
HAL Id: hal-02158991
https://hal.science/hal-02158991

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantics for multirate Faust
Pierre Jouvelot, Yann Orlarey

To cite this version:
Pierre Jouvelot, Yann Orlarey. Semantics for multirate Faust. [Technical Report] GRAME. 2009.
�hal-02158991�

https://hal.science/hal-02158991
https://hal.archives-ouvertes.fr

SEMANTICS FOR MULTIRATE FAUST

P. JOUVELOT1, Y. ORLAREY2

Technical Report A/414, CRI, MINES ParisTech
ASTREE ANR Project D4.2 ”Extensions pour Faust” Deliverable

Abstract. Faust is a functional programming language dedicated to the specification
of executable monorate musical applications. We present here a multirate extension of
the core of the Faust language, called MR Faust, together with a typing semantics, a
denotational semantics and correctness theorems that link them together.

1. Introduction

From Music III, the first language for digital audio synthesis, developed by Max
Mathews in 1959 at the Bell Labs, to Max [8], and from MUSICOMP, considered one
of the very first music composition languages, developed by Lejaren Hiller and Robert
Baker in 1963, to OpenMusic [2] and Elody [5], research in music programming languages
has been very active since the early 60s. The computer music community has pioneered
the field of end-user programming as well as the idea of using a programming language
as a creative tool to invent complex objects like sounds, musical structures or real-time
interactions. Nowadays the practice of Live Coding, with languages like ChucK [10],
pushes even further the boundaries of what computer programming is by positioning
this activity as a performing art. Moreover, with the convergence of digital arts, visual
programming languages like Max have gained a large audience well outside the computer
music community. Within this context,the programming language Faust [3] intends to
provide a highly abstract, purely functional approach to signal processing while offering
the highest level of performance. Faust aims at being complementary to existing audio
languages by providing a viable and efficient alternative to C/C++ to develop signal
processing libraries, audio plug-ins or standalone applications.

The definition of the Faust programming language uses a two-tiered approach: (1) a
core language provides constructs to combine signal processors and (2) a macro language
is used on top of this kernel to build and manipulate abstractions. The macro language
has rather straightforward syntax and semantics, since it is a syntactic variant of the
untyped lambda-calculus with a call-by-name semantics (see [4]). On the other hand,
core Faust is more unusual, since, in accordance with its musical application domain, it
is based on the notion of ”signal processors” (see below).

The original definition of Faust provided in [7] is monorate, and its semantics is de-
fined in an operational framework. We propose here a multirate extension of Faust,
along the lines of [6], together with its denotational definition, in order to offer a more
abstract presentation of the language as well as the ability to eventually perform easier

Date: October 15, 2009.

1

2 P. JOUVELOT1, Y. ORLAREY2

mathematical proofs on Faust programs. We introduce and prove two main theorems:
the Subject Reduction theorem ensures that the evaluation process preserves the typ-
ing properties of the language, while the Frequency Correctness theorem validates the
multirate nature of this extension.

After this introduction, Section 2 provides a brief informal survey of Faust basic
operations. Section 3 introduces the core Faust syntax. Section 4 is a proposal for a
multirate extension, called MR Faust, of this core. Section 5 defines the static domains
used to provide MR Faust static typing semantics (Section 6). Section 7 defines the
semantic domains used in the MR Faust dynamic denotational semantics (Section 8).
One needs to ensure that both static and dynamic semantics remain consistent along
evaluation; this is the goal of the Subject Reduction theorem introduced and proved
in Section 9. Showing that this multirate extension of Faust indeed behaves properly,
i.e, that signals of different frequencies merge gracefully in a multirate program, is the
subject of the Frequency Correctness theorem of Section 10. The last section concludes.

2. Overview of Faust

A Faust program does not describe a sound or a group of sounds, but a signal proces-
sor, something that gets input signals and produces output signals. The program source
is organized as a set of definitions with at least the definition of the keyword process
(the equivalent of main in C); running a Faust program amounts to plugging the I/O
signals of process to the actual sound environment, such as a microphone and an audio
system, for instance.

Here is a first Faust example that produces silence, i.e., a signal providing an infinite
supply of 0s:
process = 0;

Note that 0 is an unusual signal transformer, since it takes an empty set of input
signals and generates a signal of constant values, namely the integer 0.

The second example is a little bit more sophisticated and copies the input signal to
the output signal. It involves the _ (underscore) primitive that denotes the identity
function on signals (that is a simple audio cable for a sound engineer):
process = _;

Another very simple example is the conversion of a two-channel stereo signal into a
one-channel mono signal using the + primitive that adds two signals together to yield a
single, summed signal:
process = +;

Most Faust primitives are similar to their C counterparts on numbers, but lifted to
signals. For example the Faust primitive sin operates on a signal s by applying the C
function sin to each sample s(t) of s; in other words, sin transforms an input signal s
into an output signal s′ such that s′(t) = sin(s(t)). Yet, some signal processing primitives
are specific to Faust. For example the delay operator @ takes two input signals, s (the
signal to be delayed) and d (the delay to be applied), and produces an output signal s′

such that s′(t) = s(t− d(t)).
Contrarily to visual programming languages often used in the computer music world,

where the user performs manual connections between operators to create so called block

SEMANTICS FOR MULTIRATE FAUST 3

diagrams, Faust primitives are assembled into block diagrams by using a set of high-level
composition operations. You can think of these composition operators as a generalization
of the mathematical function composition operator ◦.

Assume we want to connect the output of + to the input of abs in order to compute the
absolute value of the output signal; this connection can be specified using the sequential
composition operator ’:’ (colon):

process = + : abs;

Here is now an example of parallel composition (a stereo cable) using the operator ’,’
that puts in parallel its left and right expressions:

process = _,_;

These operators can be arbitrarily combined. For example to multiply the input signal
by 0.5, one can write:

process = _,0.5 : *;

Taking advantage of some syntactic sugar the details of which we will not address
here, the above example can be rewritten (using what functional programmmers know
as curryfication):

process = *(0.5);

The recursive composition operator ’~’ can be used to create block diagrams with
delayed cycles. Here is the example of an integrator:

process = + ~ _;

The ~ operator connects here in a feedback loop the output of + to the input of _
(with an implicit 1-sample delay) and the output of _ is then used as one of the inputs of
+. As a whole, process thus takes a single input signal s and computes an output signal
s′ such that s′(t) = s(t) + s′(t− 1), thus performing a numerical integration operation

To further illustrate the use of this recursive operator and also provide a more mean-
ingful audio example, this last, 3-line Faust program represents a pseudo-noise generator:

random = +(12345) ~ *(1103515245);
noise = random/2147483647.0;
process = noise*vslider("noise[style:knob]",0,0,100,0.1)/100;

The definition of random specifies a (pseudo) random number generator that produces
a signal s such that s(t) = 12345+1103515245∗s(t−1). Indeed, the expression +(12345)
denotes the operation of adding 12345 to a signal, while *(1103515245) similarly denotes
the multiplication of a signal by 1103515245. These two operations are recursively
composed using the ~ operator; this operator connects in a feedback loop the output
of +(12345) to the input of *(1103515245) (with an implicit 1-sample delay) and the
output of *(1103515245) to the input of +(12345).

The definition of noise transforms the random signal into a noise signal by scaling it
between -1.0 and +1.0. Finally, the definition of process adds a simple user interface to
control the production of sound; the noise signal is multiplied by the value delivered by a
slider to control its volume. The whole process expression thus does not take any input
signal but outputs a signal of pseudonumbers (see the corresponding block diagram in
Figure 1, where the little square denotes a 1-sample delay operator).

4 P. JOUVELOT1, Y. ORLAREY2

Figure 1. Graphic block diagram of the noise generator process.

3. Language Syntax

Faust syntax uses identifiers I from the set Ide and expressions E in Exp. Numer-
ical constants, be they integers or floating point numbers, can be seen as predefined
identifiers. The syntax of the core of Faust is defined as follows:

E ::= I |
E1 : E2 | E1, E2 |
E1 <: E2 | E1 :> E2 |
E1 ∼ E2

We saw some examples of all these composition operators in Section 2, except for
<: and :>; these operators perform fan-out and fan-in transformations, as we will see
below.

In Faust, every expression represents a signal processor, i.e., a function that maps
signals, which are functions from time to values, to other signals. Note that arithmetic
operators do not appear as such in this syntax; they are considered as predefined iden-
tifiers and thus, for instance, ”I1 + I2” is represented in this core version of Faust as
”I1, I2 : +”.

4. Multirate Extension

Faust, as described in [3], is a monorate language; in monorate languages, there is
usually just one Time domain involved when accessing successive signal values. However,
digital signal processing traditionally uses subsampling and oversampling operations
heavily, which naturally lead to the introduction of multirate concepts. Since Faust
targets a subset of DSP processing, the proposal introduced by Yann Orlarey [6] suggests

SEMANTICS FOR MULTIRATE FAUST 5

to use multiple frequencies to deal with such issues, instead of more general clocks, such
as those present in traditional synchronous programming languages [1].

We propose to see clocking issues as an add-on to Faust. Frequencies f are elements
of the Freq = Q+ domain. Signals, which are traditionnally typed according to the type
of their codomain, are characterized by a pair, called a rated type, formed by a type
and a frequency: Type] = Type × Freq. Following [6], we posit that multiple rates in
an application are introduced via vectors1. Vectors are created using the vectorize
predefined primitive; informally, it collects n samples (the constant value n is provided
by the signal that is the second argument to this primitive) from an input stream of
frequency f and output vectors with n elements at frequency f/n. The serialize
operation performs the reverse operation. Finally the processor primitive [], which
takes an input that includes a signal of vectors and one of integer indexes, is used to
access elements of a vector.

One key and novel issue of this multirate extension is that the size of vectors are
encoded into the vector type; moreover this size is provided via the value of a stream
argument of the vectorize primitive. This calls for a dependent-type [9] static semantics
that embeds values within types. We deal with this issue in the rest of this paper.

5. Static Domains

5.1. Values. Since the values embedded in signals are typed, the static typing semantics
of MR Faust uses basic types b in Base, which is a defined set of predefined types:

b ∈ Base = int | float

Since we mentioned that our type system will be a dependent-type semantics, we need
a way to abstract values to yield a decidable framework. We introduce spans a in Span,
which are pairs of signed integers n or m; these pairs represent intervals that bound
runtime values:

n,m ∈ Zω = {−ω,+ω} ∪ Z
a ∈ Span = Zω × Zω

where we assume the usual extensions of arithmetic operations on Z to Zω; we take care
in the following to avoid introducing meaningless expressions such as −ω + +ω. Note
that we use integer spans here for both integer and floating-point values for simplicity
purposes; extending our framework to deal with floating-point spans is straightforward.
A span a = (n,m) will be written [n,m] in the sequel.

All base-typed expressions will be typed with an element b of Base, together with a
span [n,m] that specifies an over-approximation of the set of values these expressions
might denote. Vectors, as groups of n values, will be typed using their size (the number
n) and the type of their elements. Finally, since signed integers are part of types, via
spans, we will need to perform some operations over these values, and thus introduce

1It is also suggested in [6] to introduce structures, an issue we leave here to further investigation.

6 P. JOUVELOT1, Y. ORLAREY2

the notion of type addition. The type domain is then:

t ∈ Type = Base× Span |
N× Type |
Type× Type

As a short hand, we note b[a] for base types, vectorn(t) for vector types and t + t′ for
the addition of two types.

Not all combinations of these type-building expressions make sense. We formally
define below the notion of a well-formed type:

Definition 1 (Well-Formed Type wff (t)). A type t is well-formed, noted wff (t), iff:

• when t = b[n,m], then n ≤ m and ¬(n = m = −ω) and ¬(n = m = +ω);
• when t = vectorn(t′), then wff (t′);
• when t = t′ + t′′, then wff (t′) and wff (t′′).

5.2. Signals. Since vectors are used to introduce multirate signal processing into Faust,
we need to deal with these rate issues in the static semantics. As hinted above, we use
frequencies f in Freq to manage rates:

f ∈ Freq = Q+

In our framework, the only signal processing operations we will perform that impact
frequencies are related to over- and sub-sampling conversions. To represent such con-
versions, we will logically use multiplication and division arithmetic operations, which
leads to the definition of Freq as the set of positive rational numbers.

The static semantics of signals manipulated in MR Faust thus not only deals with
value types, but also with frequencies. We link these two concepts in the notion of rated
types t] in Type]:

t] ∈ Type] = Type× Freq |
Type] × Type]

We will note tf the rated type (t, f) and t] + t′] the addition of two rated types. We also
use simply t when f is not needed and there is no risk of confusion.

5.3. Processors. A MR Faust signal processor E maps ensembles (we called these
sheafs) of signals to sheafs of signals. These sheafs have a type (we only represent
the type of the image of a signal, since the domain is always time, and signals can only
embed values of a single type) called an impedance z in Z:

z ∈ Z =
⋃
n

Type]n

The null impedance, in Type]0, is (), and is used when no signal is present. A
simple impedance is (tf), and is the type of a sheaf containing one signal that maps
time to values of type t at frequency f . The impedance length |z| is defined such that
z ∈ Type]|z|. The i-th rated type in z (1 ≤ i ≤ |z|) is noted z[i]. Two impedances z1

SEMANTICS FOR MULTIRATE FAUST 7

and z2 can be concatenated as z = z1‖z2, to yield an impedance in Type]d1+d2 where
di = |zi|, defined as follows:

z[i] = z1[i] (1 ≤ i ≤ d1)
z[i+ d1] = z2[i] (1 ≤ i ≤ d2)

To build more complex impedances, we introduce the ‖ iterator as follows:

‖n,n′,dM = (), if n > n′

‖n,n′,dM = M(n) ‖ ‖n+d,n′,dM otherwise

where M is a function that maps integers to impedances. Intuitively, ‖n,n′,dM is the
concatenation of M(n),M(n+d),M(n+2d), ...M(n′). As a short hand, z[n, n′, d], which
selects from z the types from the n-th type to the n′-th one by step of d , is ‖n,n′,dλi.z[i],
while a simple slice of z is z[n, n′] = z[n, n′, 1].

Definition 2 (Well-Formed Impedance wff (z)). An impedance z is well-formed, noted
wff (z), iff, for all i ∈ [1, |z|], there exist f , noted](z[i]), and ti such that z[i] = ti

f , with
wff (ti).

5.4. Schemes. A Core Faust signal processor maps input signals (a sheaf) to output
signals (a sheaf). Since some processors are polymorphic (e.g., the identify processor _),
the type of a processor must be a type scheme that contains both the input and output
impedances, possibly abstracted over abstractable sorts S in Sort. Type schemes k in
Scheme are defined as follows:

S ∈ Sort = {Base,N,Type,Freq,Type]}
k ∈ Scheme = (Var× Sort)∗ × Z× Z

For readability purposes, we note Λx : S...x′ : S′.(z, z′), where x are abstracting vari-
ables in Var, the scheme (((x, S), ..., (x′, S′)), z, z′). These schemes will be instantiated
where needed; the substitution (z, z′)[l′/l] of a sort list l by l′ in a pair (z, z′) is defined
as usual:

(z, z′)[l′/l] = (z[l′/l], z′[l′/l])
z1||z2 [l′/l] = z1[l′/l]||z2[l′/l]

z[l′/()] = z

z[l′/(x, S).l] = z[l′(x)/x][l′/l]
x[v/x] = v

y[v/x] = y

plus structural induction on types and frequencies.
Finally, typed identifiers are gathered in type environments T that map Ide to Scheme.

6. Static Semantics

The static semantics specifies how impedance pairs are assigned to signal processors.
We first define some utilitary operations on static domains, and then provide static rules
for MR Faust.

8 P. JOUVELOT1, Y. ORLAREY2

6.1. Operations. Complex MR Faust expressions are constructed by connecting to-
gether simpler processor expressions. In the case of fan-in (respectively fan-out) expres-
sions, such connections require that the involved signal processors match in some specific
sense: MR Faust uses the impedance matching relation z′1 � z2 (resp. ≺) to ensure such
compatibility conditions. Such a relation goes beyond simple type equality by authoriz-
ing a larger (resp. smaller) output z′1 to fit into a smaller (resp. larger) input z2, using
the following definitions (� requires mixing of signals, while ≺ simply dispatches the
unmodified signals) in which d′1 = |z′1| and d2 = |z2|:

z′1 � z2 = d′1d2 6= 0 and
mod(d′1, d2) = 0 and∑
i∈[0,d′

1/d2−1]

z1[1 + id2, (i+ 1)d2] = z2

z′1 ≺ z2 = d′1d2 6= 0 and
mod(d2, d

′
1) = 0 and

‖1,d2,d′
1
λi.z′1 = z2

where equality on impedances is defined by structural induction.
Since we deal in our framework with dependent types (values, via spans, appear in the

static domains), performing the mixing of signals, as above, require the ability to per-
form, in the static semantics, additions over impedances and, consequently, over types;
for instance, mixing a signal of type int[0, 2] with one of type int[3, 6] yields a signal
of type int[3, 8]. To formalize such operations, we use the following static semantics
addition rules:

(b+)
b[n,m] + b[n′,m′] = b[n+ n′,m+m′]

(v+)
vectorn(t) + vectorn(t′) = vectorn(t+ t′)

(t+)
t+ t′ = t′′

tf + t′f = t′′f

(z+)
|z| = |z′| = |z′′|

∀i ∈ [1, |z|].z[i] + z′[i] = z′′[i]
z + z′ = z′′

The presence of values in types also induces an order relationship on Type, defined as
follows:

Definition 3 (Subtype Ordering t ⊂ t′). A type t is a subtype of t′, noted t ⊂ t′, if:
• either t = t′;
• or t = b[n,m] and t′ = float[n′,m′] and [n,m] ⊆ [n′,m′];
• or t = vectorn(t1) and t′ = vectorn(t′1) and t1 ⊂ t′1.

Note that this order relation is not defined on non-reductible sum types.

SEMANTICS FOR MULTIRATE FAUST 9

6.2. Rules. Faust is strongly and statically typed. Every expression, a signal processor,
is typed by its input and output impedances:

Definition 4 (Expression Type Correctness T ` E). An expression E is type correct
in an environment T , noted T ` E, if there exist z and z′ such that T ` E : (z, z′)
and wff (z) and wff (z′).

Keeping with a long tradition, we choose the usual ”:” sign to denote typing relations,
even though it is also used to represent the sequence operation in Faust. The reader
should have no problem distinguishing both uses of the same symbol.

We assume that there is an initial type environment T0 that satisfies the following
definitions for predefined signal processors:

T0(_) = Λt] : Type].((t]), (t]))

T0(!) = Λt] : Type].((t]), ())

T0(0) = Λb : Base.f : Freq.((), (b[0, 0]f))

T0(-2.8) = Λf : Freq.((), (float[−3,−2]f))

T0(+) = Λt] : Type].t′
] : Type].((t], t′]), (t] + t′

]))

T0(@) = Λf : Freq.t] : Type].m : N.((t], int[1,m]f), (t]))

T0(vectorize) = Λf : Freq.f ′ : Freq.t : Type.n : N.((tf , int[n, n]f
′
), (vectorn(t)f/n))

T0([]) = Λf : Freq.t : Type.n : N.((vectorn(t)f , int[0, n− 1]f), (tf))

T0(serialize) = Λf : Freq.t : Type.n : N.((vectorn(t)f), (tf∗n))

Note that numerical operators (which are also signal procesors) must be able to deal
with any type, and are as such associated to a polymorphic type scheme in the type en-
vironment; this is a consequence of the implicit mixing introduced by the lax impedance
matching relation �, as we will see. A similar requirement exists for constants such as
0 (which are predefined identifiers, anyway).

The inference rules are defined below:

(ide)

T (I) = Λl.(z, z′)
∀(x, S) ∈ l . l′(x) ∈ S
T ` I : (z, z′)[l′/l]

(seq)

T ` E1 : (z1, z′1)
T ` E2 : (z′1, z

′
2)

T ` E1 : E2 : (z1, z′2)

(par)

T ` E1 : (z1, z′1)
T ` E2 : (z2, z′2)

T ` E1, E2 : (z1‖z2, z′1‖z′2)

10 P. JOUVELOT1, Y. ORLAREY2

(split)
T ` E1 : (z1, z′1)
T ` E2 : (z2, z′2)
z′1 ≺ z2

T ` E1 <: E2 : (z1, z′2)

(merge)
T ` E1 : (z1, z′1)
T ` E2 : (z2, z′2)
z′1 � z2

T ` E1 :> E2 : (z1, z′2)

(loop)
T ` E1 : (z1, z′)
T ` E2 : (z2, z′2)
z2 = z′[1, |z2|]
z′2 = z1[1, |z′2|]

T ` E1 ∼ E2 : (z1[|z′2|+ 1, |z1|], ẑ′)

(sub)
T ` E : (z, z′)
z′ ⊂ z′1
z1 ⊂ z
T ` E : (z1, z′1)

Some rules are rather straightforward. Rule (ide) ensures that identifiers are typable
in the type environment T ; type schemes can be instantiated to adapt themselves to
a given typing context of Identifier I. In Rule (seq), signal processors are plugged in
sequence, which requires that the output impedance of E1 is the same as E2’s input. In
Rule (par), running two signal processors in parallel requires that their input and output
impedances are concatenated. In Rules (split) and (merge), the ≺ and � constraints are
used to ensure that a proper mixing of the output of E1 to the input of E2 is possible.

The most involved rule is (loop). Here, the input impedance z2 of the feedback
expression E2 is constrained to be the first |z2| types of the output impedance z′. Also,
the first |z′2| elements of the input impedance of the main expression E1 must be the
same as the ouput impedance of the feedback expression E2; these looped-back signals
will not thus impact the global input impedance z1[|z′2|+ 1, |z1|]. Note that the output
impedance ẑ′ is here an approximation of z′. This is introduced not for semantic reasons,
but to make type checking decidable while ensuring that the dependent return type is
valid independantly of the unknown bounds of the iteration space:

Definition 5 (Impedance Widening ẑ). The widened impedance of z, noted ẑ, is such
that |ẑ| = |z| and:

• ∀i ∈ [1, |z|].ẑ[i] = ẑ[i];
• ̂vectorn(t)f = vectorn(t̂)f ;
• b̂[a]f = b[â]f ;

SEMANTICS FOR MULTIRATE FAUST 11

• [̂n,m] = [−ω,+ω].

Basically, all knowledge on value bounds is lost under widening.
Finally, Rule (sub) allows types to be extended according to the order relationship

induced by spans in types and basic types.

7. Dynamic Domains

A Faust expression is a signal processor; as such its semantics manipulates signals,
which assign various values to time events. The dynamic semantics in particular uses
integers n, k, d, i (in N) and times t in Time :

t ∈ Time = N
Signals map times to values v in Val :

v ∈ Val = N +R+
⋃
n

Valn

N = N + {⊥}+ {?}
R = R + {⊥}+ {?}

Since the evaluation process may be non-terminating, we posit that Val is a cpo, with
order relation @ and bottom ⊥; all operations in Val are strict. The value ? denotes error
values (useful to denote non-existing values such as 1/0), and thus, for any Operator o
and Value v different from ⊥, we assume o(?, v) =?. For a vector v ∈ Valn, we define its
size |v| by v ∈ Val|v|.

A signal s, which is a history denoted by a function, is a member of Signal, with:

s ∈ Signal = Time→ Val

We define the domain dom(s) of a signal s by dom(s) = {t/s(t) 6=⊥}. The size of this
domain |dom(s)|, called its support s, is a member of N + {ω}, where ω is used to deal
with infinite signals. Signal is a cpo ordered by:

s @ s′ = dom(s) ⊂ dom(s′) and
∀t ∈ [0, s− 1], s(t) = s′(t)

We gather signals into sheafs m = (m1, ...,mn) in Sheaf:

m ∈ Sheaf =
⋃
n

Signaln

We consider that all notations introduced to manipulate impedances can similarly be
applied to sheafs. We do not need to consider Sheaf as a cpo, although each Signaln is,
with the order:

m @ m′ = ∀i ∈ [1, n], m[i] @ m′[i]
⊥ = (λt. ⊥, ..., λt. ⊥) ∈ Signaln

At last, a processor p in Proc is the basic bloc of a Faust program:

p ∈ Proc = Sheaf → Sheaf

We define dim(p) = (n, n′) such that p ∈ Signaln → Signaln
′
.

12 P. JOUVELOT1, Y. ORLAREY2

The standard semantics of a Faust expression is a function of the semantics of its free
identifiers; we collect these in a a state r, a member of State, with:

r ∈ State = Ide→ Proc

8. Denotational Semantics

We assume given an initial state r0 such that:

r0(_) = λ(s).(s)
r0(!) = λ(s).()
r0(0) = λ().(λt.0)
r0(+) = λ(s1, s2).(λt.s1(t) + s2(t))
r0(/) = λ(s1, s2).

(λt.
s1(t)/s2(t) if t < min(s1, s2) and s2(t) 6= 0,
? if t < min(s1, s2),
⊥ otherwise)

r0(vectorize) = λ(s1, s2).(λt.(s1(nt), ..., s1(n− 1 + nt)) where n = s2(0))
r0([]) = λ(s1, s2).(λt.s1(t)[s2(t)])

r0(serialize) = λ(s).
(λt.

? if s(0) = 0,
s(bt/|s(0)|c)[mod(t, |s(0)|)] otherwise)

r0(@) = λ(s1, s2).(delay(s1, s2))

where we assumed the existence of the delay function defined as:

delay(s1, s2) = λt. ⊥ if s2(t) =⊥, s1(t− s2(t)) if t− s2(t) ≥ 0, 0 otherwise

which delays each sample of Signal s1 by a number of time slots given, at each time t,
by s2(t); the usual one-slot delay is thus delay(s1, λt.1).

These definitions assume that T ` 0 : t for all types t, since this is needed for the
definition of delay to make sense. Similarly + is supposed to be defined for all types
since it is used in the definition of :> (see below).

Definition 6 (State Type Correctness T ` r). A state r is type correct in an environ-
ment T , noted T ` r, if, for all I in dom(r), one has T ` I.

We now define the semantic function E:

E ∈ Exp→ State→ Sheaf → Sheaf

The semantics E[[E]]r of an expression E in a state r such that T ` r is a function
that maps an input sheaf m to an output sheaf m′. In the following definitions, we note
pi = E[[Ei]]r and (di, d

′
i) = dim(pi):

SEMANTICS FOR MULTIRATE FAUST 13

E[[I]]r = r(I)
E[[E1 : E2]]r = p2 ◦ p1

E[[E1, E2]]r = λm.p1(m[1, d1])‖p2(m[d1 + 1, d1 + d2])
E[[E1 <: E2]]r = λm.p2(‖1,d2,d′

1
λi.p1(m))

E[[E1 :> E2]]r = λm.p2(‖1,d2,1λi.sum(p1(m)[i, d′1, d2]))
where sum((s)) = (s) and sum((s)‖m) = r(+)((s)‖sum(m))

E[[E1 ∼ E2]]r = λm.fix(λm′.p1(p2(@(m′[1, d2]))‖m))
where @(()) = () and @((s)‖m) = (delay(s, λt.1))‖@(m)

The semantics of an identifier is available in the state r. The semantics of ”:” is
the usual composition of the subexpressions’ semantics. The semantics of a parallel
composition is a function that takes a sheaf of size at least d1 + d2 and feeds the first d1

signals into p1 and the subsequent d2 into p2; the outputs are concatenated. The split
construct repeatedly concatenates the outputs of p1 to feed into the (larger) d2 inputs
of p2. The merge construct performs a kind of opposite operation; all mod(i, d2)-th
output values of p1 are summed together to construct the i-th input value of p2. The
loop expression is, as can be expected, the most complex one. Its feedback behavior is
represented by a fix point construct; the output of p2 is fed to p1, after being concatenated
to m, to yield m′; the input of p2 is the one-slot delayed version of m′.

An interesting corollary of this denotational semantics is that one can here easily
prove that the ”:” constructor is actually not necessary:

Theorem 1 (: as Syntactic Sugar). Assume T ` E1 : E2 : (z, z′). Then T ` E1 <: E2 :
(z, z′) and T ` E1 :> E2 : (z, z′). Moreover, E[[E1 : E2]] = E[[E1 <: E2]] = E[[E1 :> E2]].

9. Subject Reduction Theorem

One needs to ensure the consistency of both static and dynamic semantics along the
evaluation process; this amounts to showing that the types of values, signals and sheafs
are preserved.

Definition 7 (Value Type Correctness v : t). A value v is type correct, noted v : t, iff:
• when v ∈ N, then t = int[n,m] and n ≤ v ≤ m;
• when v ∈ R, then t = float[n,m] and n ≤ v ≤ m;
• when v ∈

⋃
n Valn, then t = vectorn(t′), n = |v| and, for all i ∈ [0, n− 1], v[i] : t′.

Definition 8 (Signal Type Correctness s : tf). A signal s is type correct w.r.t. a type
tf , noted s : tf , if, for all u ∈ dom(s), one has s(u) : t.

Definition 9 (Sheaf Type Correctness m : z). A sheaf m is type correct w.r.t. an
impedance z, noted m : z, if |m| = |z| and, for all i ∈ [1, |m|], one has m[i] : z[i].

For the evaluation process to preserve consistency, the environment T and state r,
which provide the static and semantic values of predefined identifiers, must provide
consistent definitions for their domains. We use the following definition to ensure this
constraint:

14 P. JOUVELOT1, Y. ORLAREY2

Definition 10 (State Type Consistency ` T, r). An environment T and a state r are
consistent, noted ` T, r, if, for all I in dom(r), for all z, z′,m, one has: if T ` I : (z, z′)
and m : z, then r(I)(m) : z′ and dim(r(I)) = (|z|, |z′|).

We are now equiped to state our first typing theorem. The Subject Reduction theorem
basically states that, given a MR Faust expression E, if the environment T and state r
are consistent and E maps sheafs of impedance z to sheafs of impedance z′, then, given
a sheaf m that is type correct w.r.t. z, then the semantics p(m) of E will yield a sheaf
m′ of impedance z′:

Theorem 2 (Subject Reduction). For all E, T, z, z′, r and m, if

` T, r
m : z
T ` E : (z, z′)

then p(m) : z′ and dim(p) = (|z|, |z′|), where p = E[[E]]r.

Proof. By induction on the structure of E.
• E = I. Use E[[I]]r = r(I) and State Type Consistency.
• E = E1 : E2. T ` E : (z, z′) implies, using (seq), there exists z′1 such that
T ` E1 : (z, z′1) and T ` E2 : (z′1, z

′).
By induction on E1, p1(m) : z′1 and dim(p1) = (|z|, |z′1|).
By induction on E2, one gets p2(p1(m)) : z′ and dim(p2) = (|z′1|, |z′|).
The definition of E[[E]] yields E[[E]]rm : z′ and dim(p) = (|m|, |p2(p1(m))|) =

(|z|, |z′|).
• E = E1, E2. T ` E : (z, z′) implies, using (par), there exist z1, z2, z′1, z

′
2 such that

z = z1‖z2, z′ = z′1‖z′2, T ` E1 : (z1, z′1) and T ` E2 : (z2, z′2).
By Sheaf Type Correctness on m : z, one gets |m| = |z| and, for all i in [1, |m|],

m[i] ∈ Time→ z[i].
By definition of z, |z| = |z1|+ |z2|. Using the first |z1| elements of z, one gets

m[1, |z1|] : z1. By induction on E1, one gets p1(m[1, |z1|]) : z′1 and dim(p1) =
(|z1|, |z′1|). Since, in the definition of E, d1 = |z1|, thus p1(m[1, d1]) : z′1.

Using the subsequent |z2| elements of z, one gets m[d1 + 1, d1 + |z2|] : z2. By
induction on E2, E[[E2]]r(m[d1 + 1, d1 + |z2|]) : z′2 and dim(p2) = (|z2|, |z′2|). Since
d2 = |z2|, then E[[E2]]r(m[d1 + 1, d1 + d2]) : z′2.

The definition of E on E yields p(m) = p1(m[1, d1])‖p2(m[d1 + 1, d1 + d2]). By
definition of Sheaf Type Correctness, p(m) : z′1‖z′2 = z′ and dim(p) = (|m|, |z′|) =
(|z|, |z′|).
• E = E1 <: E2. T ` E : (z, z′) implies, using (split), there exist z′1, z2, k such

that T ` E1 : (z, z′1), T ` E2 : (z2, z′), |z2| = k|z′1| and, for all i in [0, k − 1],
z2[1 + i|z′1|, |z′1|+ i|z′1|] = z′1.

By induction on E1, one gets p1(m) : z′1 and dim(p1) = (|z|, |z′1|). By induction
on E2, dim(p2) = (|z2|, |z′|). By definition of E, d′1 = |z′1| and d2 = |z2|; thus
d2 = kd′1.

Let m′ = ‖1,d2,d′
1
λi.p1(m) = p1(m)‖....‖p1(m) ∈ Signalkd′

1 . By definition of
Sheaf Type Correctness and k, one gets m′ : z2. By induction on E2, one gets
p2(m′) : z′ and dim(p2) = (|z2|, |z′|).

SEMANTICS FOR MULTIRATE FAUST 15

By definition of E on E, then p(m) : z′ and dim(p) = (|z|, |z′|).
• E = E1 :> E2. T ` E : (z, z′) implies, using (merge), there exist z′1, z2, k such

that T ` E1 : (z, z′1), T ` E2 : (z2, z′), |z′1| = k|z2| and, for all i in [0, k − 1],
z′1[1 + i|z2|, |z2|+ i|z2|] = z2.

By induction on E1, one gets p1(m) : z′1 and dim(p1) = (|z|, |z′1|). By induction
on E2, dim(p2) = (|z2|, |z′|). By definition of E, d′1 = |z′1| and d2 = |z2|; thus
d′1 = kd2.

For all i in [1, d2], let mi = p1(m)[i, d′1, d2]. Thus:

mi = ‖i,d′
1,d2

λj.(p1(m)[j])

: ‖i,d′
1,d2

λj.(z′1[j]), by induction on E1

= (z′1[i])‖(z′1[i+ d2])‖...‖(z′1[i+ (k − 1)d2]), by definition of k

Thus, by definition of sum and the addition of impedances, one gets:

sum(mi) : (
∑

l∈[0,k−1]

z′1[i+ ld2])

= (z2[i]), since z′1 � z2.

Let m2 = ‖1,d2,1λi.sum(mi). Then m2 : (z2[1], ..., z2[d2]) = z2.
By induction on E2, then p(m) = p2(m2) : z′ and dim(p) = (|z|, |z′|).

• E = E1 ∼ E2. T ` E : (z, ẑ′) implies, using (loop), there exist z1, z2, s′2 such
that T ` E1 : (z1, z′), T ` E2 : (z2, z′2), z2 = z′[1, |z2|], z′2 = z1[1, |z′2|] and
z = z1[|z′2|+ 1, |z1|]. One sees that z1 = z′2‖z.

Let m′ = fix(F), with F = λm′.p1(p2(@(m′[1, d2]))‖m). We are going to
prove fix(F) : z′ and dim(λm.fix(F)) = (|z|, |z′|). Using fix point induction
(which is valid since we stay in the cpo Signal|z

′|), this needs to be proven for
the bottom element and, assuming this is true for m′, show it is true for F (m′).

– Let ⊥′ be bottom in Signal|z
′| : ⊥′= (λt. ⊥, ..., λt. ⊥) : z′. One immediately

gets dim(λm. ⊥′) = (|m|, |z′|) = (|z|, |z′|).
– Assume m′ : z′. We need to show that F (m′) : z′ and dim(λm.F (m′)) =

(|z|, |z′|). One has F (m′) = p1(p2(@(m′[1, d2]))‖m).
Using the lemma (left to the reader) that, if m′ : z′, then @(m′) : z′, we get
that @(m′[1, d2]) : z2.
By induction on E2, F (m′) = p1(m′′‖m), where m′′ : z′2.
Sincem : z, then, by induction on E1, one has F (m′) : z′ and dim(λm.F (m′)) =
(|m|, |z′|) = (|z|, |z′|).

– By fix point induction then, m′ : z′. Since one easily sees that z′ ⊂ ẑ′, then,
using (sub) and dim(λm.m′) = (|z|, |z′|) = (|z|, |ẑ′|), one gets the required
result. �

The Subject Reduction theorem can be readily applied to typing Faust expressions in
the initial environment T0 and state r0, since one can easily prove the following theorem:

Theorem 3 (Initial State Type Consistency).

` T0, r0

16 P. JOUVELOT1, Y. ORLAREY2

10. Frequency Correctness Theorem

One needs, in the presence of signals of different frequencies, to ensure the consistency
of the frequency assignment to signals. In particular, we show below that one can bound
the support of signals (and, more generally, sheafs) in a way consistent with their relative
frequencies; this is the Frequency Correctness theorem.

Definition 11 (Sheaf Boundness (m, z) ! c). For any c ∈ Q+, a sheaf m of impedance
z is c-bounded, noted (m, z) ! c, if mini∈[1,|z|](m[i]/](z[i])) ≤ c.

Informally, when (m, z) ! c, then there is at least one signal i∗ in m that has c](z[i∗])
elements or less in its domain of definition2. This is interesting since the supports of
signals in a sheaf m tell us something about how many values can be computed if we
use m as input of a signal processor. Thus c](z[i∗]) is an upper bound on the number of
elements that can be used in a synchronous computation (all subsequent values are ⊥),
thus yielding some information about the relative size of buffers needed to perform it.

Another way to look at c-boundness comes from c itself; being the inverse of a fre-
quency, its unit is the second, and thus c is a time. The definition of Sheaf Boundness
yields an upper bound on the time required to exhaust (at least one of) the signals of
m, thus providing a time limit on computations that would use these as actual inputs.
Even though this limit, as stated here, holds for a complete computation, it also applies
when one deals with slices of the computation process, for instance when considering
buffered versions of a program.

The Frequency Correctness theorem (see below) states that, given given a MR Faust
expression E (@ excluded, for reasons we address below), if the environment T and state
r are consistent and E maps sheafs of impedance z to sheafs of impedance z′, then, given
a sheaf m that is type correct w.r.t. z and is c-bounded, then the semantics p(m) of E
will yield a c-bounded sheaf m′ of impedance z′. Basically, this theorem tells us that
an upper-bound of the running time of E is always the same, whichever way we try to
assess it via any of its observable facets (namely input or output data): c is consistent
and thus a characteristics of E.

Theorem 4 (Frequency Correctness). For all E not containing @, T, z, z′, c, r,m and
m′, if

` T, r
m : z
(m, z) ! c
T ` E : (z, z′),

then |z′| = 0 ∨ (m′, z′) ! c, where m′ = p(m) : z′ and p = E[[E]]r.

Proof. By induction on the structure of E.
• E = I. Use E[[I]]r = r(I) and then:

– trivial for _;

2When signals are properly synchronized, e.g., in an actual computation, all m[i]/](z[i]) are equal,

and the comments in these paragraphs apply to all signals.

SEMANTICS FOR MULTIRATE FAUST 17

– for constants (thus with z = ()), since the minimum of the empty set is ω,
then c = ω. The property (m′, z′) ! ω is satisfied, since there is no limit on
the number of constant values for the output signal;

– for !, since |z′| = 0, then the theorem is trivially satisfied;
– for synchronous operations such as + or [], this is obvious since](z[i]) =
](z′[i′]). Note that we would need to use c′ > c as an upper-bound instead
of c to deal with the delay operator @;

– for vectorizing and serializing operations, the relationship on frequencies is,
by design, inverse of the one on the size of the domains, thus yielding the
expected relation.

• E = E1 : E2. T ` E : (z, z′) implies, using (seq), there exists z′1 such that
T ` E1 : (z, z′1) and T ` E2 : (z′1, z

′).
By induction on E1, m′1 = p1(m) : z′1 and (m′1, z

′
1) ! c.

By induction on E2, one gets m′ = p2(m′1) : z′ and (m′, z′) ! c, as required.
• E = E1, E2. T ` E : (z, z′) implies, using (par), there exist z1, z2, z′1, z

′
2 such that

z = z1‖z2, z′ = z′1‖z′2, T ` E1 : (z1, z′1) and T ` E2 : (z2, z′2).
Since m = m1‖m2, with m1 = m[1, |z1|] and similarly for m2, we can assume,

without loss of generality, that the minimum of the m[i]/](z[i]) in m occurs in
m1: thus (m1, z1) ! c.

By induction on E1, one gets m′1 = p1(m1) : z′1 and (m′1, z
′
1) ! c.

Let c2 be such that (m2, z2) ! c2, with c2 ≥ c and m2 = m[|z1|+ 1, |z1|+ |z2|].
By induction on E2, one gets m′2 = p2(m2) : z′2 and (m′2, z

′
2) ! c2.

Since m′ = m′1‖m′2, then (m′, z′) ! min(c, c2) = c, as required.
• E = E1 <: E2. The proof is similar to the one for ”:”. Indeed, ”<:” dispatches

its input signals to its output signals, and then composes them, using ”:”. Since
the dispatch operation does not modify the stream supports, this operation is,
for frequency correctness purposes, identical to ”:”.
• E = E1 :> E2. Same as above, except that the dispatched signals are merged

using addition; since addition is a synchronous operation, this does not modify
the frequency behavior.
• E = E1 ∼ E2. T ` E : (z, ẑ′) implies, using (loop), there exist z1, z2, s′2 such

that T ` E1 : (z1, z′), T ` E2 : (z2, z′2), z2 = z′[1, |z2|], z′2 = z1[1, |z′2|] and
z = z1[|z′2|+ 1, |z1|]. One sees that z1 = z′2‖z.

Let m′ = fix(F), with F = λm′.p1(p2(@(m′[1, d2]))‖m). We prove below that
(m′, z′) ! c. Using fix point induction (which is valid since we stay in the cpo
Signal|z

′|), this needs to be proven for the bottom element and, assuming this is
true for m′, show it is true for F (m′).

– Let ⊥′ be bottom in Signal|z
′| : ⊥′= (λt. ⊥, ..., λt. ⊥) : z′. Since λt. ⊥ = 0,

then all supports in ⊥′ are 0, and one just needs to prove that 0 ≤ c, which
is always true.

– Assume (m′, z′) ! c. We need to show that (F (m′), z′) ! c. One has F (m′) =
p1(p2(@(m′[1, d2]))‖m).
By definition of the delaying semantics of @, if (m′, z′) ! c, then one has
(@(m′), z′) ! c+mini∈[1,|z′|](1/](z′[i])); this is also valid for (@(m′[1, d2]), z′).

18 P. JOUVELOT1, Y. ORLAREY2

By induction on E2, F (m′) = p1(m′′‖m), where (m′′, z′2 = z1[1, |z′2|]) ! c +
mini∈[1,|z′|](1/](z′[i])).
Since (m, z = z1[|z′2| + 1, |z1|]) ! c, then, by concatenation of sheafs and
impedances, (m′′‖m, z1) ! min(c, c + mini∈[1,|z′|](1/](z′[i]))) = c. By induc-
tion on E1, one has (F (m′), z′) ! c, as required.

– By fix point induction then, (m′, z′) ! c. Since](t̂]) =](t]) for any rated
type, then (m′, ẑ′) ! c, as required. �

11. Conclusion

We provide the typing semantics, denotational semantics and static correctness the-
orems for MR Faust, a multirate extension, sketched in [6], of Faust, a functional pro-
gramming language dedicated to musical applications. The need for multiple signal rates
is linked to the introduction of vector data in a synchronous setting. We propose a ded-
icated framework based on a new polymorphic dependent-type type system in which
both vector sizes and frequencies are values, and prove two consistent theorems for both
values and frequencies.

12. Acknowledgements

This work is partially funded by the French Agence nationale de la recherche, as part
of the ASTREE Project (2008 CORD 003 01).

References

[1] A.Benveniste, P.Caspi, S.A.Edwards, N.Halbwachs, P.Le Guernic, and R.de Simone. The synchro-
nous languages twelve years later. In Proceedings of the IEEE, volume 91, January 2003.

[2] G. Assayag and C. Agon. OpenMusic Architecture. In ICMA, editor, Proceedings of International
Computer Music Conference, pages 339–340, 1996.

[3] E. Gaudrain and Y. Orlarey. A Faust Tutorial. Technical report, GRAME, Lyon, 2003.
[4] H.P.Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland Publishing, 1981.
[5] S. Letz, Y. Orlarey, and D. Fober. The Role of Lambda-Abstraction in Elody. In ICMA, editor,

Proceedings of the International Computer Music Conference, pages 377–384, 1998.
[6] Y. Orlarey. Notes sur les extensions de Faust. Technical report, GRAME, Lyon, 2009.
[7] Y. Orlarey, D. Fober, and S. Letz. Syntactical and semantical aspects of faust. Soft Computing,

8(9):623–632, 2004.
[8] M. Puckette. The patcher. In Proceedings of the International Computer Music Conference. ICMA,

1988.
[9] Jan van Leeuwen, editor. Handbook of theoretical computer science (vol. B): formal models and

semantics. MIT Press, Cambridge, MA, USA, 1990.
[10] Ge Wang and Perry R. Cook. Chuck: A concurrent, on-the-fly, audio programming language. In

ICMA, editor, Proceedings of International Computer Music Conference, 2003.

1CRI, Maths et systemes, MINES ParisTech; 2GRAME, Lyon
E-mail address: pierre.jouvelot@mines-paristech.fr, orlarey@grame.fr

