Romain Michon
email: rmichon@ccrma.stanford.edu

Julius Smith

Yann Orlarey
email: orlarey@grame.fr

New Signal Processing Libraries for Faust

Keywords: Faust, Digital Signal Processing, Computer Music Programming Language

We present a completely re-organized set of signal processing libraries for the Faust programming language. They aim at providing a clearer classification of the different Faust DSP functions, as well as better documentation. After giving an overview of this new system, we provide technical details about its implementation. Finally, we evaluate it and give ideas for future directions.

Introduction

Faust is a functional programming language for real time Digital Signal Processing (DSP) targeting high-performance audio applications and plug-ins for a wide range of platforms and standards. [START_REF] Orlarey | New Computational Paradigms for Computer Music, chapter "Faust : an Efficient Functional Approach to DSP Programming[END_REF] One of Faust's strength lies in its DSP libraries implementing a large collection of reference implementations ranging from filters to audio effects and sound generators, etc.

When Faust was created, it had a limited number of DSP libraries that were organized in a "somewhat" coherent way: math.lib contained mathematical functions, and music.lib everything else (filters, effects, generators, etc.).

Later, the libraries filter.lib, oscillator.lib, and effect.lib were developed [START_REF] Orion | Virtual electric guitars and effects using Faust and Octave[END_REF], [START_REF] Smith | Signal processing libraries for Faust[END_REF], which had significant overlap in scope with music.lib.

A year ago, we decided to fully reorganize the Faust libraries to

• provide more clarity,

• organize functions by category,

• standardize function names,

• create a dynamic documentation of their content.

In this paper, we give an overview of the organization of the new Faust libraries, as well as technical details about their implementation. We then evaluate them through the results of a workshop on Faust that was taught at the Center for Computer Research in Music and Acoustics (CCRMA) at Stanford University in 2016, and we provide ideas for future directions.

Global Organization and Standards

Overview

The new Faust libraries1 are organized in different files presented in Figure 1. Each file contains several subcategories allowing to easily find functions for specific uses. While some libraries host fewer functions than others, they were created to be easily updated with new elements. The content of the old (and now deprecated) Faust libraries was spread across these new files, making backward compatibility a bit hard to implement (see §2.4).

More specifically, the old music.lib was removed since it contained much overlap in scope with oscillator.lib, effect.lib, and filter.lib.

effect.lib was divided into several "specialized" libraries: compressors.lib, misceffects.lib, phaflangers.lib, reverbs.lib, and vaeffects.lib. Similarly, the content of oscillator.lib is now spread between noises.lib and oscillators.lib. Finally, demo.lib hosts demo functions, typically adding user-interface elements with illustrative parameter defaults.

Prefixes

Each Faust library has a recommended two-letter namespace prefix defined in the "meta library" stdfaust.lib. Virtual analog effects library. -Arbitrary-Crossover Filter-Banks Figure 1: Overview of the organization of the new Faust libraries. fi = library("filters.lib"); os = library("oscillators.lib"); so that functions from oscillator.lib can be invoked using the os prefix and functions from filter.lib through fi: import("stdfaust.lib"); process = os.sawtooth(440) : fi.lowpass (2,2000);

It is of course possible to avoid prefixes using the import directive: import("filters.lib"); import("oscillators.lib"); process = sawtooth(440) : lowpass (2,2000);

The libraries presently avoid name collisions, so it is possible to load all functions from all libraries into one giant namespace soup:

import("all.lib"); process = sawtooth(440) : lowpass (2,2000);

Alternatively, all Faust-defined functions can be loaded into a single namespace separate from the user's namespace: sf = library("all.lib"); // standard faust namespace process = sf.sawtooth(440) : sf.lowpass (2,2000);

Further details can be found in the documentation for the libraries.2

Standard Functions

The Faust libraries implement dozens of functions, and it can be hard for new users to find standard elements for basic uses. For example, filter.lib contains seven different lowpass filters, and it's probably not obvious to someone with little experience in signal processing which one should be used.

To address this problem, the new Faust libraries declare "standard" functions (see Figure 2) that are automatically added to the library documentation.3 Standard functions are organized by categories, independently from the library where they are declared (see §3). They should cover the needs of most users used to computer music programming environments such as PureData,4 SuperCollider,5 etc.

Backward Compatibility

With such major changes, providing a decent level of backward compatibility proved to be quite complicated. The old Faust libraries (effect.lib, filter.lib, math.lib, music.lib and oscillator.lib) can still be used and will remain accessible for about one year.

In order to make this possible, we had to find a way to make them cohabit with the new libraries without creating conflicts. Thus, we decided to use plurals for the name of the new libraries, allowing to concurrently use our new filters.lib with the old filter.lib, for example.

If one of the old libraries is imported in a Faust program, the Faust compiler now throws a warning indicating the use of a deprecated library.

Other "Non-Standard" Libraries

A few "non-standard" libraries for very specific applications remain accessible but are not documented (see §3):

• hoa.lib: high order ambisonics library

• instruments.lib: library used by the Faust-STK [START_REF] Michon | Faust-STK: a set of linear and nonlinear physical models for the Faust programming 7[END_REF] • maxmsp.lib: compatibility library for Max/MSP

• tonestacks.lib: tonestack emulation library used by Guitarix6

• tubes.lib: guitar tube emulation library used by Guitarix

Automatic Documentation

The new Faust libraries use a new automatic documentation system based on the faust2md (Faust to MarkDown) script which is now part of the Faust distribution. It allows to easily write MarkDown comments within the code of the libraries by respecting the standards described below.

Library headers and descriptions can be created with

//##### Library Name ##### // Some Markdown text. //########################
Libraries can be organized into sections using the following syntax:

//===== Section Name ===== // Some Markdown text. //========================
Each function in a library should be documented as such:

//----Function Name ----// Some Markdown text. //- ----------------------The libraries documentation can be conveniently generated by running: The Faust libraries are meant to grow with time, and we hope that this new format will facilitate the integration of new contributions.

Eventually, we plan to divide filters.lib into more subcategories, like we did for the old oscillator.lib. Finally, physmodels.lib which is a new library for physical modeling of musical instruments is currently under development.

Conclusions

The new Faust libraries provide a platform to easily prototype DSP algorithms using the Faust programming language. Their new organization, in combination with their automatically generated documentation, simplifies the search for specific elements covering a wide range of uses. New "standard functions" help to point new users to useful elements to implement various kind of synthesizers, audio effects, etc. Finally, we hope that this new format will encourage new contributions.

Acknowledgments

Thanks to Albert Gräf for his contributions to the design of the new libraries, and for single-handedly implementing a solid backwardcompatibility scheme!

 Standard Faust functions with their corresponding prefix when used with stdfaust.lib.at the root of the Faust distribution. This will generate an html and a pdf file in the /documentation folder using pandoc. 7 4 Evaluation and Future Directions

	Analysis Tools	Envelopes
	an.amp follower Amplitude follower	en.adsr ADSR envelope
	an.mth oct[...] Octave analyzers	en.ar AR envelope
		en.asr ASR envelope
	Basic Elements	en.smoothEnv Exponential envelope
	ba.beat Pulse generator si.block Block a signal ba.bpf Break Point Function si.bus Bus of n signals ba.bypass1 Bypass (mono) ba.bypass2 Bypass (stereo) ba.count Counts in a list ba.countdown Samples count down ba.countup Samples count up de.delay Integer delay de.fdelay Fractional delay ba.impulsify Signal to impulse ba.sAndH Sample and hold ro.cross Cross n signals si.smoo Smoothing si.smooth Controllable smoothing ba.take Element from a list ba.time Timer Conversion ba.db2linear dB to linear ba.linear2db Linear to dB ba.midikey2hz MIDI key to Hz ba.pole2tau Pole to t60 ba.samp2sec Samples to seconds ba.sec2samp Seconds to samples ba.tau2pole t60 to pole Effects ve.autowah Auto-wah co.compressor Compressor ef.cubicnl Distortion ve.crybaby Crybaby ef.echo Echo pf.flanger Flanger ef.gate mono Signal gate co.limiter Limiter pf.phaser2 Phaser re.fdnrev0 Reverb (FDN) re.freeverb Reverb (Freeverb) re.jcrev Reverb (simple) re.zita rev1 Reverb (Zita) sp.panner Panner ef.transpose Pitch shift sp.spat Panner ef.speakerbp Speaker simulator ef.stereo width Stereo width ve.vocoder Vocoder ve.wah4 Wah ing the CCRMA Faust Summer Workshop at Stanford University. 8 In previous editions of the workshop, students had to go through the library files to get the documentation of specific functions. During last year's workshop, thanks to the new libraries documentation, students were able to find information about functions simply by doing a search in the documentation file. Additionally, none them encountered problems while using the new libraries which Figure 2: The new Faust libraries were beta tested dur-was very satisfying.	make doclib Filters fi.bandpass Bandpass (Butterworth) fi.resonbp Bandpass (resonant) fi.bandstop Bandstop (Butterworth) fi.tf2 Biquad Filters fi.allpass fcomb Comb (allpass) fi.fb fcomb Comb (feedback) fi.ff fcomb Comb (feedforward) fi.dcblocker DC blocker fi.filterbank Filterbank fi.fir FIR (arbitrary order) fi.high shelf High shelf fi.highpass Highpass (Butterworth) fi.resonhp Highpass (resonant) fi.iir IIR (arbitrary order) fi.levelfilter Level filter fi.low shelf Low shelf fi.lowpass Lowpass (Butterworth) fi.resonlp Lowpass (resonant) fi.notchw Notch filter fi.peak eq Peak equalizer Generators os.impulse Impulse os.imptrain Impulse train os.phasor Phasor no.pink noise Pink noise os.pulsetrain Pulse train os.lf imptrain Low-freq pulse train os.sawtooth Sawtooth wave os.lf saw Low-freq sawtooth os.osc Sine (filter-based) os.oscsin Sine (table-based) os.square square wave os.lf square Low-freq square os.triangle Triangle os.lf triangle Low-freq triangle no.noise White noise Synths sy.additiveDrum Additive drum sy.dubDub Filtered sawtooth sy.combString Comb string sy.fm FM sy.sawTrombone Lowpassed sawtooth sy.popFiltPerc Popping filter

http://faust.grame.fr/library.html. All the URLs in this paper were verified on 01/30/17.

http://faust.grame.fr/library.html

http://faust.grame.fr/library.html\ #standard-functions.

https://puredata.info.

http://supercollider.github.io.

http://guitarix.org.