
HAL Id: hal-02159002
https://hal.science/hal-02159002v1

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Faust audio DSP language in the Web
Stéphane Letz, Sarah Denoux, Yann Orlarey, Dominique Fober

To cite this version:
Stéphane Letz, Sarah Denoux, Yann Orlarey, Dominique Fober. Faust audio DSP language in the
Web. Linux Audio Conference, 2015, Mainz, Germany. pp.29-36. �hal-02159002�

https://hal.science/hal-02159002v1
https://hal.archives-ouvertes.fr

Faust audio DSP language in the Web

Stephane LETZ and Sarah DENOUX and Yann ORLAREY and Dominique FOBER
GRAME

11, cours de Verdun (GENSOUL)
69002 LYON,
FRANCE,

{letz, sdenoux, orlarey, fober}@grame.fr

Abstract

With the advent of both HTML5 and the Web Audio
API (a high-level JavaScript API for audio process-
ing and synthesis) interesting audio applications can
now be developed for the Web. The Web Audio API
offers a set of fast predefined audio nodes as well as
customizable ScriptProcessor node, allowing devel-
opers to add their own javascript audio processing
code.

Several projects are developing abstractions on
top of the Web Audio API to extend its capabilities,
and offer more complex unit generators, DSP effects
libraries, or adapted syntax. This paper brings an-
other approach based on the use of the Faust audio
DSP language to develop additional nodes to be used
as basic audio DSP blocks in the Web Audio graph.

Different methods have been explored: going from
an experimental version that embeds the complete
Faust native compilation chain (based on libfaust
+ LLVM) in the browser, to more portable solu-
tions using JavaScript or the much more efficient
asm.js version. Embedding the Faust compiler it-
self as a pure JavaScript library (produced using
Emscripten) will also be described.

The advantages and issues of each approach will
be discussed and some benchmarks will be given.

Keywords

Web Audio API, Faust, Domain Specific Language,
DSP, real-time

1 Introduction

This paper demonstrates how an efficient com-
pilation chain from Faust to the Web Audio
API can be done, allowing the available Faust
programs and libraries to be immediately used
in a browser.

Section 2 describes the Web Audio API and
how it can be extended and targeted by Domain
Specific Languages. Section 3 describes the
Faust language and its mechanisms to be de-
ployed on a large variety of platforms. Section 4
exposes the compilation chain and the multiple
target languages available from a unique DSP
specification. In the context of the Web Audio

API, section 5 presents the different approaches
experimented to deploy Faust DSP programs on
the Web. Section 6 exposes some use cases, and
finally some results and benchmarks are given
in section 6.1.

2 Programming audio in the Web

2.1 Web Audio API

The Web Audio API [12] specification describes
a high-level JavaScript API for processing and
synthesizing audio in Web applications. The
conception model is based on an audio routing
graph, where a number of AudioNode objects
are connected together to program the global
audio computation.

The actual processing is executed in the un-
derlying implementation 1 for native nodes, but
direct JavaScript processing and synthesis is
also supported using the ScriptProcessorNode.

2.2 Native nodes

The initial idea of the specification is to give de-
velopers a set of highly optimized native nodes,
implementing the commonly needed functions:
playing buffers, filtering, panning, convolution
etc. The nodes are connected to create an au-
dio graph, to be processed by the underlying
audio real-time rendering layer.

2.3 JavaScript ScriptProcessorNode

The ScriptProcessorNode interface allows the
generation, processing, or analyzing of audio
using JavaScript. It is an AudioNode audio-
processing module that is linked to two buffers,
one containing the input audio data, one con-
taining the processed output audio data.

An event, implementing the AudioPro-
cessingEvent interface, is sent to the object each
time the input buffer contains new data, and the
event handler terminates when it has filled the
output buffer with data.

1typically optimized assembly or C/C++ code

This is the hook given to developers to add
new low level DSP processing capabilities to the
system.

2.4 Programming over the Web Audio
API

Various JavaScript DSP libraries or musical lan-
guages, have been developed over the years ([4],
[6], [8], [10]) to extend, abstract and empower
the capabilities of the official API. They offer
users a richer set of audio DSP algorithms and
sound models to be directly used in JavaScript
code.

When following this path, developments have
to be restarted from scratch, or by adapting
already written code (often in more real-time
friendly languages like C/C++) into JavaScript.

An interesting alternative has recently been
developed by the Csound team [11]: by using
the C/C++ to JavaScript Emscripten [3] com-
piler, the complete C written Csound runtime
and DSP language (so including a large number
of sound opcodes and DSP algorithms) is now
available in the context of the Web Audio API.
Using an automatic C/C++ to JavaScript com-
pilation chain opens interesting possibilities to
ease the deployment of well-known and mature
code base on the Web.

3 FAUST language description

Faust [Functional Audio Stream] [1] [2] is a
functional, synchronous, domain-specific pro-
gramming language specifically designed for
real-time signal processing and synthesis. A
unique feature of Faust, compared to other ex-
isting music languages like Max2, PureData, Su-
percollider, etc., is that programs are not inter-
preted, but fully compiled. Faust provides a
high-level alternative to hand-written C/C++
to implement efficient sample-level DSP algo-
rithms.

One can think of Faust as a specification
language. It aims at providing the user with
an adequate notation to describe signal pro-
cessors from a mathematical point of view.
This specification is free, as much as possible,
from implementation details. It is the role of
the Faust compiler to automatically provide
the best possible implementation. The com-
piler translates Faust programs into equivalent

2the gen object added in Max6 now creates compiled
code from a patch-like representation, using the same
LLVM based technology

C++ programs3 taking care of generating the
most efficient code. The compiler also offers
various options to control the generated code,
including options to do fully automatic paral-
lelization and to take advantage of multicore
architectures.

From a syntactic point of view Faust is a tex-
tual language, but nevertheless block-diagram
oriented. It actually combines two approaches:
functional programming and algebraic block-
diagrams. The key idea is to view block-diagram
construction as function composition. For that
purpose, Faust relies on a block-diagram alge-
bra of five composition operations (: , ˜ <: :>)
[1].

Here is an example of how to write a noise
generator in Faust:

random = +(12345)˜∗(1103515245) ;
n o i s e = random /2147483647 .0 ;
p r o c e s s = no i s e

∗ v s l i d e r (”Volume ” , 0 , 0 , 1 , 0 . 1) ;

3.1 Language deployment

Being a specification language, the Faust code
tells nothing about the audio drivers or the GUI
toolkit to be used. It is the role of the architec-
ture file to describe how to relate the DSP code
to the external world. Additional generic code
is added to connect the DSP computation it-
self to audio inputs/outputs, and to control pa-
rameters, which could be buttons, sliders, num
entries etc. in a standard user interface, or any
kind of control using a remote protocol like OSC
or HTTP.

This approach allows a single Faust program
to be easily deployed to a large variety of audio
standards (Max-MSP externals, PD externals,
VST plugins, CoreAudio or JACK standalone
applications, etc.).

4 FAUST compilation chain

4.1 Static compilation chain

The current version of the Faust compiler
(faust1) produces DSP code as a C++ class, to
be inserted in an architecture file. The resulting
file is finally compiled with a regular C++ com-
piler to obtain an executable program or plug-in
(Figure 1).

The produced application is structured as
shown in Figure 2. The DSP becomes an audio
computation module linked to the user interface
and the audio driver.

3In faust1, faust2 branch allows to compile for differ-
ent languages

Figure 1: Steps of Faust compilation chain

Figure 2: Faust application structure

4.2 Multiple backends

Faust2 development branch uses an intermedi-
ate FIR representation (Faust Imperative Rep-
resentation), which can be translated to several
output languages.

The FIR language describes the computation
performed on the samples in a generic manner.
It contains primitives to read and write vari-
ables and arrays, do arithmetic operations, and
define the necessary control structures (for and
while loops, if structure etc.). The language of
signals (internal to the Faust compiler) is now
compiled in FIR intermediate language.

To generate various output languages, several
backends have been developed: for C, C++,
Java, JavaScript, asm.js, and LLVM IR (Figure
3). The native LLVM based compilation chain
is particularly interesting: it provides direct
compilation of a DSP source into executable
code in memory, bypassing the external com-
piler requirement.

4.3 LLVM

LLVM (formerly Low Level Virtual Machine) is
a compiler infrastructure, designed for compile-
time, link-time, run-time optimization of pro-
grams written in arbitrary programming lan-
guages. Executable code is produced dynami-
cally using a “Just In Time” compiler from a
specific code representation, called LLVM IR.
Clang, the “LLVM native” C/C++/Objective-
C compiler is a front-end for LLVM Compiler.

Figure 3: Faust2 compilation chain

It can, for instance, convert a C or C++ source
file into LLVM IR code.

Domain-specific languages like Faust can
easily target the LLVM IR. This has been done
by developing a special LLVM IR backend in
the Faust compiler.

4.4 Dynamic compilation chain

The complete chain goes from the DSP source
code, compiled in LLVM IR using the LLVM
back-end, to finally produce the executable code
using the LLVM JIT [5]. All steps take place in
memory, getting rid of the classical file based
approaches. Pointers to executable functions
can be retrieved from the resulting LLVM mod-
ule and the code directly called with the appro-
priate parameters (Figure 4).

Figure 4: libfaust + LLVM dynamic compila-
tion chain

4.5 FAUST compiler as a library

In the faust2 development branch, the Faust
compiler has been packaged as a library called
libfaust, published with an associated API [5]
that imitates the concept of oriented-object lan-
guages, like C++:

• given a Faust source code (as a file or a
string), calling the createDSPFactory func-
tion runs the compilation chain (Faust +
LLVM JIT) and generates the “prototype”
of the class, as a llvm-dsp-factory pointer.

• next, the createDSPInstance function, cor-
responding to the new className of C++,

instantiates a llvm-dsp pointer, to be acti-
vated and controlled through its interface,
and connected to the audio drivers.

Having the compiler available as a library
opens new interesting possibilities explored in
the FaustLive [9] application. DSP source code
can be compiled on the fly and will run at native
speed.

5 Using FAUST compiler in the Web

We have tested and implemented two different
methods to use the Faust compilation chain in
the Web:

• the first one consists in embedding the lib-
faust + LLVM native compilation chain di-
rectly in the browser. Starting from the
Faust DSP source, a native WebAudio
node will be compiled on the fly, to be used
like any regular native node. The set of all
control parameters will be exposed as We-
bAudio AudioParams objects.

• an alternative and more portable method
purely stays at JavaScript level, using
asm.js and Emscripten. Starting from the
Faust DSP source, a highly optimized
asm.js based ScripProcessor node will be
produced. The set of all control param-
eters will be exposed to control the DSP
node.

Both approaches have advantages and issues
that will be explained in detail in the following
sections.

5.1 Native FAUST DSP Web Audio
node

Embedding the libfaust + LLVM compilation
chain has been experimented by “hacking” the
WebKit open-source browser and by plugging
the Faust compiler in its Web Audio sub-
project.

A new native C++ FaustNode (sub-class of
base class AudioNode) has been added to the
set of native Web Audio nodes4. This node
takes the DSP source code as a string parame-
ter, compiles it on the fly to native executable
code, and activates it:

va r dsp
= con t e x t . c r ea teFaus tNode (code) ;

4This work was done in summer 2012 with the gen-
erous help of Chris Rogers, working at Google at that
time.

As a native node, it can be used like any other
regular native node and connected to other
nodes in the graph:

dsp . connect (c on t e x t . d e s t i n a t i o n) ;

The Faust source code usually contains
an abstract description of its user interface,
described in terms of buttons, sliders, bar-
graphs..., to be “interpreted” and displayed
by an actual user interface builder component.
This user interface can be obtained as a JSON
description, that can be decoded to implement
the UI themselves to control the node’s param-
eters:

va r j s o n = dsp . j s o n () ;

Internal control parameters of the DSP can be
retrieved as a list of AudioParams, to be used
like regular ones:

va r num params
= dsp . numberOfAudioParams () ;

va r aud io param
= dsp . getAudioParam (0) ;

aud io param . s e tVa l u e (0 . 5) ;

Instead of directly accessing the given param-
eter, another possibility is to use the follow-
ing generic function, taking a complete access
“path” to the parameter, and a given value:

dsp . setAudioParamValue (”/ wet ” , 0 . 5) ;

Embedding the Faust compiler in a browser
is quite efficient, since the native executable
code runs in the real-time audio thread that
computes the audio graph rendering. But more
general deployment and acceptance would re-
quire convincing the Web Audio community to
embed a DSL language for audio processing in
all browsers.

5.2 Compiling to JavaScript

More portable solutions have to use the
ScriptProcessorNode node, directly producing
JavaScript code to be executed in the node.

5.2.1 JavaScript backend

A pure JavaScript backend has been added to
Faust in 2012 to produce standard JavaScript
code. The DSP class definition is then wrapped
with a generic JavaScript file in order to get a
fully working Web Audio ScriptProcessorNode.

5.2.2 Results

Two main problems have been discovered with
this approach:

• for some of its computations, the Faust
compiler relies on pure 32 bits integral
mathematical operations. Since JavaScript
stores numbers as floating-point values ac-
cording to the IEEE-754 Standard, this
kind of computation can’t produce the ex-
pected result. Thus, some DSP effects (like
noise generation that uses a wrapping 32
bits integer division) do not work correctly.

• since standard JavaScript is not really
suited to implement fast DSP code, the
generated program is significantly slower
compared to the native C/C++ or LLVM
versions. The resulting audio nodes are us-
able only when the programmed DSP code
is simple enough, but more demanding al-
gorithms (like physical models) can usually
not be used.

5.3 Compiling to asm.js JavaScript

Started in 2011 to facilitate the port of large
C/C++ code base in JavaScript, Mozilla de-
velopers have started the Emscripten compiler
project, based on LLVM technology, that gen-
erates JavaScript from C/C++ code.

Later on, they designed asm.js, a completely
typed subset of JavaScript, statically compil-
able, garbage-collection free, that can be highly
optimized by the compilation chain embedded
in recent Web browsers. It is then possible to
reach performances similar to pure native code5

Mainly designed to manipulate simple types
like floating point or integer numbers, asm.js
language is particularly of interest for audio
code. Two successive developments have been
carried out with this approach.

5.3.1 Using Emscripten compiler

Starting from the Faust DSP generated C++
class, the Emscripten compiler translates it to
JavaScript. Additional wrapping JavaScript
code connects the Emscripten runtime mem-
ory manager and makes the generated code be-
come a ScriptProcessorNode node to be used in
the audio graph (Figure 5). This method has
been successfully developed and demonstrated
by Myles Boris [7].

Although this approach performs rather well,
it requires the Emscripten tool chain to be in-
stalled on the user machine. A more integrated
system has been later on developed.

5In the best cases, asm.js code is said to be only 2
or 3 times slower than pure native code, see http://
kripken.github.io/mloc_emscripten_talk

Figure 5: Faust to asm.js (using Emscripten)
static compilation chain

5.3.2 Developing a direct asm.js
backend

A pure asm.js backend has been added to the
faust2 branch, bypassing the Emscripten com-
pilation chain (Figure 6).

The backend produces the asm.js module as
well as some additional helper JavaScript func-
tions, to be wrapped by generic JavaScript to
become a completely usable Web Audio node.
Heap memory code to be used with the asm.js
module, and connection with compiled helper
functions is managed by the wrapping code.

Figure 6: Faust to asm.js (using FIR backend)
static compilation chain

A new DSP instance is created using the fol-
lowing code, taking the Web Audio context and
a given “buffer size” as parameters:

va r dsp
= f a u s t . k a r p l u s (contex t , b u f f e r s i z e) ;

The user interface can be obtained as a JSON
description, that can be decoded to implement
the UI themselves to control the node’s param-
eters:

va r j s o n = dsp . j s o n () ;

The instance can be used with the following
code:

dsp . s t a r t () ;
dsp . connect (c on t e x t . d e s t i n a t i o n) ;
dsp . s e tVa l u e (p a t h t o c o n t r o l , v a l) ;

5.4 Embedding the JavaScript FAUST
compiler in the browser

Thanks to the Emscripten compiler, the Faust
compiler itself can be compiled to asm.js
JavaScript. This has been done by compil-
ing the libfaust C++ library to the libfaust.js
JavaScript library (Figure 7), that exports a
unique entry point:

http://kripken.github.io/mloc_emscripten_talk
http://kripken.github.io/mloc_emscripten_talk

Figure 7: Compiling C++ libfaust to libfaust.js
with Emscripten

• createAsmCDSPFactoryFromString(...)
allows to create a DSP factory from a
given DSP program as a source string
and a set of compilations parameters,
uses the asm.js backend, and produces the
complete asm.js module and additional
pure JavaScript methods as a string.

• then calling JavaScript “eval” function on
this string compiles it in the browser. The
dynamically created asm.js module and ad-
ditional pure JavaScript methods (Figure
8) can then be used.

Figure 8: libfaust.js + asm.js dynamic compila-
tion chain

This internal code in then wrapped with ad-
ditional JavaScript code. A DSP “factory” will
be created from the DSP source code with the
following code:

va r f a c t o r y
= f a u s t . c reateDSPFactory (code) ;

A fully working DSP “instance” as a Web Au-
dio node is then created with the code:

va r dsp
= f a u s t . c r ea t eDSPIn s tance (f a c t o r y ,

contex t ,
b u f s i z e) ;

The user interface can be retrieved as a JSON
description:

va r j s o n = dsp . j s o n () ;

The instance can be used with the following
code:

dsp . s t a r t () ;
dsp . connect (c on t e x t . d e s t i n a t i o n) ;
dsp . s e tVa l u e (p a t h t o c o n t r o l , v a l) ;

6 Use cases

Using the previously explained technologies,
three different use cases have been experi-
mented:

• compiling self-contained ready to use Web
Audio nodes (see section 6.1)

• using Faust static compilation chain to
produce HTML pages with DSP code (see
section 6.2)

• using the Faust dynamic compilation
chain to directly program DSP in the Web
(see section 6.3).

6.1 Programming Web Audio nodes
with FAUST

Self contained ready to use Web Audio nodes
can be produced using the faust2asmjs script,
using the static compilation chain explained in
section 5.2. The script basically calls the Faust
compiler targeting the asm.js backend with the
appropriate architecture file, that wraps the
produced code with generic JavaScript to be us-
able in the Web Audio API context (Figure 9).

Figure 9: faust2amsjs and faust2webaudioasm
compilation chains

6.2 Deploying FAUST DSP examples
in the Web

Using the faust2webaudioasm script, a DSP
source file can be compiled to a self-contained
ready to run HTML page (Figure 10), using
the static compilation chain (see section 5.2 and
Figure 9).

The Faust compiler targeting the asm.js
backend with the appropriate architecture file
is called. The asm.js + JavaScript WebAu-
dio node is then wrapped in a more complex
HTML code template, and the final HTML page
is obtained. Adding the -links parameter to the
script makes the HTML page also contains links

to the original DSP textual file, as well as the
block-diagram SVG representation.

Thus it becomes quite simple to publish DSP
algorithms, helping it wider usage of the Faust
DSL approach.

Figure 10: Example of SVG based user interface
generated from the JSON description

6.3 Programming DSP in the Web

Having the Faust compiler itself as a library in
the browser opens interesting capabilities:

• “light” Faust IDE allowing users to test
the language can be easily developed on
the Web, completing the more full featured
FaustLive application [9].

• combining existing DSP sources published
as HTML pages, to create new DSP pro-
grams to be directly tested and used in the
Web, or possibly exported to any native
platform supported by the FaustWeb ex-
ternal compilation service. This has been
demonstrated by Sarah Denoux [13].

7 Tests and benchmarks

The three previously described approaches have
been tested on a 4 cores MacBook Pro 2,3 GHz.

7.1 Benchmarks

The Web Audio API is still a fresh specifica-
tion. Its implementation in different browsers
on different platforms is not always complete
or stable. Comparing the previously described
approaches has been quite challenging, mainly
because of slight differences of behavior or inter-
action with the underlying operating system.

The proposed benchmarks have been done by
simply comparing the application CPU use with
some heavy Faust programs, using the ”Activ-
ity Monitor” tool included in OSX. Three dif-
ferent DSP programs have been tested.

Since the various presented methods could
not be developed in a same browser, we had to
use two different ones. Native version is tested
in the “hacked” WebKit application, JavaScript
and asm.js using Firefox version 32.0.3.

Effect native JavaScript asm.js
cubic distortion 6.0 % 45 % 28 %
harpe 2.7 % 50 % 8 %
kisanaWD 4 % over 100% 14 %

Table 1: Global CPU use of the application
tested on a MacBook Pro 2,3 GHz

Even with this limited testing method, some
interesting results emerge. The native chain
(based on libfaust + LLVM) is clearly the
fastest, the asm.js based one is usable in a lot
of real world use cases. The JavaScript ver-
sion performs poorly, and is even not usable be-
cause of CPU overuse in a lot of examples (like
“kisanaWD” here).

7.2 Known issues and perspective

Although the previously described develop-
ments show some promising results, they are
still several issues to be solved:

• code for pure JavaScript and asm.js gener-
ated nodes is executed in the main thread.
So it may suffer from interferences with the
UI computation or possibly garbage collec-
tion. Moreover latency is added since an
additional buffer is used in the audio chain.
Thus real-time guaranties may not be met
typically resulting in audio glitches 6.

• a specific problem has been discovered
when audio computation produces “denor-
mal” float values: on Intel processors, CPU
performances degrade a lot 7.

• on the contrary, the “native” version is
much more stable, has less latency since
the computation is done in the real-time
thread with no added buffer, but is much
more difficult to deploy and maintain 8.

6A possible solution to this problem by moving the
ScriptProcessorNode code in audio worker threads has
been recently discussed in the W3C Audio working list,
see http://webaudio.github.io/web-audio-api

7The problem has been reported and should be solved
at the JavaScript language definition level.

8A port in Firefox is in progress.

http://webaudio.github.io/web-audio-api

8 Conclusion

The Faust audio DSP language can now be
used to easily develop new audio nodes in the
Web Audio model, and use them in an audio
graph. Complete HTML pages with a working
user interface can also be generated. Having the
dynamic compilation chain (either in native or
pure JavaScript mode) directly available in the
browser is also interesting to further explore.

Even if the Web Audio approach starts to
mature, there are still some problematic issues,
for instance float samples denormalization prob-
lem, or non real-time guaranties while rendering
the ScriptProcessorNode JavaScript code.

The recent discussion on the Audio Workers
model opens perspectives for a better render-
ing scheme. Basically the JavaScipt audio code
will be moved to the real-time audio thread,
and communications to get/set parameter val-
ues will be done from/to the main thread.

It remains to be tested how the compilation
of DSP to Web Audio nodes from a high-level
DSL language like Faust or Csound will benefit
from it.

Acknowledgments
This work has been done under the FEEVER
project [ANR-13-BS02-0008] supported by the
“Agence Nationale pour la Recherche”.

References

[1] Y. Orlarey, D. Fober, and S. Letz, “Syntac-
tical and semantical aspects of Faust”, Soft
Computing, 8(9), 2004, pp. 623–632.

[2] S. Letz, Y. Orlarey and D. Fober, “Work
Stealing Scheduler for Automatic Paral-
lelization in Faust”, Linux Audio Confer-
ence, 2010.

[3] A. Zakai, “Emscripten: an LLVM to
JavaScript compiler”, In Proceedings of the
ACM international conference companion
on Object oriented programming systems

languages and applications, pages 301–312.
ACM , 2011.

[4] H. Choi, J.Berger, “Waax: Web Audio API
extension”, In Proceedings of the Thirteenth
New Interfaces for Musical Expression Con-
ference., 2013.

[5] S. Letz, Y. Orlarey and D. Fober, “Com-
ment embarquer le compilateur Faust dans
vos applications ?”, Journees d’Informatique
Musicale, 2013.

[6] C. Roberts, G. Wakefield, and M. Wright,
“The Web Browser as Synthesizer and Inter-
face”. New Interfaces for Musical Expression
conference (NIME), 2013.

[7] M. Borins, “From Faust to Web Audio:
Compiling Faust to JavaScript using Em-
scripten”, Linux Audio Conference, 2014.

[8] C. Clark, A. Tindale, “Flocking: a frame-
work for declarative music-making on the
Web”, International Computer Music Con-
ference, 2014.

[9] S. Denoux, S. Letz, Y. Orlarey and D.
Fober, “FAUSTLIVE Just-In-Time Faust
Compiler... and much more”, Linux Audio
Conference, 2014.

[10] J. Kalliokoski, “audiolib.js, a powerful
toolkit for audio written in JS”, https:
//github.com/jussi-kalliokoski/
audiolib.js/

[11] V. Lazzarini, E. Costello, S. Yi and J.
Fitch, “Csound on the Web”, Linux Audio
Conference, 2014.

[12] WebAudioAPI reference descrip-
tion, http://webaudio.github.io/
web-audio-api/

[13] S. Denoux, Y. Orlarey, S. Letz, and D.
Fober, “Compose with Faust in the Web”,
Web Audio Conference, IRCAM & Mozilla
Paris, France 2015.

https://github.com/jussi-kalliokoski/audiolib.js/
https://github.com/jussi-kalliokoski/audiolib.js/
https://github.com/jussi-kalliokoski/audiolib.js/
http://webaudio.github.io/web-audio-api/
http://webaudio.github.io/web-audio-api/

	Introduction
	Programming audio in the Web
	Web Audio API
	Native nodes
	JavaScript ScriptProcessorNode
	Programming over the Web Audio API

	FAUST language description
	Language deployment

	FAUST compilation chain
	Static compilation chain
	Multiple backends
	LLVM
	Dynamic compilation chain
	FAUST compiler as a library

	Using FAUST compiler in the Web
	Native FAUST DSP Web Audio node
	Compiling to JavaScript
	JavaScript backend
	Results

	Compiling to asm.js JavaScript
	Using Emscripten compiler
	Developing a direct asm.js backend

	Embedding the JavaScript FAUST compiler in the browser

	Use cases
	Programming Web Audio nodes with FAUST
	Deploying FAUST DSP examples in the Web
	Programming DSP in the Web

	Tests and benchmarks
	Benchmarks
	Known issues and perspective

	Conclusion

