Romain Michon
email: rmichon@ccrma.stanford.edu

Julius Smith

Chris Chafe

Stéphane Letz
email: letz@grame.fr

Yann Orlarey
email: orlarey@grame.fr

faust2api: a Comprehensive API Generator for Android and iOS

Keywords: Faust, iOS, Android, Mobile Instruments

We introduce faust2api, a tool to generate custom DSP engines for Android and iOS using the Faust programming language. Faust DSP objects can easily be turned into MIDI-controllable polyphonic synthesizers or audio effects with built-in sensors support, etc. The various elements of the DSP engine can be accessed through a high-level API, made uniform across platforms and languages.

This paper provides technical details on the implementation of this system as well as an evaluation of its various features.

Introduction

Mobile devices (smart-phones, tablets, etc.) have been used as musical instruments for the past ten years, both in the industry (e.g., GarageBand1 for iPad, Smule's apps,2 mo-Forte's GeoShred,3 etc.), and in the academic community ([START_REF] Tanaka | Mobile music making[END_REF], [START_REF] Geiger | Using the touch screen as a controller for portable computer music instruments[END_REF], [START_REF] Gaye | Mobile music technology: Report on an emerging community[END_REF], [START_REF] Essl | Interactivity for mobile music-making[END_REF] and [START_REF] Wang | Ocarina: Designing the iPhone's Magic Flute[END_REF]).

Implementing real-time Digital Signal Processing (DSP) engines from scratch on mobile platforms can be hard using standard audio APIs provided with common operating systems (we'll only cover iOS and Android here). Indeed, CoreAudio on iOS and OpenSL ES on Android are relatively low-level APIs offering customization possibilities not needed by most audio app developers. Fortunately, there exist several third party cross-platform APIs to work with real-time audio on mobile devices at a higher level (e.g., SuperPowered,4 JUCE,5 etc.).

Additionally, several open-source tools allow to use objects written in common computer music languages such as PureData:6 libpd [START_REF] Brinkmann | Embedding PureData with libpd[END_REF] and Csound:7 Mobile Csound Platform (MCP) [START_REF] Lazzarini | The mobile Csound platform[END_REF] on mobile platforms.

Similarly, we introduced faust2android in a previous publication [START_REF] Michon | faust2android: a Faust architecture for Android[END_REF]: a tool allowing to turn Faust8 [START_REF] Orlarey | New Computational Paradigms for Computer Music, chapter "Faust : an Efficient Functional Approach to DSP Programming[END_REF] code into a fully operational Android application. faust2android is based on faust2api [START_REF] Michon | MobileFaust: a set of tools to make musical mobile applications with the Faust programming language[END_REF].

It allows to turn a Faust program into a crossplatform API usable on Android and iOS to carry out various kinds of real-time audio processing tasks.

In this paper, we present a completely redesigned version of faust2api offering the same features on Android and iOS:

• polyphony and MIDI support,

• audio effects chains,

• built-in sensors support,

• low latency audio,

• etc. First, we'll give an overview of how faust2api works. Then, technical details on the implementation of this system will be provided. Finally, we'll evaluate it and present future directions for this project.

Overview

Basics

At its highest level, faust2api is a command line program taking a Faust code as its main argument and generating a package containing a series of files implementing the DSP engine. Various flags can be used to customize the API. The only required flag is the target platform: faust2api -ios myCode.dsp will generate a DSP engine for iOS and faust2api -android myCode.dsp will generate a DSP engine for Android.

The content of each package is quite different between these two platforms (see §3), but the format of the API itself remains very similar (see Figure 1 at page 4). The iOS DSP engines generated with faust2api consist of a large C++ object (DspFaust) accessible through a separate header file. This object can be conveniently instantiated and used in any C++ or Objective-C code in an app project. A typical "life cycle" for a DspFaust object can be DspFaust * dspFaust = new DspFaust(SR, blockSize); dspFaust->start(); dspFaust->stop(); delete dspFaust; start() launches the computation of the audio blocks and stop() stops (pauses) the computation. These two methods can be repeated as many times as needed. The constructor allows to specify the sampling rate and the block size, and is used to instantiate the audio engine. While the configuration of the audio engine is very limited at the API level (only these two parameters can be configured through it), lots of flexibility is given to the programmer within the Faust code. For example, if the Faust object doesn't have any input, then no audio input will be instantiated in the audio engine, etc.

The value of the different parameters of a Faust object can be easily modified once the DspFaust object is created and is running. For example, the freq parameter of the simple Faust code f = nentry("freq",440,50,1000,0.01); process = osc(f); can be modified simply by calling dspFaust->setParamValue("freq",440);

Faust user-interface elements (nentry here) are ignored by faust2api and simply used as a way to declare parameters controllable in the API. API packages generated by faust2api also contain a markdown documentation providing information on how to use the API as well a list of all the parameters controllable with setParamValue().

The structure of the DSP engine package is quite different for Android since it contains both C++ and JAVA files (see §3). Otherwise, the same steps can be used to work with the DspFaust object.

MIDI Support MIDI support can be easily added to a

DspFaust object simply by providing the -midi flag when calling faust2api. MIDI support works the same way on Android and iOS: all MIDI devices connected to the mobile device before the app is launched can control the Faust object, and any new device connected while the app is running will also be able to control it.

Standard Faust MIDI meta-data9 can be used to assign MIDI CCs to specific parameters. For example, the freq parameter of the previous code could be controlled by MIDI CC 52 simply by writing f = nentry("freq[midi: ctrl 52]",440,50,1000,0.01);

Polyphony

Faust objects can be conveniently turned into polyphonic synthesizers simply by specifying the maximum number of voices of polyphony when calling faust2api using the -nvoices flag. In practice, only active voices are allocated and computed, so this number is just used as a safeguard.

As used for many years by the various tools for making Faust synthesizers, such as faust2pd, compatibility with the -nvoices option requires the freq, gain and gate parameters to be defined. faust2api automatically takes care of converting MIDI note numbers to frequency values in Hz for freq, MIDI velocity to linear amplitude-gain for gain, and note-on (1) and note-off (0) for gate: f = nentry("freq",440,50,1000,0.01); g = nentry("gain",1,0,1,0.01); t = button("gate"); process = osc(f) * g * t;

Here, t could be used to trigger an envelope generator, for example. In such a case, the voice would stop being computed only after t is set to 0 and the tail-off amplitude becomes smaller than -60dB (configurable using macros in the application code).

A wide range of methods is accessible to work with voices. A "typical" life cycle for a MIDI note can be long voiceAddress = dspFaust->keyOn(note,velocity); dspFaust->setVoiceParamValue("param", voiceAddress,paramValue); dspFaust->keyOff(note); setVoiceParamValue() can be used to change the value of a parameter for a specific voice.

Alternatively, voices can be allocated without specifying a note number and a velocity: long voiceAddress = dspFaust->newVoice (); dspFaust->setVoiceParamValue("param", voiceAddress,paramValue); dspFaust->deleteVoice(voiceAddress);

For example, this can be very convenient to associate voices to specific fingers on a touchscreen.

When MIDI support is enabled in faust2api, MIDI events will automatically interact with voices. Thus, if a MIDI keyboard is connected to the mobile device, it will be able to control the Faust object without additional configuration steps.

Adding Audio Effects

In most cases, effects don't need to be reimplemented for each voice of polyphony and can be placed at the end of the DSP chain. faust2api allows to provide a Faust object implementing the effects chain to be connected to the output of the polyphonic synthesizer. This can be done simply by giving the -effect flag followed by a Faust effects chain file name (e.g., effect.dsp) when calling faust2api: faust2api -android -nvoices 12 -effect effect.dsp synth.dsp

The parameters of the effect automatically become available in the DspFaust object and can be controlled using the setParamValue() method.

Working With Sensors

The built-in accelerometer and gyroscope of a mobile device can be easily assigned to any of the parameters of a Faust object using the acc or gyr meta-data: g = nentry("gain[acc: 0 0 -10 0 10]",1,0,1,0.01);

Complex mappings can be implemented using this system. This feature is not documented here, but more information about it is available in [START_REF] Michon | Faust tutorials[END_REF]. This reference also provides a series of tutorials on how to use faust2api.

3 Implementation faust2api takes advantage of the modularity on the Faust architecture system to generate its custom DSP engines. [START_REF] Letz | Polyphony, sample-accurate control and MIDI support for FAUST DSP using combinable architecture files[END_REF] For example, turning a monophonic Faust synthesizer into a polyphonic one can be done in a simple generic way. Both on Android and iOS, faust2api generates a large C++ file implementing all the features used by the high level API. On iOS, this API is accessed through a C++ header file that can be conveniently included in any C++ or Objective-C code. On Android, a JAVA interface allows to interact with the native (C++) block. The DSP C++ code is the same for all platforms (see Figure 2 at page 5) and is wrapped into an object implementing the polyphonic synthesizer followed by the effects chain (assuming that the -mvoices and -poly2 options were used during compilation).

In this section, we provide more information on the architecture of DSP engines generated by faust2api for Android and iOS.

iOS

The global architecture of API packages generated by faust2api is relatively simple on iOS since C++ code can be used directly in Objective-C (which is one of the two languages used to make iOS applications along with swift). The Faust synthesizer object gets automatically connected to the audio engine implemented using CoreAudio. As explained in the previous section, the sampling rate and the buffer length are defined by the programmer when the DspFaust object is created. The number of instantiated inputs and outputs is determined by the Faust code. By default, the system deactivates gain correction on the input but this can be changed using a macro in the including source code.

MIDI support is implemented using RtMidi [START_REF] Scavone | Rt-Midi, RtAudio, and a synthesis toolkit (STK) update[END_REF], which is automatically added to the API if the -midi option was used for compilation. Alternatively, programmers might choose to use the propagateMidi() method to send raw MIDI events to the DspFaust object in case they would like to implement their own MIDI receiver.

The same approach can be used for builtin sensors using the propagateAcc() and propagateGyr() methods. good choice for real-time audio signal processing [START_REF] Michon | faust2android: a Faust architecture for Android[END_REF]. Thus, DSP packages generated by faust2api contain elements implemented both in JAVA and C++.

Android

The native portion of the package (C++) implements the DSP elements as well as the audio engine (see Figure 2) which is based on OpenSL ES. 10 The audio engine is configured to have the same behavior as on iOS. Native elements are wrapped into a shared library accessible in JAVA through a Java Native Interface (JNI) using the Android Native Development Kit (NDK).11 MIDI receivers can only be created in JAVA on Android (and only since Android API 23), thus MIDI support is implemented in the JAVA portion. Like on iOS, the propagateMidi() method can be used to implement custom MIDI receivers.

While raw sensor data can be retrieved in C++ on Android, we decided to implement a system similar to the one used for MIDI, where raw sensor data are pushed from the JAVA layer to the native one.

Evaluation

Use in Other Frameworks

faust2api is now used at the core of faust2android [START_REF] Michon | faust2android: a Faust architecture for Android[END_REF] and faust2ios. It is also used as the basis for our new SmartKeyboard12 tool (currently under development), allowing to generate musical applications with advanced user interfaces on Android and iOS. Figure 3 presents Nuance, [START_REF] Michon | Nuance: Adding multi-touch force detection to the iPad[END_REF] a musical instrument based on faust2api and SmartKeyboard.

Audio Latency

We measured the "touch-to-sound" and the "round-trip" audio latency of apps based on faust2api for various devices using the techniques described by Google on their website. 13The "touch-to-sound" latency is the time it takes to generate a sound after a touch event was registered on the touch screen of the device. The "round-trip" latency is the time it takes to process an analog signal recorded by the built-in microphone or acquired by the line input.

Latency performance hasn't improved on iOS (see Table 1) compared to our previous study [START_REF] Michon | MobileFaust: a set of tools to make musical mobile applications with the Faust programming language[END_REF], except for newer devices such as the iPad Pro. On the other hand, Android made huge progress (see Table 2), thanks to tremendous work carried out by Google, as well as our completely rewritten audio engine.

Table 2 shows that a "reasonable" latency can only be achieved with the latest version of Android, which confirms the measurements made by Google.14 Unfortunately, such performances can only be attained on a few devices supported by Google, and configured with a specific sampling rate and buffer length.

Future Directions

We believe that faust2api has reached a mature and stable state. However, many elements can be improved: First, while basic MIDI support is provided, we haven't tested it with complex MIDI interfaces such as the one using the Multidimensional Polyphonic Expression (MPE) standard (e.g. LinnStrument,15 ROLI Seaboard,16 etc.).

Currently, specific parameters of the various elements of the API (such as audio engine, MIDI behavior, etc.) can only be configured using source-code macros. We would like to provide a more systematic and in some cases dynamic way of controlling them.

Finally, we plan to add more targets to faust2api for various kinds of platforms to help design elements such as audio plug-ins, standalone applications, and embedded systems.

Conclusions

Faust gives access to dozens of high quality open source sound processors and generators ranging from specialized types of filters, to virtual analog oscillators, etc. Thanks to faust2api, all these elements can be easily embedded and controlled in any Android or iOS app in a very simple manner.

One of the new experimental features of the Faust compiler allows to select at run time the portions of a Faust object that are computed. This makes it possible to create very large objects embedding multiple synthesizers and effects. We believe that this feature, in combination with faust2api, will allow to design complex Faust-based DSP engines for a wide range of platforms.

Figure 1 :

 1 Figure 1: Overview of the API functions.

FaustFigure 2 :

 2 Figure 2: Overview of DSP engines generated with faust2api.

Figure 3 :

 3 Figure 3: Nuance: a musical instrument using faust2api.

 Android applications are primarily written in JAVA. However, despite the fact that the Faust compiler can generate JAVA code, it is not a

	Basic Elements	Parameters Control
	DspFaust: Constructor	getParamsCount: Get number of params
	˜DspFaust: Destructor	setParamValue: Set param value
	start: Start audio processing	getParamValue: Get param value
	stop: Stop audio processing	getParamAddress: Get param address
	isRunning: True if processing is on	getParamMin: Get param min value
	getJSONUI: Get UI JSON description	getParamMax: Get param max value
	getJSONMeta: Get Metadata JSON	getParamInit: Get param init value
		getParamTooltip: Get param description
	Polyphony	
	keyOn: Start a new note	Other Functions
	keyOff: Stop a note	propagateMidi: Propagate raw MIDI
	newVoice: Start a new voice	messages
	deleteVoice: Delete a voice	propagateAcc: Propagate raw accel data
	allNotesOff: Terminate all active voices	setAccConverter: Set accel mapping
	setVoiceParamValue: Set param	propagateGyr: Propagate raw gyro data
	value for a specific voice	setGyrConverter: Set gyro mapping
	getVoiceParamValue: Get param	getCPULoad: Get CPU load
	value for a specific voice	

Table 1 :

 1 Audio latency for different iOS devices using faust2api.

		Touch to Round	
	Device	Sound	Trip	
	iPhone6	30 ms	13 ms	
	iPhone5	36 ms	13 ms	
	iPodTouch 36 ms	13 ms	
	iPadPro	28 ms	12 ms	
	iPadAir2	35 ms	13 ms	
	iPad2	45 ms	15 ms	
		Touch to Round	
	Device	Sound	Trip	OS
	HTC Nexus 9	29 ms	15 ms 7.0
	Huawei Nexus 6p 31 ms	17 ms 7.0
	Asus Nexus 7	37 ms	48 ms 7.0
	Samsung Gal. S5 37 ms	48 ms 5.0

Table 2 :

 2 Audio latency for different Android devices using faust2api.

http://www.apple.com/ios/garageband. All the URLs in this paper were verified on 01/26/17.

https://www.smule.com

http://www.moforte.com/geoshredapp

http://superpowered.com

https://www.juce.com

https://puredata.info

http://www.csounds.com

http://faust.grame.fr

http://faust.grame.fr/images/ faust-quick-reference.pdf

https://www.khronos.org/opensles

https://developer.android.com/ndk/ index.html

https://ccrma.stanford.edu/ ˜rmichon/ smartKeyboard

https://source.android.com/devices/ audio/latency_measurements.html

https://source.android.com/devices/ audio/latency_measurements.html\ #measurements

http://www.rogerlinndesign.com/ linnstrument.html

https://roli.com/products/