
HAL Id: hal-02159004
https://hal.science/hal-02159004

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

faust2api: a Comprehensive API Generator for Android
and iOS

Romain Michon, Julius Smith, Chris Chafe, Stéphane Letz, Yann Orlarey

To cite this version:
Romain Michon, Julius Smith, Chris Chafe, Stéphane Letz, Yann Orlarey. faust2api: a Comprehensive
API Generator for Android and iOS. Linux Audio Conference, 2017, Saint-Etienne, France. pp.77-82.
�hal-02159004�

https://hal.science/hal-02159004
https://hal.archives-ouvertes.fr


faust2api: a Comprehensive API Generator for Android and iOS

Romain Michon, Julius Smith,
Chris Chafe

CCRMA
Stanford University

Stanford, CA 94305-8180
USA

{rmichon,jos,cc}@ccrma.stanford.edu

Stéphane Letz, Yann Orlarey
GRAME

Centre National de Création Musicale
11 Cours de Verdun (Gensoul)

69002, Lyon
France

{letz,orlarey}@grame.fr

Abstract

We introduce faust2api, a tool to generate cus-
tom DSP engines for Android and iOS using the
Faust programming language. Faust DSP objects
can easily be turned into MIDI-controllable poly-
phonic synthesizers or audio effects with built-in sen-
sors support, etc. The various elements of the DSP
engine can be accessed through a high-level API,
made uniform across platforms and languages.

This paper provides technical details on the im-
plementation of this system as well as an evaluation
of its various features.

Keywords

Faust, iOS, Android, Mobile Instruments

1 Introduction

Mobile devices (smart-phones, tablets, etc.)
have been used as musical instruments for the
past ten years, both in the industry (e.g.,
GarageBand1 for iPad, Smule’s apps,2 mo-
Forte’s GeoShred,3 etc.), and in the academic
community ([Tanaka, 2004], [Geiger, 2006],
[Gaye et al., 2006], [Essl and Rohs, 2009] and
[Wang, 2014]).

Implementing real-time Digital Signal Pro-
cessing (DSP) engines from scratch on mobile
platforms can be hard using standard audio
APIs provided with common operating systems
(we’ll only cover iOS and Android here). In-
deed, CoreAudio on iOS and OpenSL ES on
Android are relatively low-level APIs offering
customization possibilities not needed by most
audio app developers. Fortunately, there ex-
ist several third party cross-platform APIs to
work with real-time audio on mobile devices at a
higher level (e.g., SuperPowered,4 JUCE,5 etc.).
Additionally, several open-source tools allow to

1http://www.apple.com/ios/garageband. All
the URLs in this paper were verified on 01/26/17.

2https://www.smule.com
3http://www.moforte.com/geoshredapp
4http://superpowered.com
5https://www.juce.com

use objects written in common computer music
languages such as PureData:6 libpd [Brinkmann
et al., 2011] and Csound:7 Mobile Csound Plat-
form (MCP) [Lazzarini et al., 2012] on mobile
platforms.

Similarly, we introduced faust2android
in a previous publication [Michon, 2013]: a
tool allowing to turn Faust8 [Orlarey et al.,
2009] code into a fully operational Android
application. faust2android is based on
faust2api [Michon et al., 2015]. It al-
lows to turn a Faust program into a cross-
platform API usable on Android and iOS to
carry out various kinds of real-time audio pro-
cessing tasks.

In this paper, we present a completely re-
designed version of faust2api offering the
same features on Android and iOS:

• polyphony and MIDI support,

• audio effects chains,

• built-in sensors support,

• low latency audio,

• etc.

First, we’ll give an overview of how
faust2api works. Then, technical details on
the implementation of this system will be pro-
vided. Finally, we’ll evaluate it and present fu-
ture directions for this project.

2 Overview

2.1 Basics

At its highest level, faust2api is a command
line program taking a Faust code as its main
argument and generating a package containing
a series of files implementing the DSP engine.
Various flags can be used to customize the API.
The only required flag is the target platform:

6https://puredata.info
7http://www.csounds.com
8http://faust.grame.fr



faust2api -ios myCode.dsp

will generate a DSP engine for iOS and

faust2api -android myCode.dsp

will generate a DSP engine for Android.
The content of each package is quite different

between these two platforms (see §3), but the
format of the API itself remains very similar
(see Figure 1 at page 4). The iOS DSP engines
generated with faust2api consist of a large
C++ object (DspFaust) accessible through a
separate header file. This object can be con-
veniently instantiated and used in any C++ or
Objective-C code in an app project. A typi-
cal “life cycle” for a DspFaust object can be

DspFaust *dspFaust = new DspFaust(SR,
blockSize); dspFaust->start();

dspFaust->stop(); delete dspFaust;

start() launches the computation of the
audio blocks and stop() stops (pauses) the
computation. These two methods can be re-
peated as many times as needed. The construc-
tor allows to specify the sampling rate and the
block size, and is used to instantiate the au-
dio engine. While the configuration of the au-
dio engine is very limited at the API level (only
these two parameters can be configured through
it), lots of flexibility is given to the program-
mer within the Faust code. For example, if
the Faust object doesn’t have any input, then
no audio input will be instantiated in the audio
engine, etc.

The value of the different parameters of a
Faust object can be easily modified once the
DspFaust object is created and is running.
For example, the freq parameter of the sim-
ple Faust code

f = nentry("freq",440,50,1000,0.01);
process = osc(f);

can be modified simply by calling

dspFaust->setParamValue("freq",440);

Faust user-interface elements (nentry here)
are ignored by faust2api and simply used as
a way to declare parameters controllable in the
API. API packages generated by faust2api
also contain a markdown documentation pro-
viding information on how to use the API as
well a list of all the parameters controllable with
setParamValue().

The structure of the DSP engine package
is quite different for Android since it contains
both C++ and JAVA files (see §3). Otherwise,
the same steps can be used to work with the
DspFaust object.

2.2 MIDI Support

MIDI support can be easily added to a
DspFaust object simply by providing the
-midi flag when calling faust2api. MIDI
support works the same way on Android and
iOS: all MIDI devices connected to the mobile
device before the app is launched can control the
Faust object, and any new device connected
while the app is running will also be able to
control it.

Standard Faust MIDI meta-data9 can be
used to assign MIDI CCs to specific parame-
ters. For example, the freq parameter of the
previous code could be controlled by MIDI CC
52 simply by writing

f = nentry("freq[midi: ctrl
52]",440,50,1000,0.01);

2.3 Polyphony

Faust objects can be conveniently turned into
polyphonic synthesizers simply by specifying
the maximum number of voices of polyphony
when calling faust2api using the -nvoices
flag. In practice, only active voices are allocated
and computed, so this number is just used as a
safeguard.

As used for many years by the various
tools for making Faust synthesizers, such as
faust2pd, compatibility with the -nvoices
option requires the freq, gain and gate pa-
rameters to be defined. faust2api automati-
cally takes care of converting MIDI note num-
bers to frequency values in Hz for freq, MIDI
velocity to linear amplitude-gain for gain, and
note-on (1) and note-off (0) for gate:

f = nentry("freq",440,50,1000,0.01); g
= nentry("gain",1,0,1,0.01);

t = button("gate"); process = osc(f)*g*
t;

Here, t could be used to trigger an envelope
generator, for example. In such a case, the voice
would stop being computed only after t is set
to 0 and the tail-off amplitude becomes smaller
than -60dB (configurable using macros in the
application code).

A wide range of methods is accessible to work
with voices. A “typical” life cycle for a MIDI
note can be

long voiceAddress = dspFaust->keyOn(
note,velocity);

dspFaust->setVoiceParamValue("param",
voiceAddress,paramValue);

9http://faust.grame.fr/images/
faust-quick-reference.pdf



dspFaust->keyOff(note);

setVoiceParamValue() can be used to
change the value of a parameter for a specific
voice.

Alternatively, voices can be allocated without
specifying a note number and a velocity:

long voiceAddress = dspFaust->newVoice
();

dspFaust->setVoiceParamValue("param",
voiceAddress,paramValue);

dspFaust->deleteVoice(voiceAddress);

For example, this can be very convenient to
associate voices to specific fingers on a touch-
screen.

When MIDI support is enabled in
faust2api, MIDI events will automati-
cally interact with voices. Thus, if a MIDI
keyboard is connected to the mobile device,
it will be able to control the Faust object
without additional configuration steps.

2.4 Adding Audio Effects

In most cases, effects don’t need to be re-
implemented for each voice of polyphony and
can be placed at the end of the DSP chain.
faust2api allows to provide a Faust object
implementing the effects chain to be connected
to the output of the polyphonic synthesizer.
This can be done simply by giving the -effect
flag followed by a Faust effects chain file name
(e.g., effect.dsp) when calling faust2api:

faust2api -android -nvoices 12 -effect
effect.dsp synth.dsp

The parameters of the effect automatically
become available in the DspFaust object and
can be controlled using the setParamValue()
method.

2.5 Working With Sensors

The built-in accelerometer and gyroscope of a
mobile device can be easily assigned to any of
the parameters of a Faust object using the acc
or gyr meta-data:

g = nentry("gain[acc: 0 0 -10 0
10]",1,0,1,0.01);

Complex mappings can be implemented using
this system. This feature is not documented
here, but more information about it is available
in [Michon, 2017]. This reference also provides
a series of tutorials on how to use faust2api.

3 Implementation

faust2api takes advantage of the modularity
on the Faust architecture system to generate

its custom DSP engines. [Letz et al., 2017] For
example, turning a monophonic Faust synthe-
sizer into a polyphonic one can be done in a
simple generic way. Both on Android and iOS,
faust2api generates a large C++ file imple-
menting all the features used by the high level
API. On iOS, this API is accessed through a
C++ header file that can be conveniently in-
cluded in any C++ or Objective-C code. On
Android, a JAVA interface allows to interact
with the native (C++) block. The DSP C++
code is the same for all platforms (see Figure 2
at page 5) and is wrapped into an object imple-
menting the polyphonic synthesizer followed by
the effects chain (assuming that the -mvoices
and -poly2 options were used during compila-
tion).

In this section, we provide more information
on the architecture of DSP engines generated
by faust2api for Android and iOS.

3.1 iOS

The global architecture of API packages gen-
erated by faust2api is relatively simple on
iOS since C++ code can be used directly in
Objective-C (which is one of the two lan-
guages used to make iOS applications along
with swift). The Faust synthesizer object
gets automatically connected to the audio en-
gine implemented using CoreAudio. As ex-
plained in the previous section, the sampling
rate and the buffer length are defined by the
programmer when the DspFaust object is cre-
ated. The number of instantiated inputs and
outputs is determined by the Faust code. By
default, the system deactivates gain correction
on the input but this can be changed using a
macro in the including source code.

MIDI support is implemented using RtMidi
[Scavone and Cook, 2005], which is auto-
matically added to the API if the -midi
option was used for compilation. Alterna-
tively, programmers might choose to use the
propagateMidi() method to send raw MIDI
events to the DspFaust object in case they
would like to implement their own MIDI re-
ceiver.

The same approach can be used for built-
in sensors using the propagateAcc() and
propagateGyr() methods.

3.2 Android

Android applications are primarily written in
JAVA. However, despite the fact that the Faust
compiler can generate JAVA code, it is not a



Basic Elements Parameters Control
DspFaust: Constructor getParamsCount: Get number of params
˜DspFaust: Destructor setParamValue: Set param value
start: Start audio processing getParamValue: Get param value
stop: Stop audio processing getParamAddress: Get param address
isRunning: True if processing is on getParamMin: Get param min value
getJSONUI: Get UI JSON description getParamMax: Get param max value
getJSONMeta: Get Metadata JSON getParamInit: Get param init value

getParamTooltip: Get param description
Polyphony
keyOn: Start a new note Other Functions
keyOff: Stop a note propagateMidi: Propagate raw MIDI
newVoice: Start a new voice messages
deleteVoice: Delete a voice propagateAcc: Propagate raw accel data
allNotesOff: Terminate all active voices setAccConverter: Set accel mapping
setVoiceParamValue: Set param propagateGyr: Propagate raw gyro data
value for a specific voice setGyrConverter: Set gyro mapping
getVoiceParamValue: Get param getCPULoad: Get CPU load
value for a specific voice

Figure 1: Overview of the API functions.

good choice for real-time audio signal processing
[Michon, 2013]. Thus, DSP packages generated
by faust2api contain elements implemented
both in JAVA and C++.

The native portion of the package (C++) im-
plements the DSP elements as well as the au-
dio engine (see Figure 2) which is based on
OpenSL ES.10 The audio engine is configured
to have the same behavior as on iOS. Native
elements are wrapped into a shared library ac-
cessible in JAVA through a Java Native Inter-
face (JNI) using the Android Native Develop-
ment Kit (NDK).11

MIDI receivers can only be created in JAVA
on Android (and only since Android API 23),
thus MIDI support is implemented in the JAVA
portion. Like on iOS, the propagateMidi()
method can be used to implement custom MIDI
receivers.

While raw sensor data can be retrieved in C++
on Android, we decided to implement a system
similar to the one used for MIDI, where raw
sensor data are pushed from the JAVA layer to
the native one.

10https://www.khronos.org/opensles
11https://developer.android.com/ndk/

index.html

4 Evaluation

4.1 Use in Other Frameworks

faust2api is now used at the core of
faust2android [Michon, 2013] and
faust2ios. It is also used as the basis
for our new SmartKeyboard12 tool (currently
under development), allowing to generate mu-
sical applications with advanced user interfaces
on Android and iOS. Figure 3 presents Nuance,
[Michon et al., 2016] a musical instrument
based on faust2api and SmartKeyboard.

4.2 Audio Latency

We measured the “touch-to-sound” and the
“round-trip” audio latency of apps based on
faust2api for various devices using the tech-
niques described by Google on their website.13

The “touch-to-sound” latency is the time it
takes to generate a sound after a touch event
was registered on the touch screen of the de-
vice. The “round-trip” latency is the time it
takes to process an analog signal recorded by
the built-in microphone or acquired by the line
input.

Latency performance hasn’t improved on iOS
(see Table 1) compared to our previous study
[Michon et al., 2015], except for newer devices

12https://ccrma.stanford.edu/˜rmichon/
smartKeyboard

13https://source.android.com/devices/
audio/latency_measurements.html



Faust DSP (Synth)

Polyphony

Faust DSP (Effect)

Synth Object

MIDI Support 
(RtMidi -> CoreMidi)

Audio Engine (CoreAudio)

iOS Faust API

Faust DSP (Synth)

Polyphony

Faust DSP (Effect)

Synth Object

C++

Audio Engine (OpenSL ES)

C++ 
(Native Library)

JNI Interface

Built-In Sensors
Control

MIDI Support 
(AndroidMidi)

Built-In Sensors
Control

Android Faust APIJAVA

iOS API

Android API

Faust Code

faust2api

Audio In/Out Audio In/Out

Figure 2: Overview of DSP engines generated with faust2api.

Figure 3: Nuance: a musical instrument using
faust2api.

such as the iPad Pro. On the other hand, An-
droid made huge progress (see Table 2), thanks
to tremendous work carried out by Google, as
well as our completely rewritten audio engine.

Table 2 shows that a “reasonable” latency
can only be achieved with the latest version
of Android, which confirms the measurements
made by Google.14 Unfortunately, such per-
formances can only be attained on a few de-
vices supported by Google, and configured with
a specific sampling rate and buffer length.

5 Future Directions

We believe that faust2api has reached a ma-
ture and stable state. However, many elements

14https://source.android.com/devices/
audio/latency_measurements.html\
#measurements

Touch to Round
Device Sound Trip
iPhone6 30 ms 13 ms
iPhone5 36 ms 13 ms
iPodTouch 36 ms 13 ms
iPadPro 28 ms 12 ms
iPadAir2 35 ms 13 ms
iPad2 45 ms 15 ms

Table 1: Audio latency for different iOS devices
using faust2api.

Touch to Round
Device Sound Trip OS
HTC Nexus 9 29 ms 15 ms 7.0
Huawei Nexus 6p 31 ms 17 ms 7.0
Asus Nexus 7 37 ms 48 ms 7.0
Samsung Gal. S5 37 ms 48 ms 5.0

Table 2: Audio latency for different Android
devices using faust2api.

can be improved:
First, while basic MIDI support is provided,

we haven’t tested it with complex MIDI inter-
faces such as the one using the Multidimen-
sional Polyphonic Expression (MPE) standard
(e.g. LinnStrument,15 ROLI Seaboard,16 etc.).

15http://www.rogerlinndesign.com/
linnstrument.html

16https://roli.com/products/



Currently, specific parameters of the various
elements of the API (such as audio engine, MIDI
behavior, etc.) can only be configured using
source-code macros. We would like to provide
a more systematic and in some cases dynamic
way of controlling them.

Finally, we plan to add more targets to
faust2api for various kinds of platforms to
help design elements such as audio plug-ins,
standalone applications, and embedded sys-
tems.

6 Conclusions

Faust gives access to dozens of high qual-
ity open source sound processors and genera-
tors ranging from specialized types of filters,
to virtual analog oscillators, etc. Thanks to
faust2api, all these elements can be easily
embedded and controlled in any Android or iOS
app in a very simple manner.

One of the new experimental features of the
Faust compiler allows to select at run time the
portions of a Faust object that are computed.
This makes it possible to create very large ob-
jects embedding multiple synthesizers and ef-
fects. We believe that this feature, in combi-
nation with faust2api, will allow to design
complex Faust-based DSP engines for a wide
range of platforms.

References

Peter Brinkmann, Peter Kirn, Richard
Lawler, Chris McCormick, Martin Roth, and
Hans-Christoph Steiner. 2011. Embedding
PureData with libpd. In Proceedings of the
Pure Data Convention, Weinmar, Germany.

Georg Essl and Michael Rohs. 2009. Inter-
activity for mobile music-making. Organised
Sound, 14(2):197–207.

Lalya Gaye, Lars Erik Holmquist, Frauke
Behrendt, and Atau Tanaka. 2006. Mobile
music technology: Report on an emerging
community. In Proceedings of the Interna-
tional Conference on New Interfaces for Mu-
sical Expression (NIME-06), Paris, France,
June.

Günter Geiger. 2006. Using the touch screen
as a controller for portable computer mu-
sic instruments. In Proceedings of the 2006
International Conference on New Interfaces
for Musical Expression (NIME-06), Paris,
France.

seaboard-grand

Victor Lazzarini, Steven Yi, Joseph Timoney,
Damian Keller, and Marco Pimenta. 2012.
The mobile Csound platform. In Proceed-
ings of the International Conference on Com-
puter Music (ICMC-12), Ljubljana, Slovenia,
September.

Stéphane Letz, Yann Orlarey, Dominique
Fober, and Romain Michon. 2017. Polyphony,
sample-accurate control and MIDI support
for FAUST DSP using combinable architec-
ture files. In Proceedings of Linux Audio Con-
ference (LAC-17), Saint-Etienne, France.

Romain Michon, Julius Orion Smith, and
Yann Orlarey. 2015. MobileFaust: a set of
tools to make musical mobile applications
with the Faust programming language. In
Proceedings of the Linux Audio Conference
(LAC-15), Mainz, Germany, April.

Romain Michon, Julius O. Smith, Chris
Chafe, Matthew Wright, and Ge Wang. 2016.
Nuance: Adding multi-touch force detection
to the iPad. In Proceedings of the Sound
and Music Computing Conference (SMC-16),
Hamburg, Germany.

Romain Michon. 2013. faust2android: a
Faust architecture for Android. In Proceed-
ings of the 16th International Conference on
Digital Audio Effects (DAFx-13), Maynooth,
Ireland, September.

Romain Michon. 2017. Faust tutorials. Web-
page. https://ccrma.stanford.edu/

˜rmichon/faustTutorials.

Yann Orlarey, Stéphane Letz, and Dominique
Fober, 2009. New Computational Paradigms
for Computer Music, chapter “Faust : an Effi-
cient Functional Approach to DSP Program-
ming”. Delatour, Paris, France.

Gary Scavone and Perry Cook. 2005. Rt-
Midi, RtAudio, and a synthesis toolkit
(STK) update. In Proceedings of the 2005
International Computer Music Conference,
Barcelona, Spain.

Atau Tanaka. 2004. Mobile music making.
In Proceedings of the 2004 conference on New
interfaces for musical expression (NIME04),
National University of Singapore.

Ge Wang. 2014. Ocarina: Designing the
iPhone’s Magic Flute. Computer Music Jour-
nal, 38(2):8–21, Summer.


