
HAL Id: hal-02159008
https://hal.science/hal-02159008v1

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New Signal Processing Libraries for Faust
Romain Michon, Julius Smith, Yann Orlarey

To cite this version:
Romain Michon, Julius Smith, Yann Orlarey. New Signal Processing Libraries for Faust. Linux Audio
Conference, 2017, Saint-Etienne, France. pp.83-87. �hal-02159008�

https://hal.science/hal-02159008v1
https://hal.archives-ouvertes.fr


New Signal Processing Libraries for Faust

Romain Michon, Julius Smith
CCRMA

Stanford University
Stanford, CA 94305-8180

USA
{rmichon,jos}@ccrma.stanford.edu

Yann Orlarey
GRAME

Centre National de Création Musicale
11 Cours de Verdun (Gensoul)

69002, Lyon
France

orlarey@grame.fr

Abstract

We present a completely re-organized set of signal
processing libraries for the Faust programming lan-
guage. They aim at providing a clearer classification
of the different Faust DSP functions, as well as bet-
ter documentation. After giving an overview of this
new system, we provide technical details about its
implementation. Finally, we evaluate it and give
ideas for future directions.

Keywords

Faust, Digital Signal Processing, Computer Music
Programming Language

1 Introduction

Faust is a functional programming language for
real time Digital Signal Processing (DSP) tar-
geting high-performance audio applications and
plug-ins for a wide range of platforms and stan-
dards. [Orlarey et al., 2009]

One of Faust’s strength lies in its DSP li-
braries implementing a large collection of ref-
erence implementations ranging from filters to
audio effects and sound generators, etc.

When Faust was created, it had a lim-
ited number of DSP libraries that were
organized in a “somewhat” coherent way:
math.lib contained mathematical functions,
and music.lib everything else (filters, ef-
fects, generators, etc.). Later, the li-
braries filter.lib, oscillator.lib, and
effect.lib were developed [Smith, 2008],
[Smith, 2012], which had significant overlap in
scope with music.lib.

A year ago, we decided to fully reorganize the
Faust libraries to

• provide more clarity,

• organize functions by category,

• standardize function names,

• create a dynamic documentation of their
content.

In this paper, we give an overview of the or-
ganization of the new Faust libraries, as well
as technical details about their implementation.
We then evaluate them through the results of a
workshop on Faust that was taught at the Cen-
ter for Computer Research in Music and Acous-
tics (CCRMA) at Stanford University in 2016,
and we provide ideas for future directions.

2 Global Organization and
Standards

2.1 Overview

The new Faust libraries1 are organized in dif-
ferent files presented in Figure 1. Each file
contains several subcategories allowing to eas-
ily find functions for specific uses. While some
libraries host fewer functions than others, they
were created to be easily updated with new ele-
ments. The content of the old (and now depre-
cated) Faust libraries was spread across these
new files, making backward compatibility a bit
hard to implement (see §2.4).

More specifically, the old music.lib was
removed since it contained much overlap in
scope with oscillator.lib, effect.lib,
and filter.lib.
effect.lib was divided into several

“specialized” libraries: compressors.lib,
misceffects.lib, phaflangers.lib,
reverbs.lib, and vaeffects.lib. Sim-
ilarly, the content of oscillator.lib
is now spread between noises.lib and
oscillators.lib. Finally, demo.lib hosts
demo functions, typically adding user-interface
elements with illustrative parameter defaults.

2.2 Prefixes

Each Faust library has a recommended
two-letter namespace prefix defined in the
“meta library” stdfaust.lib. For example,
stdfaust.lib contains the lines

1http://faust.grame.fr/library.html. All
the URLs in this paper were verified on 01/30/17.



analyzer.lib maths.lib
- Amplitude Tracking - Constants
- Spectrum-Analyzers - Functions
- Mth-Octave Spectral Level
- Arbitrary-Crossover Filter misceffects.lib
- Banks and Spectrum Analyzers - Dynamic

- Filtering
basics.lib - Time Based
- Conversion Tools - Pitch Shifting
- Counters and Time/Tempo Tools - Meshes
- Array Processing and Pattern Matching
- Selectors (Conditions) noises.lib
- Other Misc Functions Noise generators library.

compressors.lib oscillators.lib
Compressors and limiters library. - Wave-Table-Based Oscillators

- LFOs
delays.lib - Low Frequency Sawtooths
- Basic Delay Functions - Bandlimited Sawtooth
- Lagrange Interpolation - Bandlimited Pulse, Square,
- Thiran Allpass Interpolation and Impulse Trains

- Filter-Based Oscillators
demos.lib - Waveguide-Resonators
- Analyzers
- Filters phaflangers.lib
- Effects Phasers and flangers library
- Generators

reverbs.lib
envelopes.lib Reverbs library.
Envelope generators library.

routes.lib
filters.lib Signal routing library.
- Basic Filters
- Comb Filters signals.lib
- Direct-Form Sections Misc signal tools library.
- Direct-Form Second-Order
- Biquad Sections spats.lib
- Ladder/Lattice Spatialization tools library.
- Virtual Analog Filters
- Simple Resonator synths.lib
- Butterworth Filters Misc synthesizers library.
- Elliptic (Cauer) Filters
- Filters for Parametric Equalizers vaeffects.lib
(Shelf, Peaking) Virtual analog effects library.
- Arbitrary-Crossover Filter-Banks

Figure 1: Overview of the organization of the new Faust libraries.

fi = library("filters.lib");
os = library("oscillators.lib");

so that functions from oscillator.lib
can be invoked using the os prefix and func-
tions from filter.lib through fi:

import("stdfaust.lib");
process = os.sawtooth(440) : fi.lowpass

(2,2000);

It is of course possible to avoid prefixes using
the import directive:



import("filters.lib");
import("oscillators.lib");
process = sawtooth(440) : lowpass

(2,2000);

The libraries presently avoid name collisions,
so it is possible to load all functions from all
libraries into one giant namespace soup:

import("all.lib");
process = sawtooth(440) : lowpass

(2,2000);

Alternatively, all Faust-defined functions
can be loaded into a single namespace separate
from the user’s namespace:

sf = library("all.lib"); // standard
faust namespace

process = sf.sawtooth(440) : sf.lowpass
(2,2000);

Further details can be found in the documen-
tation for the libraries.2

2.3 Standard Functions

The Faust libraries implement dozens of func-
tions, and it can be hard for new users to find
standard elements for basic uses. For example,
filter.lib contains seven different lowpass
filters, and it’s probably not obvious to some-
one with little experience in signal processing
which one should be used.

To address this problem, the new Faust li-
braries declare “standard” functions (see Fig-
ure 2) that are automatically added to the li-
brary documentation.3 Standard functions are
organized by categories, independently from
the library where they are declared (see §3).
They should cover the needs of most users used
to computer music programming environments
such as PureData,4 SuperCollider,5 etc.

2.4 Backward Compatibility

With such major changes, providing a decent
level of backward compatibility proved to be
quite complicated. The old Faust libraries
(effect.lib, filter.lib, math.lib,
music.lib and oscillator.lib) can still
be used and will remain accessible for about
one year.

In order to make this possible, we had to find
a way to make them cohabit with the new li-
braries without creating conflicts. Thus, we de-
cided to use plurals for the name of the new

2http://faust.grame.fr/library.html
3http://faust.grame.fr/library.html\

#standard-functions.
4https://puredata.info.
5http://supercollider.github.io.

libraries, allowing to concurrently use our new
filters.lib with the old filter.lib, for
example.

If one of the old libraries is imported in
a Faust program, the Faust compiler now
throws a warning indicating the use of a dep-
recated library.

2.5 Other “Non-Standard” Libraries

A few “non-standard” libraries for very specific
applications remain accessible but are not doc-
umented (see §3):

• hoa.lib: high order ambisonics library

• instruments.lib: library used by the
Faust-STK [Michon and Smith, 2011]

• maxmsp.lib: compatibility library for
Max/MSP

• tonestacks.lib: tonestack emulation
library used by Guitarix6

• tubes.lib: guitar tube emulation library
used by Guitarix

3 Automatic Documentation

The new Faust libraries use a new automatic
documentation system based on the faust2md
(Faust to MarkDown) script which is now part
of the Faust distribution. It allows to eas-
ily write MarkDown comments within the code
of the libraries by respecting the standards de-
scribed below.

Library headers and descriptions can be cre-
ated with

//##### Library Name ##### // Some
Markdown text.

//########################

Libraries can be organized into sections using
the following syntax:

//===== Section Name ===== // Some
Markdown text.

//========================

Each function in a library should be docu-
mented as such:

//---- Function Name ---- // Some
Markdown text.

//-----------------------

The libraries documentation can be conve-
niently generated by running:

make doclib

6http://guitarix.org.



Analysis Tools Envelopes
an.amp follower Amplitude follower en.adsr ADSR envelope
an.mth oct[...] Octave analyzers en.ar AR envelope

en.asr ASR envelope
Basic Elements en.smoothEnv Exponential envelope

ba.beat Pulse generator
si.block Block a signal Filters
ba.bpf Break Point Function fi.bandpass Bandpass (Butterworth)
si.bus Bus of n signals fi.resonbp Bandpass (resonant)

ba.bypass1 Bypass (mono) fi.bandstop Bandstop (Butterworth)
ba.bypass2 Bypass (stereo) fi.tf2 Biquad Filters

ba.count Counts in a list fi.allpass fcomb Comb (allpass)
ba.countdown Samples count down fi.fb fcomb Comb (feedback)

ba.countup Samples count up fi.ff fcomb Comb (feedforward)
de.delay Integer delay fi.dcblocker DC blocker

de.fdelay Fractional delay fi.filterbank Filterbank
ba.impulsify Signal to impulse fi.fir FIR (arbitrary order)

ba.sAndH Sample and hold fi.high shelf High shelf
ro.cross Cross n signals fi.highpass Highpass (Butterworth)
si.smoo Smoothing fi.resonhp Highpass (resonant)

si.smooth Controllable smoothing fi.iir IIR (arbitrary order)
ba.take Element from a list fi.levelfilter Level filter
ba.time Timer fi.low shelf Low shelf

fi.lowpass Lowpass (Butterworth)
Conversion fi.resonlp Lowpass (resonant)

ba.db2linear dB to linear fi.notchw Notch filter
ba.linear2db Linear to dB fi.peak eq Peak equalizer

ba.midikey2hz MIDI key to Hz
ba.pole2tau Pole to t60 Generators
ba.samp2sec Samples to seconds os.impulse Impulse
ba.sec2samp Seconds to samples os.imptrain Impulse train
ba.tau2pole t60 to pole os.phasor Phasor

no.pink noise Pink noise
Effects os.pulsetrain Pulse train

ve.autowah Auto-wah os.lf imptrain Low-freq pulse train
co.compressor Compressor os.sawtooth Sawtooth wave

ef.cubicnl Distortion os.lf saw Low-freq sawtooth
ve.crybaby Crybaby os.osc Sine (filter-based)

ef.echo Echo os.oscsin Sine (table-based)
pf.flanger Flanger os.square square wave

ef.gate mono Signal gate os.lf square Low-freq square
co.limiter Limiter os.triangle Triangle
pf.phaser2 Phaser os.lf triangle Low-freq triangle
re.fdnrev0 Reverb (FDN) no.noise White noise

re.freeverb Reverb (Freeverb)
re.jcrev Reverb (simple) Synths

re.zita rev1 Reverb (Zita) sy.additiveDrum Additive drum
sp.panner Panner sy.dubDub Filtered sawtooth

ef.transpose Pitch shift sy.combString Comb string
sp.spat Panner sy.fm FM

ef.speakerbp Speaker simulator sy.sawTrombone Lowpassed sawtooth
ef.stereo width Stereo width sy.popFiltPerc Popping filter

ve.vocoder Vocoder
ve.wah4 Wah

Figure 2: Standard Faust functions with their corresponding prefix when used with
stdfaust.lib.



at the root of the Faust distribution. This
will generate an html and a pdf file in the
/documentation folder using pandoc.7

4 Evaluation and Future Directions

The new Faust libraries were beta tested dur-
ing the CCRMA Faust Summer Workshop at
Stanford University.8 In previous editions of
the workshop, students had to go through the
library files to get the documentation of specific
functions. During last year’s workshop, thanks
to the new libraries documentation, students
were able to find information about functions
simply by doing a search in the documentation
file. Additionally, none of them encountered
problems while using the new libraries which
was very satisfying.

The Faust libraries are meant to grow
with time, and we hope that this new for-
mat will facilitate the integration of new con-
tributions. Eventually, we plan to divide
filters.lib into more subcategories, like we
did for the old oscillator.lib. Finally,
physmodels.lib which is a new library for
physical modeling of musical instruments is cur-
rently under development.

5 Conclusions

The new Faust libraries provide a platform
to easily prototype DSP algorithms using the
Faust programming language. Their new or-
ganization, in combination with their automat-
ically generated documentation, simplifies the
search for specific elements covering a wide
range of uses. New “standard functions” help
to point new users to useful elements to imple-
ment various kind of synthesizers, audio effects,
etc. Finally, we hope that this new format will
encourage new contributions.

6 Acknowledgments

Thanks to Albert Gräf for his contributions
to the design of the new libraries, and for
single-handedly implementing a solid backward-
compatibility scheme!

References

Romain Michon and Julius O. Smith. 2011.
Faust-STK: a set of linear and nonlinear
physical models for the Faust programming

7http://pandoc.org.
8https://ccrma.stanford.edu/˜rmichon/

faustWorkshops/2016.

language. In Proceedings of the 14th Inter-
national Conference on Digital Audio Effects
(DAFx-11), Paris, France, September.

Yann Orlarey, Stéphane Letz, and Dominique
Fober, 2009. New Computational Paradigms
for Computer Music, chapter “Faust : an Effi-
cient Functional Approach to DSP Program-
ming”. Delatour, Paris, France.

Julius Orion Smith. 2008. Virtual electric gui-
tars and effects using Faust and Octave. In
Proceedings of the Linux Audio Conference
(LAC-08), pages 123–127, KHM, Cologne,
Germany.

Julius O. Smith. 2012. Signal processing li-
braries for Faust. In Proceedings of Linux
Audio Conference (LAC-12), Stanford, USA,
May.


