in that space.

The finite element method used in §4 allowed us to pre-
dict the parameters of the modes of the objects presented
in §2 with promising accuracy but showed some limita-
tions mostly related to its incapacity to find Helmholtz
modes. Moreover, this technique cannot model nonlinear-
ities, which can be quite limiting in various cases. Other
techniques such as finite difference schemes [20] can be
used to solve these problems but they usually require more
computation and they are not always as portable as FEM.
Overall, different types of objects (e.g., solids, open res-
onators, membranes, etc.) require the use of different mod-
eling techniques, and we believe that 3D printing can play
an important role in validating these models under highly
controlled conditions. Therefore, we plan to conduct simi-
lar experiments with different types of objects and model-
ing techniques in the future.

The technique presented in §5 discards the modeling step
and offers promising results, despite some limitations es-
pecially when changing the shape of an object rather than
its dimensions. Increasing the density of the matrix to pro-
vide more data points could help solve this problem. Ad-
ditionally, machine learning might have a role to play in
this by establishing relationship between physical proper-
ties under certain conditions and the corresponding modal
profile of an object. At scale, computational learning could
generalize this problem to much more complex acoustic
systems systems such as rooms (reverberation), etc.

The objects used for our experiments were printed on an
entry level FDM printer. More expensive printers are ca-

8 https://ccrma.stanford.edu/˜rmichon/
3d-printing-modeling

pable of producing more complex and potentially larger
objects. They also offer more consistency on the printed
objects which is very important in the framework of our
project. On the other hand, printers used by the DIY 9

community have allowed for widespread access to desktop
manufacturing. Indeed this study would not have arisen
without such machines and in turn they can play an im-
portant role in the replication of such results across small
labs.

The matrix of object presented in §2 allowed us to test a
limited number of parameters and it would be interesting
to carry out similar experiments looking at other parame-
ters. For example, depth is known to play an important role
in the acoustical properties of resonators, therefore this pa-
rameter would be a good candidate for such experiment.

Combining 3D printing and physical modeling offers new
possibilities to luthiers and researchers to prototype new
instruments, verify existing models, and to potentially cre-
ate hybrid instruments combining physical/acoustical and
virtual/digital elements [19]. Much work has yet to be done
to implement models that will sound exactly the same in
both domains. We plan to keep working on this challenge
as we advance techniques to bridge virtual and physical
acoustics.
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Figure 5. FEM modes computed with mesh2faust (in blue and terminated with circles) versus modes measured on the
3D printed objects (in red and terminated with crosses).
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Figure 6. Interpolated modes (in blue and terminated with circles) versus modes measured on the 3D printed objects (in
red terminated with crosses) for all possible combinations leading to intermediate objects.


