
HAL Id: hal-02158993
https://hal.science/hal-02158993

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

jackdmp: Jack server for multi-processor machines
Stéphane Letz, Dominique Fober, Yann Orlarey

To cite this version:
Stéphane Letz, Dominique Fober, Yann Orlarey. jackdmp: Jack server for multi-processor machines.
Linux Audio Conference, 2005, Karlsruhe, Germany. pp.29-36. �hal-02158993�

https://hal.science/hal-02158993
https://hal.archives-ouvertes.fr

jackdmp: Jack server for multi-processor
machines

S.Letz, D.Fober, Y.Orlarey
Grame - Centre national de création musicale

{letz, fober, orlarey}@grame.fr

Abstract

jackdmp is a C++ version of the Jack low-latency
audio server for multi-processor machines. It is a
new implementation of the jack server core features
that aims in removing some limitations of the cur-
rent design. The activation system has been changed
for a data flow model and lock-free programming
techniques for graph access have been used to have
a more dynamic and robust system. We present the
new design and the implementation for MacOSX.

Keywords

real-time, data-flow model, audio server, lock-free

1 Introduction

Jack is a low-latency audio server, written for
POSIX conformant operating systems such as
GNU/Linux. It can connect a number of dif-
ferent applications to an audio device, as well
as allowing them to share audio between them-
selves (Vehmanen, Wingo and Davis 2003). The
current code base written in C, developed over
several years, is available for GNU/Linux and
MacOSX systems. An additional integration
with the MacOSX CoreAudio architecture has
been realized (Letz, Fober and Orlarey 2004).

The system is now a fundamental part of
the Linux audio world, where most of music-
oriented audio applications are now Jack com-
patible. On MacOSX, it has extended the Core-
Audio architecture by adding low-latency inter-
application audio routing capabilities in a trans-
parent manner. 1

The new design and implementation aims in
removing some limitations of the current ver-
sion, by isolating the ”heart” of the system and
simplifying the implementation:

• the sequential activation model has been
changed to a new graph activation scheme

1All CoreAudio applications can take profit of Jack
features without any modification

based on a data-flow model, that will nat-
urally take profit of multi-processor ma-
chines

• a more robust architecture based on lock-
free programming techniques has been de-
veloped to allow the server to keep working
(not interrupting the audio stream) when
the client graph changes or in case of client
execution failure, especially interesting in
live situations.

• various simplifications have been done in
the internal design.

The section 2 explains the requirements, sec-
tion 3 describes the new design, section 4 de-
scribes the implementation, and finally section
5 describes the performances.

2 Multi-processing

Taking profit of multi-processor architectures
usually requires applications to be adapted. A
natural way is to develop multi-threaded code,
and in audio applications a usual separation
consists in executing audio DSP code in a real-
time thread and normal code (GUI for instance)
in one or several standard threads. The sched-
uler then activates all runnable threads in par-
allel on available processors.

In a Jack server like system, there is a natural
source of parallelism when Jack clients depend
of the same input and can be executed on dif-
ferent processor at the same time. The main re-
quirement is then to have an activation model
that allows the scheduler to correctly activate
parallel runnable clients. Going from a sequen-
tial activation model to a completely distributed
one also raise synchronization issues that can be
solved using lock-free programming techniques.

3 New design

3.1 Graph execution

In the current activation model (either on Linux
or MacOSX), knowing the data dependencies
between clients allows to sort the client graph
to find an activation order. This topological
sorting step is done each time the graph state
changes, for example when connections are done
or removed or when a new client opens or closes.
This order is used by the server to activate
clients in sequence.

Forcing a complete serialization of client ac-
tivation is not always necessary: for example
clients A and B (Fig 1) could be executed at the
same time since they both only depend of the
”Input” client. In this graph example, the cur-
rent activation strategy choose an arbitrary or-
der to activate A and B. This model is adapted
to mono-processor machines, but cannot exploit
multi-processor architectures efficiently.

3.2 Data flow model

Data flow diagrams (DFD) are an abstract gen-
eral representation of how data flows around
a system. In particular they describe systems
where the ordering of operations is governed by
data dependencies and by the fact that only the
availability of the needed data determines the
execution of one of the process.

A graph of Jack clients typically contains se-
quencial and parallel sub-parts (Fig 1). When
parallel sub-graph exist, clients can be executed
on different processors at the same time. A
data-flow model can be used to describe this
kind of system: a node in a data-flow graph
becomes runnable when all inputs are avail-
able. The client ordering step done in the mono-
processor model is not necessary anymore. Each
client uses an activation counter to count the
number of input clients which it depends on.
The state of client connections is updated each
time a connection between ports is done or re-
moved.

Activation will be transfered from client to
client during each server cycle as they are exe-
cuted: a suspended client will be resumed, exe-
cutes itself, propagates activation to the output
clients, go back to sleep, until all clients have
been activated. 2

2The data-flow model still works on mono-processor
machines and will correctly guaranty a minimum global
number of context switches like the ”sequential” model.

Input Ouput

A

B

C D

Figure 1: Client graph: Client A and B could
be executed at the same time, C must wait for
A and B end, D must wait for C end.

3.2.1 Graph loops
The Jack connection model allows loops to be
established. Special feedback connections are
used to close a loop, and introduce a one buffer
latency. We currently follow Simon Jenkins 3

proposition where the feedback connection is in-
troduced at the place where the loop is estab-
lished. This scheme is simple but has the draw-
back of having the activation order become sen-
sitive to the connection history. More complex
strategies that avoid this problem will possibly
be tested in the future.

3.3 Lock-free programming

In classic lock-based programming, access to
shared data needs to be serialized using mutual
exclusion. Update operations must appear as
atomic. The standard way is to use a mutex
that is locked when a thread starts an update
operation and unlocked when the operation is
finished. Other threads wanting to access the
same data check the mutex and possibly sus-
pend their execution until the mutex becomes
unlocked. Lock based programming is sensi-
tive to priority inversion problems or deadlocks.
Lock-free programming on the contrary allows
to build data structures that are safe for con-
current use without needing to manage locks or
block threads (Fober, Letz, and Orlarey 2002).

Locks are used at several places in the cur-
rent Jack server implementation. For example,
the client graph needs to be locked each time
a server update operation access it. When the
real-time audio thread runs, it also needs to ac-
cess the client graph. If the graph is already
locked and to avoid waiting an arbitrary long
time, the Real-Time (RT) thread generates an
empty buffer for the given audio cycle, causing
an annoying interruption in the audio stream.

A lock-free implementation aims at remov-

3Discussed on the jack-dev mailing list

ing all locks (and particularly the graph
lock) and allowing all graph state changes
(add/remove client, add/remove ports, connec-
tion/disconnection...) to be done without in-
terrupting the audio stream. 4 As described
in the implementation section, this new con-
straint requires also some changes in the client
side threading model.

3.3.1 Lock-free graph state change
All update operations from clients are serial-
ized through the server, thus only one thread
updates the graph state. RT threads from the
server and clients have to see the same coher-
ent state during a given audio cycle. Non RT
threads from clients may also access the graph
state at any time. The idea is to use two states:
one current state and one next state to be up-
dated. A state change consists in atomically
switching from the current state to the next
state. This is done by the RT audio server
thread at the beginning of a cycle, and other
clients RT threads will use the same state dur-
ing the entire cycle. All state management op-
erations are implemented using the CAS 5 op-
eration and are described with more details in
the implementation section.

3.4 A ”robust” server
Having a robust system is especially important
in live situations where one can accept a tempo-
rary graph execution fault, which is usually bet-
ter that having the system totally failing with
a completely silent buffer and an audio stream
interruption for example. In the current sequen-
tial version, the server waits for the client graph
execution end before in can produce the output
audio buffers. Thus a client that does not run
during one cycle will cause the complete failure
of the system.

In a multi-processor context, it is interesting
to have a more distributed system, where a part
of the graph may still run on one processor even
if another part is blocked on the other one.

3.4.1 Engine cycle
The engine cycle has been redesigned. The
server no longer waits for the client execution
end. It uses the buffers computed at the previ-
ous cycle. The server cycle is fast and take al-

4Some operations like buffer size change will still in-
terrupt the audio stream.

5CAS is the basic operation used in lock-free pro-
gramming: it compares the content of a memory address
with an expected value and if success, replaces the con-
tent with a new value.

most constant time since it is totally decoupled
from the clients execution. This allows the sys-
tem to keep running even if a part of the graph
can not be executed during the cycle for what-
ever reason (too slow client, crash of a client...).

The server is more robust: the resulting out-
put buffer may be incomplete, if one or sev-
eral clients have not produced their contribu-
tion, but the output audio stream will still be
produced. The server can detect abnormal sit-
uations by checking if all clients have been ex-
ecuted during the previous cycle and possibly
notify the faulty clients with an XRun event.

3.4.2 Latency
Since the server uses the output buffers pro-
duced during the previous cycle, this new model
adds a one buffer more latency in the system.6
But according to the needs, it will be possible
to choose between the current model where the
server is synchronized on the client graph exe-
cution end and the new more robust distributed
model with higher latency.

4 Implementation

The new implementation concentrates on the
core part of the system. Some part of the API
like the Transport system are not implemented
yet.

4.1 Data structure
Accessing data in shared memory using pointers
on the server and client side is usually complex:
pointers have to be described as offset related
to a base address local to each process. Linked
lists for example are more complex to manage
and usually need locked access method in multi-
thread cases. We choose to simplify data struc-
tures to use fixed size preallocated arrays that
will be easier to manipulate in a lock free man-
ner.

4.2 Shared Memory
Shared memory segments are allocated on the
server side. A reference (index) on the shared
segment must be transfered on the client side.
Shared memory management is done using two
classes:

• On the server side, the JackShmMem
class overloads new and delete operators.
Objects of sub-classes of JackShmMem will

6At least on OSX where the driver internal behaviour
concerning input and output latencies values cannot be
precisely controlled

be automatically allocated in shared mem-
ory. The GetShmIndex method retrieves
the corresponding index to be transfered
and used on the client side.

• Shared memory objects are accessed us-
ing a standard pointer on the server side.
On the client side, the JackShmPtr tem-
plate class allows to manipulate objects al-
located in shared memory in a transparent
manner: initialized with the index obtained
from the server side, a JackShmPtr pointer
can be used to access data and methods 7

of the corresponding server shared memory
object.

Shared memory segments allocated on the
server will be transfered from server to client
when a new client is registered in the server, us-
ing the corresponding shared memory indexes.

4.3 Graph state
Connection state was previously described as
a list of connected ports for a given port.
This list was duplicated both on the server
and client side thus complicating connec-
tion/disconnection steps. Connections are now
managed in shared memory in fixed size arrays.

The JackConnectionManager class main-
tains the state of connections. Connections are
represented as an array of port indexes for a
given port. Changes in the connection state will
be reflected the next audio cycle.

The JackGraphManager is the global
graph management object. It contains a con-
nection manager and an array of preallocated
ports.

4.4 Port description
Ports are a description of data type to be ex-
changed between Jack clients, with an associ-
ated buffer used to transfer data. For audio
input ports, this buffer is typically used to mix
buffers from all connected output ports. Audio
buffers were previously managed in a indepen-
dent shared memory segment.

For simplification purpose, each audio buffer
is now associated with a port. Having all buffers
in shared memory will allow some optimiza-
tions: an input port used at several places with
the same data dependencies could possibly be
computed once and shared. Buffers are pre-
allocated with the maximum possible size, there
is no re-allocation operation needed anymore.
Ports are implemented in the JackPort class.

7Only non virtual methods

4.5 Client activation
At each cycle, clients that only depend of the
input driver and clients without inputs have to
be activated first. To manage clients without in-
puts, an internal freewheel driver is used: when
first activated, the client will be connected to it.
At the beginning of the cyle, each client has its
activation counter containing the number of in-
put client it depends on. After being activated,
the client decrements the activation counter of
all its connected output. The last activated in-
put client will resume the following client in the
graph. (Fig 2)

Each client uses an inter-process sus-
pend/resume primitive associated with an ac-
tivation counter. An implementation could be
described with the following pseudo code. Exe-
cution of a server cycle follows several steps:

• read audio input buffers

• write output audio buffers computed the
previous cycle

• for each client in client list, reset the acti-
vation counter to its initial value

• activate all clients that depends on the in-
put driver client or without input

• suspend until next cycle

C (1)

A(0)

B(0) B(0)

C (0)

A(0)

C (2)

A(0)

B(0)

Running client

Figure 2: Example of graph activation: C is ac-
tivated by the last running of its A and B input.

After being resumed by the system, execution
of a client consists of:

• call the client process callback

• propagate activation to output clients

• suspend until the next cycle

On each platform, an efficient synchroniza-
tion primitive is needed to implement the sus-
pend/resume operation. Mach semaphores are
used on MacOSX. They are allocated and
published by the server in a global names-
pace (using the mach bootstrap service mecha-
nism). Running clients are notified when a new

client is opened and access the corresponding
semaphore.

Linux kernel 2.6 features the Fast User space
mutEx (futex), a new facility that allows two
process to synchronize (including blocking and
waking) with either no or very little interaction
with the kernel. It seems likely that they are
better suited to the task of coordinating mul-
tiple processes than the FIFO’s that the Linux
implementation currently uses.

4.6 Lock-free graph access
Lock-free graph access is done using the Jack-
AtomicState template class. This class imple-
ment the two state pattern. Update methods
use on the next state and read methods access
the current state. The two states can be atom-
ically exchanged using a CAS based implemen-
tation.

• code updating the next state is protected
using the WriteNextStateStart and
WriteNextStateStop methods. When
executed between these two methods, it can
freely update the next state and be sure
that the RT reader thread can not switch
to the next state.8

• the RT server thread switch to the new
state using the TrySwitchState method
that returns the current state if called
concurrently with a update operation and
switch to the next state otherwise.

• other RT threads read the current state,
valid during the given audio cycle using the
ReadCurrentState method.

• non RT threads read the current state us-
ing the ReadCurrentState method and
have to check that the state was not
changed during the read operation (using
the GetCurrentIndex method):

void ClientNonRTCode(...)
{

int cur_index,next_index;
State* current_state;
next_index = GetCurrentIndex();
do {

cur_index = next_index;
current_state = ReadCurrentState();
...
< copy current_state >
...

8The programming model is similar to a lock-based
model where the update code would be written inside a
mutex-lock/mutex-unlock pair.

next_index = GetCurrentIndex();
} while (cur_index != next_index);

}

4.7 Server client communications
A global client registration entry point is de-
fined to allow client code to register a new
client (a JackServerChannel object). A pri-
vate communication channel is then allocated
for each client for all client requests, and re-
mains until the client quits. Possible crash of
a client is detected and handled by the server
when the private communication channel is ab-
normally closed. A notification channel is also
allocated to allow the server to notify clients:
graph reorder, xrun, port registration events...

Running clients can also detect when the
server no more runs as soon as waiting on the
input suspend/resume primitive fails. (Fig 3)

The current version uses socked based chan-
nels. On MacOSX, we use MIG (Mach Inter-
face Generator), a very convenient way to define
new Remote Procedure Calls (RPC) between
the server and clients. 9

 Jack Server

Client A

Client B

Client requests
Server

notifications

Client requests

Server
notifications

Client
registration

Figure 3: The server defines a public ”client reg-
istration” channel. Each client is linked with the
server using two ”request ”and ”notification”
channels.

4.8 Server
The Jack server contains the global client reg-
istration channel, the drivers, an engine, and
a graph manager. It receives requests from the
global channel, handle some of them (BufferSize
change, Freewheel mode..) and redirect other
ones on the engine.
4.8.1 Engine
The engine contains a JackEngineControl,
a global shared server object also visible for
clients. It does the following:

9Both synchronous and asynchronous function calls
can be defined

• handles requests for new clients through
the global client registration channel and
allocates a server representation of new ex-
ternal clients

• handles request from running clients

• activates the graph when triggered by the
driver and does various timing related oper-
ations (CPU load measurement, detection
of late clients...)

4.8.2 Server clients
Server clients are either internal clients (a Jack-
InternalClient object) when they run in the
server process space10 or external clients (a
JackExternalClient object) as a server repre-
sentation of an external client. External clients
contain the local data (for example the notifi-
cation channel, a JackNotifyChannel object)
and a JackClientControl object to be used by
the server and the client.

4.8.3 Library Client
On the client side, the current Jack version uses
a one thread model: real-time code and no-
tifications (graph reorder event, xrun event...)
are treated in a unique thread. Indeed the
server stops audio processing while notifications
are handled on the client side. This has some
advantages: a much simpler model for syn-
chronization, but also some problematic con-
sequences: since notifications are handled in
a thread with real-time behaviour, a non real-
time safe notification may disturb the whole ma-
chine.

Because the server audio thread is not in-
terrupted anymore, most of server notifications
will typically be delivered while the client audio
thread is also running. A two threads model for
client has to be used:

• a real-time thread dedicated to the audio
process

• a standard thread for notifications

The client notification thread is started in
jack-client-new call. Thus clients can already
receive notifications when they are in the opened
state. The client real-time thread is started
in jack-activate call. A connection manager
client for example does not need to be activated
to be able to receive graphreorder, or portregis-
tration like notifications (Fig 4).

10Drivers are a special subclass of internal clients

Closed Opened Running

jack_client_new jack_activate

jack_deactivatejack_client_close

Notification thread
running

Notification + RT thread
running

Figure 4: Client life cycle

This two threads model will possibly have
some consequences for existing Jack applica-
tions: they may have to be adapted to allow a
notification to be called while the audio thread
is running.

The library client (a JackLibClient object)
redirects the external Jack API to the Jack
server. It contains a JackClientChannel ob-
ject that implements both the request and no-
tification channels, local client side resources as
well as access to objects shared with the server
like the graph manager or the server global
state.

4.8.4 Drivers
Drivers are needed to activate the client graph.
Graph state changes (new connections, port,
client...) are done by the server RT thread.
When several drivers need to be used, one of
them is called the master and updates the
graph. Other one are considered as slaves.

The JackDriver class implements com-
mon behaviour for drivers. Those that use
a blocking audio interface (like the Jack-
ALSADriver driver) are subclasses of the
JackThreadedDriver class. A special Jack-
FreewheelDriver (subclass of JackThreaded-
Driver) is used to activate clients without in-
puts and to implement the freewheel mode
(see 4.8.5). The JackAudioDriver class im-
plements common code for audio drivers, like
the management of audio ports. Callback
based drivers (like the JackCoreAudioDriver
driver, a subclass of JackAudioDriver) can di-
rectly trigger the Jack engine.

When the graph is synchronized to the au-
dio card, the audio driver is the master and the
freewheel driver is a slave.

4.8.5 Freewheel mode
In freewheel mode, Jack no longer waits for any
external event to begin the start of the next
process cycle thus allowing faster than real-time
execution of Jack graph. Freewheel mode is im-
plemented by switching from the audio and free-
wheel driver synchronization mode to the free-
wheel driver only:

• the global connection state is saved

• all audio driver ports are deconnected, thus
there is no more dependancies with the au-
dio driver

• the freewheel driver is synchronized with
the end of graph execution: all clients are
connected to the freewheel driver

• the freewheel driver becomes the master

Normal mode is restored with the connections
state valid before freewheel mode was done.
Thus one consider that no graph state change
can be done during freewheel mode.

4.9 XRun detection
Two kind of XRun can be detected:

• XRun reported by the driver

• XRun detected by the server when a client
has not be executed the previous cycle: this
typically correspond to abnormal scheduler
latencies

On MacOSX, the CoreAudio HAL system al-
ready contains a XRun detection mechanism: a
kAudioDeviceProcessorOverload notification is
triggered when the HAL detects an XRun. The
notification will be redirected to all running
clients. All clients that have not been executed
the previous cycle will be notified individually.

5 Performances

The multi-processor version has been tested on
MacOSX. Preliminary benchmarks have been
done on a mono and dual 1.8 Ghz G5 machine.
Five jack-metro clients generating a simple bip
are running.

Client 1

Signal
Awake

FinishAudio
Interrupt

t

Client 2

Signal Awake
Finish

Server

Figure 5: Timing diagram for a two clients in
sequence example

For a server cycle, the signal date (when
the client resume semaphore is activated), the
awake date (when the client actually wakes up)
and the finish date (when the client ends its pro-
cessing and go back to suspended state) relative
to the server cycle start date before reading and

writing audio buffers have been measured. The
first slice in the graph also reflects the server be-
havior: the duration to read and write the audio
buffers can be seen as the signal date curve off-
set on the Y-coordinate. After having signaled
the first client, the server returns to the Core-
Audio HAL (Hardware Abstract Layer), which
mix the output buffers in the kernel driver (off-
set between the first client signal date and its
awake date (Fig 5)). The first client is then
resumed.

Figure 6: Mono G5, clients connected in se-
quence. For a server cycle: signal (blue), awake
(pink) and finish (yellow) date. End date is
about 250 microsecond on average.

With all clients running at the same time, the
measure is done during 5 seconds. The behavior
of each client is then represented as a 5 seconds
”slice” in the graph and all slices have been con-
catenated on the X axis, thus allowing to have
a global view of the system.

Two benchmarks have been done. In the first
one, clients are connected in sequence (client
1 is connected to client 2, client 2 to client 3
and so on), thus computations are inevitably
serialized. One can clearly see that the signal
date of client 2 happens after the finished date
of client 1 and the same behavior happens for
other clients. Measures have been done on the
mono (Fig 6) and dual machine (Fig 7).

In the second benchmark, all clients are only
connected to the input driver, thus they can
possibly be executed in parallel. The input
driver client signal all clients at (almost) the
same date 11. Measures have been done on
the mono (Fig 8) and dual (Fig 9) machine.
When parallel clients are executed on the dual

11Signaling a semaphore has a cost that appears as the
slope of the signal curve.

Figure 7: Dual G5. Since clients are connected
in sequence, computations are also serialized,
but client 1 can start earlier on the second pro-
cessor. End date is about 250 microsecond on
average.

machine, one see clearly that computations are
done at the same time on the 2 processors and
the end date is thus lowered.

Figure 8: Parallel clients on a mono G5. Al-
though the graph can potentially be parallelized,
computations are still serialized. End date is
about 250 microsecond on average.

Other benchmarks with different paral-
lel/sequence graph to check their correct acti-
vation behavior and comparaison with the same
graphs runned on the mono-processor machine
have been done. A worst case additional la-
tency of 150 to 200 microseconds added to the
average finished date of the last client has been
measured.

6 Conclusion

With the development of multi-processor ma-
chines, adapted architectures have to be devel-
oped. The Jack model is particularly suited

Figure 9: Parallel clients on a dual G5. Client 1
can start earlier on the second processor before
all clients have been signalled. Computations
are done in parallel. End date is about 200 mi-
crosecond on average.

to this requirement: instead of using a ”mono-
lithic” general purpose heavy application, users
can build their setup by having several smaller
and goal focused applications that collaborate,
dynamically connecting them to meet their spe-
cific needs.

By adopting a data flow model for client ac-
tivation, it is possible to let the scheduler natu-
rally distribute parallel Jack clients on available
processors, and this model works for the bene-
fit of all kind of client aggregation, like inter-
nal clients in the Jack server, or multiple Jack
clients in an external process.

A Linux version has to be completed with
an adapted primitive for inter process synchro-
nization as well as socket based communication
channels between the server and clients. The
multi-processor version is a first step towards
a completely distributed version, that will take
advantage of multi-processor on a machine and
could run on multiple machines in the future.

References

D.Fober, S.Letz, Y.Orlarey ”Lock-Free Tech-
niques for Concurrent Access to Shared Ob-
jects”, Actes des Journes d’Informatique Mu-
sicale JIM2002, Marseille, pages 143–150

S.Letz, D.Fober, Y.Orlarey, P.Davis ”Jack
Audio Server: MacOSX port and multi-
processor version, Proceedings of the first
Sound and Music Computing conference -
SMC’04”, pages 177–183

Vehmanen Kai, Wingo Andy and Davis
Paul ”Jack Design Documentation”,
http://jackit.sourceforge.net/docs/design/

