
HAL Id: hal-02159003
https://hal.science/hal-02159003

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polyphony, sample-accurate control and MIDI support
for FAUST DSP using combinable architecture files

Stéphane Letz, Yann Orlarey, Dominique Fober, Romain Michon

To cite this version:
Stéphane Letz, Yann Orlarey, Dominique Fober, Romain Michon. Polyphony, sample-accurate control
and MIDI support for FAUST DSP using combinable architecture files. Linux Audio Conference, 2017,
Saint-Etienne, France. pp.69-75. �hal-02159003�

https://hal.science/hal-02159003
https://hal.archives-ouvertes.fr

Polyphony, sample-accurate control and MIDI support for FAUST
DSP using combinable architecture files

Stéphane LETZ, Yann ORLAREY,
Dominique FOBER

GRAME
Centre National de Création Musicale

11 Cours de Verdun (Gensoul)
69002, Lyon

France
{letz,orlarey,fober}@grame.fr

Romain MICHON
CCRMA

Stanford University
Stanford, CA 94305-8180

USA
rmichon@ccrma.stanford.edu

Abstract
The Faust architecture files ecosystem is regularly
enriched with new targets to deploy Digital Signal
Processing (DSP) programs. This paper presents re-
cently developed techniques to expand the standard
one DSP source, one program or plugin model, and
to better control parameter changes during the au-
dio computation. Sample accurate control and poly-
phonic instruments definition have been introduced,
and will be explained particularly in the context of
MIDI control.

Keywords
Faust, DSP programming, audio, MIDI

1 Introduction
Faust is a functional programming language
specifically designed for real-time signal process-
ing and synthesis. From a high-level specifica-
tion, its compiler typically generates the DSP
computation as a C++ class1 to be wrapped by
so-called architecture files and connected to the
external world.

1.1 Audio and UI Architecture Files
Native audio drivers are developed as subclasses
of a base audio class, controllers as subclasses of
a base UI class. Typical Graphical User Inter-
face architectures are based on well established
frameworks like QT2 or JUCE3, and allow to
display a ready to use window with sliders, text
zones and buttons. Audio and UI parts are fi-
nally combined with the actual DSP computa-
tion to produce the final audio application or
plugin (see Figure 1).

Non graphical controllers can also be defined
as subclasses of UI, simply by ignoring the lay-
out description4, and just keeping the actual

1The faust2 development branch can also generate C,
LLVM IR, WebAssemby etc. target languages.

2http://doc.qt.io
3https://www.juce.com/doc/classes
4Typically done using hgroup, vgroup or tgroup in

the DSP source code.

User Interface
Module

Audio Driver Module

DSP code

Figure 1: DSP code is generated by the compiler, audio
and UI codes are added from the generic architecture
files.

controls definition (with their name, default
value, value range etc.). OSCUI and httpdUI
classes [1] typically follow this strategy.

New architecture files have been regularly
added to the already rich Faust ecosystem, to
expand the variety of possible targets for the
DSP code.

1.2 Macro Construction of DSP
Components

The Faust program specification is usually en-
tirely done in the language itself. But in some
specific cases it may be useful to develop sepa-
rated DSP components and combine them in a
more complex setup.

Since taking advantage of the huge number
of already available UI and audio architecture
files is important, keeping the same dsp API is
preferable5, so that more complex DSP can be
controlled and audio rendered the usual way:

class dsp {

public:
.....
virtual int getNumInputs() {}
virtual int getNumOutputs() {}
virtual void buildUserInterface(UI* ui) {}
virtual void init(int samplingRate) {}

5Only part of the complete DSP API is presented
here.

http://doc.qt.io
https://www. juce.com/doc/classes

virtual void compute(int count,
FAUSTFLOAT** inputs,
FAUSTFLOAT** outputs) {}

.....
};

Extended DSP classes will typically subclass
the dsp root class and override part of its API.

This paper shows how this approach can be
used to define new extended and combinable dsp
classes. Section 2 describes tools to combine sep-
arately developed DSP. Section 3 explains how
sample accurate parameter control of a given
DSP can be done using the new timed_dsp class,
and when it needs to be used.

Section 4 presents the model used to deploy
polyphonic instruments, section 5 presents how
the previously presented components can be
used together in the context of MIDI control,
and finally the conclusion tries to enlarge this
work in a more general analysis of the Faust
compiler generated code.

2 Combining DSP
2.1 Dsp Decorator Pattern
A dsp_decorator class, subclass of the root dsp
class has first been defined. Following the dec-
orator design pattern6, it allows behavior to be
added to an individual object, either statically
or dynamically.

The extended DSP class hierarchy is shown in
Figure 2. As an example of the decorator pat-
tern, the timed_dsp class allows to decorate a
given DSP with sample accurate control capa-
bility as explained in section 3.

Figure 2: DSP classes diagram

2.2 Combining DSP Components
A few additional macro construction classes,
subclasses of the root dsp class have been de-
fined in the public faust/dsp/dsp-combiner.h
header file:

6https://en.wikipedia.org/wiki/Decorator_
pattern

• the dsp_sequencer class combines two
DSP in sequence, assuming that the num-
ber of outputs of the first DSP equals the
number of input of the second one. Its
buildUserInterface method is overloaded
to group the two DSP in a tabgroup, so that
control parameters of both DSPs can be in-
dividually controlled7. Its compute method
is overloaded to call each DSP compute
in sequence, using an intermediate output
buffer produced by first DSP as the input
one given to the second DSP.

• the dsp_parallelizer class com-
bines two DSP in parallel. Its
getNumInputs/getNumOutputs meth-
ods are overloaded by correctly reflecting
the input/output of the resulting DSP as
the sum of the two combined ones. Its
buildUserInterface method is overloaded
to group the two DSP in a tabgroup, so
that control parameters of both DSP can
be individually controlled. Its compute
method is overloaded to call each DSP
compute, where each DSP consuming and
producing its own number of input/output
audio buffers taken from the method
parameters.

3 Sample Accurate Control

DSP audio languages usually deal with several
timing dimensions when treating control events
and generating audio samples. For performance
reasons, systems maintain separated audio rate
for samples generation and control rate for asyn-
chronous messages handling.

The audio stream is most often computed by
blocks, and control is updated between blocks.
To smooth control parameter changes, some lan-
guage chose to interpolate parameter values [7]
between blocks.

In some cases control may be more finely in-
terleaved with audio rendering [8], and some lan-
guages [9] simply choose to interleave control
and sample computation at sample level.

Although the Faust language permits the de-
scription of sample level algorithms (like recur-
sive filters etc.), Faust generated DSP are usu-
ally computed by blocks. Underlying audio ar-
chitectures usually give a fixed size buffer over
and over to the DSP compute method which
consumes and produces audio samples.

7Typically using any UI object.

https://en.wikipedia.org/wiki/Decorator_pattern
https://en.wikipedia.org/wiki/Decorator_pattern

3.1 Control to DSP Link
In the current version of the Faust generated
code, the primary connection point between the
control interface and the DSP code is simply
a memory zone. For control inputs, the archi-
tecture layer continuously write values in this
zone, which is then sampled by the DSP code
at the beginning of the compute method, and
used with the same values during the entire call.
Because of this simple control/DSP connexion
mechanism, the most recent value is seen by the
DSP code.

Similarly for control outputs8, the DSP code
inside the compute method possibly write sev-
eral values at the same memory zone, and the
last value only will be seen by the control archi-
tecture layer when the method finishes.

Although this behaviour is satisfactory for
most use-cases, some specific usages need to
handle the complete stream of control values
with sample accurate timing. For instance keep-
ing all control messages and handling them at
their exact position in time is critical for proper
MIDI clock synchronisation.

3.2 Time-Stamped Control
The first step consists in extending the archi-
tecture control mechanism to deal with time-
stamped control events. Note that this requires
the underlying event control layer to support
this capability. The native MIDI API for in-
stance is usually able to deliver time-stamped
MIDI messages.

The next step is to keep all time-stamped
events in a time ordered data structure to be
continuously written by the control side, and
read by the audio side.

Finally the sample computation has to take
account of all queued control events, and cor-
rectly change the DSP control state at succes-
sive points in time.

3.3 Slices Based DSP Computation
With time-stamped control messages, changing
control values at precise sample indexes on the
audio stream becomes possible. A generic slices
based DSP rendering strategy has been imple-
mented in the timed_dsp class.

A ring-buffer is used to transmit the stream
of time-stamped events from the control layer
to the DSP one. In the case of MIDI control
case for instance, the ring-buffer is written with
a pair containing the time-stamp expressed in

8Using bargraph kind of UI elements.

samples and the actual MIDI message each time
one is received. In the DSP compute method,
the ring-buffer will be read to handle all mes-
sages received during the previous audio block.

Since control values can change several times
inside the same audio block, the DSP compute
cannot be called only once with the total num-
ber of frames and the complete inputs/outputs
audio buffers. The following strategy has to be
used:

• several slices are defined with control values
changing between consecutive slices.

• all control values having the same time-
stamp are handled together, and change
the DSP control internal state. The slice
is computed up to the next control param-
eters time-stamp until the end of the given
audio block is reached.

• in the Figure 3 example, four slices with the
sequence of c1, c2, c3, c4 frames are succes-
sively given to the DSP compute method,
with the appropriate part of the audio in-
put/output buffers. Control values (ap-
pearing here as [v1,v2,v3], then [v1,v3],
then [v1], then [v1,v2,v3] sets) are changed
between slices.

Figure 3: Audio block slice-based computation

Since time-stamped control messages from the
previous audio block are used in the current
block, control messages are aways handled with
one audio buffer latency.

4 Polyphonic Instruments
Directly programing polyphonic instruments in
Faust is perfectly possible. It is also needed
if very complex signal interaction between the
different voices have to be described9.

But since all voices would always be com-
puted, this approach could be too CPU costly
for simpler or more limited needs. In this case

9Like sympathetic strings resonance in a physical
model of a piano for instance.

describing a single voice in a Faust DSP pro-
gram and externally combining several of them
with a special polyphonic instrument aware ar-
chitecture file is a better solution. Moreover,
this special architecture file takes care of dy-
namic voice allocations and control MIDI mes-
sages decoding and mapping.

4.1 Polyphonic Ready DSP Code
By convention Faust architecture files with
polyphonic capabilities expect to find control
parameters named freq, gain and gate. The
metadata declare nvoices "8"; kind of line
with a desired value of voices can be added in
the source code.

In the case of MIDI control, the freq parame-
ter (which should be a frequency) will be auto-
matically computed from MIDI note numbers,
gain (which should be a value between 0 and 1)
from velocity and gate from keyon/keyoff events.
Thus, gate can be used as a trigger signal for any
envelope generator, etc.

4.2 Using the mydsp_poly class
The single voice has to be described by a Faust
DSP program, the mydsp_poly class is then used
to combine several voices and create a poly-
phonic ready DSP:

• the faust/dsp/poly-dsp.h file contains the
definition of the mydsp_poly class used to
wrap the DSP voice into the polyphonic ar-
chitecture. This class maintains an array of
dsp type of objects, manage dynamic voice
allocations, control MIDI messages decod-
ing and mapping, mixing of all running
voices, and stopping a voice when its out-
put level decreases below a given threshold.

• as a sub-class of DSP, the mydsp_poly
class redefines the buildUserInterface
method. By convention all allocated voices
are grouped in a global Polyphonic tab-
group. The first tab contains a Voices
group, a master like component used to
change parameters on all voices at the
same time, with a Panic button to be used
to stop running voices10, followed by one
tab for each voice. Graphical User Inter-
face components will then reflect the multi-
voices structure of the new polyphonic DSP
(Figure 4).

10An internal control grouping mechanism has been
defined to automatically dispatch a user interface action
done on the master component on all linked voices.

Figure 4: Extended multi-voices GUI interface

The resulting polyphonic DSP object can be
used as usual, connected with the needed audio
driver, and possibly other UI control objects like
OSCUI, httpdUI, etc. Having this new UI hi-
erarchical view allows complete OSC control of
each single voice and their control parameters,
but also all voices using the master component.

The following OSC messages reflect the same
DSP code either compiled normally, or in poly-
phonic mode (only part of the OSC hierarchies
are displayed here):

// Mono mode

/0x00/0x00/vol f -10.0
/0x00/0x00/pan f 0.0

// Polyphonic mode

/Polyphonic/Voices/0x00/0x00/pan f 0.0
/Polyphonic/Voices/0x00/0x00/vol f -10.0
...
/Polyphonic/Voice1/0x00/0x00/vol f -10.0
/Polyphonic/Voice1/0x00/0x00/pan f 0.0
...
/Polyphonic/Voice2/0x00/0x00/vol f -10.0
/Polyphonic/Voice2/0x00/0x00/pan f 0.0
...

The polyphonic instrument allocation takes
the DSP to be used for one voice11, the desired
number of voices, the dynamic voice allocation
state12, and the group state which controls if
separated voices are displayed or not (Figure 4):

DSP = new mydsp_poly(dsp, 2, true, true);

11The DSP object will be automatically cloned in the
mydsp_poly class to create all needed voices.

12Voices may be always running, or dynamically start-
ed/stopped in case of MIDI control.

With the following code, note that a poly-
phonic instrument may be used outside of a
MIDI control context, so that all voices will
be always running and possibly controlled with
OSC messages for instance:

DSP = new mydsp_poly(dsp, 8, false, true);

4.3 Controlling the Polyphonic
Instrument

The mydsp_poly class is also ready for MIDI
control and can react to keyon/keyoff and pitch-
wheel messages. Other MIDI control parameters
can directly be added in the DSP source code.

4.4 Deploying the Polyphonic
Instrument

Several architecture files and associated scripts
have been updated to handle polyphonic instru-
ments:

As an example on OSX, the script
faust2caqt foo.dsp can be used to cre-
ate a polyphonic CoreAudio/QT application.
The desired number of voices is either declared
in a nvoices metadata or changed with the
-nvoices num additional parameter13. MIDI
control is activated using the -midi parameter.

The number of allocated voices can possibly
be changed at runtime using the -nvoices pa-
rameter to change the default value (so using
./foo -nvoices 16 for instance).

Several other scripts have been adapted using
the same conventions.

4.5 Polyphonic Instrument with a
Global Output Effect

Polyphonic instruments may be used with an
output effect. Putting that effect in the main
Faust code is not a good idea since it would be
instantiated for each voice which would be very
inefficient. This is a typical use case for the
dsp_sequencer class previously presented with
the polyphonic DSP connected in sequence with
a unique global effect (Figure 5).
faustcaqt inst.dsp -effect effect.dsp

with inst.dsp and effect.dsp in the same folder,
and the number of outputs of the instrument
matching the number of inputs of the effect, has
to be used. A dsp_sequencer object will be
created to combine the polyphonic instrument
in sequence with the single output effect.

13-nvoices parameter takes precedence over the meta-
data value.

Polyphonic ready faust2xx scripts will then
compile the polyphonic instrument and the ef-
fect, combine them in sequence, and create a
ready to use DSP.

Figure 5: Polyphonic instrument with output effect
GUI interface: left tab window shows the polyphonic
instrument with its Voices group only, right tab window
shows the output effect.

5 MIDI Control
MIDI control connects DSP parameters with
MIDI messages (in both directions), and can be
used to trigger polyphonic instruments.

5.1 MIDI Messages Description in the
DSP Source Code

MIDI control messages are described as meta-
data in UI elements. They are decoded by a new
MidiUI class, subclass of UI, which parses in-
coming MIDI messages and updates the appro-
priate control parameters, or sends MIDI mes-
sages when the UI elements (sliders, buttons...)
are moved.

5.2 Defined Standard MIDI messages
A special [midi:xxx yyy...] metadata needs
to be added in the UI element. Here is the de-
scription of three common MIDI messages:

• [midi:keyon pitch] in a slider or bar-
graph will map the UI element value to
keyon velocity in the (0, 127) range. When
used with a button or checkbox, 1 will be
mapped to 127, 0 will be mapped to 0,

• [midi:keyoff pitch] in a slider or bar-
graph will map the UI element value to
keyoff velocity in the (0,127) range. When
used with a button or checkbox, 1 will be
mapped to 127, 0 will be mapped to 0,

• [midi:ctrl num] in a slider or bargraph
will map the UI element value to (or from)
(0, 127) range. When used with a button
or checkbox, 1 will be mapped to 127, 0 will
be mapped to 0.

The full description of supported MIDI mes-
sages is now part of the Faust documentation.

5.3 MIDI Clock Synchronization
MIDI clock based synchronization can be used
to slave a given Faust program, using the sam-
ple accurate control mechanism described in sec-
tion 3. The following three messages have to be
used:

• [midi:start] in a button or checkbox will
trigger a value of 1 when a start MIDI mes-
sage is received

• [midi:stop] in a button or checkbox will
trigger a value of 0 when a stop MIDI mes-
sage is received

• [midi:clock] in a button or checkbox will
deliver a sequence of successive 1 and 0 val-
ues each time a clock MIDI message is re-
ceived, seen by Faust code as a square
command signal, to be used to compute
higher level information.

A typical Faust program will then use the
MIDI clock command signal to possibly com-
pute the Beat Per Minutes (BPM) information,
or for any synchronization need it may have.

Here is a simple example of a sinusoid gener-
ated which a frequency controlled by the MIDI
clock stream14, and starting/stopping when re-
ceiving the MIDI start/stop messages:

import("stdfaust.lib");

// square signal (1/0), changing state
// at each received clock
clocker = checkbox("MIDI clock[midi:clock]");

// ON/OFF button controlled
// with MIDI start/stop messages
play = checkbox("On/Off [midi:start][midi:stop]");

// detect front
front(x) = (x-x’) != 0.0;

// count number of peaks during one second
freq(x) = (x-x@ma.SR) : + ~ _;

process = os.osc(8*freq(front(clocker))) * play;

14Using an external MIDI clock generator and chang-
ing its tempo allow to precisely control the sinusoid fre-
quency.

Note that the described sample accurate
MIDI clock synchronization model can currently
only be used at input level. Because of the
simple memory zone based connection point be-
tween the control interface and the DSP code,
output controls (like bargraph) cannot generate
a stream of control values. Thus a reliable MIDI
clock generator cannot be implemented with the
current approach.

5.4 MIDI Classes
A midi base class defining MIDI messages de-
coding/encoding methods has been developed.
A midi_hander subclass implements actual de-
coding. Several concrete implementations based
on native API have been written (Figure 6) and
can be found in the faust/midi folder.

Depending on the used native MIDI API,
event time-stamps are either expressed in ab-
solute time or in frames. They are converted
to offsets expressed in samples relative to the
beginning of the audio buffer.

Connected with the new MidiUI class, sub-
class of UI, they allow a given DSP to be con-
trolled with incoming MIDI messages or possi-
bly send MIDI messages when its internal con-
trol state changes.

Figure 6: MIDI classes diagram

In the following piece of code, a MidiUI ob-
ject is created and connected to a rt_midi [5]
MIDI message handler, then given as parameter
to the standard buildUserInterface to control
the DSP parameters:

rt_midi midi_handler("MIDI");
MidiUI midiinterface(&midi_handler);
DSP->buildUserInterface(&midiinterface);

6 Deployment
The extended architecture files have been pre-
sented and used in the context of statically gen-
erated and compiled DSP, that is generating
C++ code from Faust, then compiling the re-
sulting code in executable applications or plug-
ins. They have been deployed in several faust2xx

scripts and especially in faust2api presented in
[6].

Note that they can also be used with dynam-
ically libfaust generated DSP15 as in particular
in FaustLive [3] standalone just-in-time Faust
compiler, or in faustgen~ Max/MSP external
object.

7 Conclusion
The sample accurate control model could easily
be adapted to work with MIDI controllable plu-
gins like LV2 instruments16, so that MIDI clock
synchronization could be used.

Expanding the polyphonic and sample accu-
rate control model over the network in the lib-
faustremote [4] library is still in progress.

As a general concluding remark, a deeper re-
thinking of the control/DSP connection model
in the Faust compiled code will have to be
done. As explained in section 3, control and
DSP computation interaction is somewhat lim-
ited in the current model of the generated code.

The described solution stays at the architec-
ture layer level with some limitations. Although
sample accurate control for inputs can be done
using the presented slices based DSP computa-
tion, this strategy does not help to properly re-
trieve the stream of control output values.

A cleaner approach would be to extend the
model of control signals to be a list of time-
stamped values, so that the compute would han-
dle a slice of time-stamped input controls (kept
from the previous block), and possibly produces
a slice of time-stamped output controls. Having
this more general strategy at the code genera-
tion level still has to be developed.

Acknowledgments
This work has been done under the FEEVER
project [ANR-13-BS02-0008] supported by the
“Agence Nationale pour la Recherche".

References
[1] D. Fober, Y. Orlarey, and S. Letz, “Faust

Architectures Design and OSC Support",
IRCAM, (Ed.): Proc. of the 14th Int. Con-
ference on Digital Audio Effects (DAFx-11),
pp. 231-216, 2011.

[2] Orlarey, Y., Fober, D., and Letz, S. (2009),
“FAUST: an efficient functional approach

15Dynamically libfaust generated DSP are objects of
llvm_dsp or interpreter_dsp types, subclasses of the dsp
root class with the same API.

16http://lv2plug.in/doc/html/

to DSP programming." New Computational
Paradigms for Computer Music, 290.

[3] S. Denoux, S. Letz, Y. Orlarey and D.
Fober, “FAUSTLIVE Just-In-Time Faust
Compiler... and much more." Linux Audio
Conference, 2014.

[4] S. Letz, S. Denoux and Y. Orlarey, “Au-
dio Rendering/Processing and Control Ubiq-
uity ? a Solution Built Using the Faust Dy-
namic Compiler and JACK/NetJack." ICM-
C/SMC, Athenes 2014.

[5] “RtMidi framework online documentation"
http://www.music.mcgill.ca/~gary/
rtmidi/

[6] R.Michon, J.Smith, C.Chafe, S. Letz and Y.
Orlarey, “faust2api: a Comprehensive API
Generator for Android and iOS." Linux Au-
dio Conference, 2017.

[7] J.McCartney, “Rethinking the Computer
Music Language: SuperCollider." Computer
Music Journal, Winter 2002.

[8] P.Donat-Bouillud, JL.Giavitto, A.Cont,
N.Schmidt and Y.Orlarey, “Embedding
native audio-processing in a score following
system with quasi sample accuracy." ICMC,
Utrecht 2016.

[9] G. Wang, P. R. Cook, and S. Salazar,
“Chuck: A strongly timed computer music
language." Computer Music Journal, 2016.

http://lv2plug.in/doc/html/
http://www.music.mcgill.ca/~gary/rtmidi/
http://www.music.mcgill.ca/~gary/rtmidi/

	Introduction
	Audio and UI Architecture Files
	Macro Construction of DSP Components

	Combining DSP
	Dsp Decorator Pattern
	Combining DSP Components

	Sample Accurate Control
	Control to DSP Link
	Time-Stamped Control
	Slices Based DSP Computation

	Polyphonic Instruments
	Polyphonic Ready DSP Code
	Using the mydsp_poly class
	Controlling the Polyphonic Instrument
	Deploying the Polyphonic Instrument
	Polyphonic Instrument with a Global Output Effect

	MIDI Control
	MIDI Messages Description in the DSP Source Code
	Defined Standard MIDI messages
	MIDI Clock Synchronization
	MIDI Classes

	Deployment
	Conclusion

