
HAL Id: hal-02158969
https://hal.science/hal-02158969v1

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards dynamic and animated music notation using
INScore

Dominique Fober, Yann Orlarey, Stéphane Letz

To cite this version:
Dominique Fober, Yann Orlarey, Stéphane Letz. Towards dynamic and animated music notation using
INScore. Linux Audio Conference, 2017, Saint-Etienne, France. pp.43-51. �hal-02158969�

https://hal.science/hal-02158969v1
https://hal.archives-ouvertes.fr

Towards dynamic and animated music notation using INScore

Dominique Fober, Yann Orlarey and Stéphane Letz
GRAME - Centre national de création musicale

11 cours de Verdun Gensoul
69002 Lyon

France,
{fober, orlarey, letz}@grame.fr

Abstract

INScore is an environment for the design of aug-
mented interactive music scores opened to conven-
tional and non-conventional use of the music nota-
tion. The system has been presented at LAC 2012
and has significantly evolved since, with improve-
ments turned to dynamic and animated notation.
This paper presents the latest features and notably
the dynamic time model, the events system, the
scripting language, the symbolic scores composition
engine, the network and Web extensions, the inter-
action processes representation system and the set
of sensor objects.

Keywords

INScore, music score, dynamic score, interaction.

1 Introduction

Contemporary music creation poses numerous
challenges to the music notation. Spatialized
music, new instruments, gesture based inter-
actions, real-time and interactive scores, are
among the new domains that are now com-
monly explored by the artists. Common music
notation doesn’t cover the needs of these new
musical forms and numerous research and ap-
proaches have recently emerged, testifying to
the maturity of the music notation domain, in
the light of computer tools for music notation
and representation. Issues like writing spatial-
ized music [Ellberger et al., 2015], addressing
new instruments [Mays and Faber, 2014] or new
interfaces [Enström et al., 2015] (to cite just a
few), are now subject of active research and pro-
posals.

Interactive music and real-time scores are also
representative of an expanding domain in the
music creation field. The advent of the digi-
tal score and the maturation of the computer
tools for music notation and representation con-
stitute the basement for the development of this
musical form, which is often grounded on non-
traditional music representation [Smith, 2015]

[Hope et al., 2015] but may also use the com-
mon music notation [Hoadley, 2012; Hoadley,
2014].

In order to address the notation challenges
mentioned above, INScore [Fober et al., 2010]
has been designed as an environment opened
to non-conventional music representation (al-
though it supports symbolic notation), and
turned to real-time and interactive use [Fober et
al., 2013]. It is clearly focused on music repre-
sentation only and in this way, differs from tools
integrated into programming environments like
Bach [Agostini and Ghisi, 2012] or MaxScore
[Didkovsky and Hajdu, 2008].

INScore has been already presented at LAC
2012 [Fober et al., 2012a]. It has significantly
evolved since and this paper introduces the
set of issues that have been more recently ad-
dressed. After a brief recall of the system and
of the programming environment, we’ll present
the scripting language extensions and the sym-
bolic scores composition engine that provides
high level operations to describe real-time and
interactive symbolic scores composition. Next
we’ll describe how interaction processes repre-
sentations can be integrated into the music score
and how remote access is supported using the
network and/or Web extensions. Tablet and
smartphone support have led to integrate ges-
tural interaction with a set of sensor objects
that will be presented. Finally, the time model,
recently extended, will be described.

2 The INScore environment

INScore is an environment to design interactive
augmented music scores. It extends the mu-
sic representation to arbitrary graphic objects
(symbolic notation but also images, text, vecto-
rial graphics, video, signals representation) and
provides an homogeneous approach to manipu-
late the score components both in the graphic
and time spaces.

It supports time synchronization in the

graphic space, which refers to the graphic rep-
resentation of the temporal relations between
components of a score - via a synchronization
mechanism and using mappings that express re-
lations between time and graphic space segmen-
tations (Fig. 1).

Figure 1: A graphic score (Mark Applebaum’s
graphic score Metaphysics of Notation) is
synchronized to a symbolic score. The picture
in the middle is the result of the
synchronization. The vertical lines express the
graphic to graphic relationship, that have
been computed by composing the objects
common relations with the time space.

INScore has been primarily designed to be
controlled via OSC1 messages. The format of
the messages consists in an OSC address fol-
lowed by a message string and 0 to n parameters
(Fig. 2).

2.2.3 Pitch and articulation combined

Makes use of the fundamental frequency and
RMS values to draw articulations shifted by the
pitches (figure 6). The corresponding graphic

Figure 6: Pitch and articulation combined.

signal is expressed as:

g = Sf0 / Srms / kc

where Sf0 : fundamental frequency
Srms : RMS signal
kc : a constant color signal

2.2.4 Pitch and harmonics combined

Combines the fundamental frequency to the
first harmonics RMS values (figure 7). Each
harmonic has a di↵erent color. The graphic sig-

Figure 7: Pitch and harmonics combined.

nal is described in several steps. First, we build
the fundamental frequency graphic as above
(see section 2.2.3) :

g0 = Sf0 / Srms0 / kc0

where Sf0 : fundamental frequency
Srms0 : f0 RMS values
kc0 : a constant color signal

Next we build the graphic for the harmonic 1:

g1 = Sf0 / Srms1 + Srms0 / kc1

Srms1 : harmonic 1 RMS values
kc1 : a constant color signal

Next, the graphic for the harmonic 2:

g2 = Sf0/ Srms2 + Srms1 + Srms0 / kc2

Srms2 : harmonic 2 RMS values
kc2 : a constant color signal

etc.
Finally, the graphic signals are combined into a
parallel graphic signal:

g = g2 / g1 / g0

2.3 Interaction

INScore is a message driven system that makes
use of Open Sound Control [OSC] format. It in-
cludes interaction features provided at individ-
ual score component level by the way of watch-
able events, which are typical events available
in a graphic environment, extended in the tem-
poral domain. The list of supported events is
given in table 4.

mouse events time events misc.
mouse enter time enter new element
mouse leave time leave (at scene level)

mouse down
mouse up

mouse move
double click

Table 4: Typology of watchable events.

Events are associated to user defined mes-
sages that are triggered by the event occur-
rence. The message includes a destination ad-
dress (INScore by default) that supports a url-
like specification, allowing to target any IP host
on any UDP port. The message associated to
mouse events may use predefined variables, in-
stantiated at event time with the current mouse
position or the current position time.

This simple event based mechanism makes
easy to describe for example an intelligent cur-
sor i.e. an arbitrary object that is synchronized
to the score and that turns the page to the next
or previous one, depending on the time zone it
enters.

3 INScore messages

The INScore API is an OSC messages API. The
general format is illustrated in figure 8: it con-
sists in an address followed by a message string,
followed by parameters.

Chapter 1

General format

An OSC message is made of an OSC address, followed by a message string, followed by zero to n parame-
ters. The message string could be viewed as the method name of the object identified by the OSC address.
The OSC address could be string or a regular expression matching several objects.

OSCMessage

OSCAddress message parameters�
�

�
�

OSCAddress

/
���� identifier�

� regexp

�
�

�
�

�
�

identifier

[-_a-zA-Z] [-_a-zA-Z0-9]]�
�

�
�

Some specific nodes accept (like signals - see section 13.1.1) OSC messages without message string:

OSCMessage

OSCAddress parameters

1.1 Parameters

Message parameters types are between the OSC types int32, float32 and OSC-string. In the remainder of
this document, they are used as terminal symbols, denoted by int32, float32 and string.
When used in a script file (see section 16), string should be single or double quoted. If an ambiguous
double or single quote is part of the string, it must be escaped using a ’\’.

1

Figure 8: General format of a message.

The address may be viewed as an object
pointer, the message string as a method name
and the parameters as the method parameters.
For example, the message:

/ITL/scene/score color 255 128 40 150

may be viewed as the following method call:
score->color(255 128 40 150)

Figure 2: INScore messages general format.

Compared to object oriented programming,
the address may be viewed as an object pointer,
the message string as a method name and the
parameters as the method parameters. For ex-
ample, the message:

/ITL/scene/score color 255 128 40 150

may be viewed as the following method call:
ITL[scene[score]]->color(255 128 40 150)

The system provides a set of messages for
the graphic space control (x, y, color, space,

etc.), for the time space control (date,

duration, etc.), and to manage the environ-
ment. It includes two special messages:

1http://opensoundcontrol.org/

• the set message that operates like a con-
structor and that takes the object type as
parameter, followed by type specific param-
eters (Fig. 3).

• the get message provided to query the sys-
tem state (Fig. 4).

/ITL/scene/obj set txt "Hello world!";

Figure 3: A message that creates a textual
object, which type is txt, with a text as
specific data.

/ITL/scene/obj get;

-> /ITL/scene/obj set txt "Hello

world!";

/ITL/scene/obj get x y;

-> /ITL/scene/obj x 0;

-> /ITL/scene/obj y 0.5;

Figure 4: Querying an object with a get message
gives messages on output (prefixed with ->).
These messages can be used to restore the
corresponding object state.

The address space is dynamic and not limited
in depth. It is hierarchically organized, the first
level /ITL is used to address the application,
the second one /ITL/scene to address the score
and the next ones to address the components
of a score (note that scene is a default name
that can be user defined). Arbitrary hierarchy
of objects is supported.

3 The scripting language

The OSC messages described above have been
turned into a textual version to constitue the
INScore scripting language. This language has
been rapidly extended to support :

• variables, that may be used to share pa-
rameters between messages (Fig. 5).

• message based variables and/or parameters
that consists in querying an object to re-
trieve one of it’s attributes value (Fig. 6).

• an extended OSC addressing scheme that
allows to send OSC messages to an exter-
nal application for initialization of control
purposes (Fig. 7).

http://opensoundcontrol.org/

• JavaScript sections that can be evaluated
at parsing and/or run time. A JavaScript
call is expected to produce INScore mes-
sages as output (Fig. 8).

• mathematical expressions (+ - / *,

conditionals, etc.) that can be used for
arguments computation (Fig. 9).

• symbolic scores composition expressions
that are described in section 4.

greylevel = 140;

color = $greylevel $greylevel $greylevel;

/ITL/scene/obj1 color $color;

/ITL/scene/obj2 color $color;

Figure 5: Variables may be used to share values
between messages.

ox = $(/ITL/scene/obj get x);

/ITL/scene/obj2 x $(/ITL/scene/obj get x);

Figure 6: The output of get messages can be
used by variables or as another message
parameter.

/ITL/scene/obj set txt "Hello world!";

localhost:8000/start;

Figure 7: This script initialises a textual object
and sends the /start message to an external
application listening on UDP port 8000.

4 Symbolic scores composition

Rendering of symbolic music notation makes use
of the Guido engine [Daudin et al., 2009]. Thus
the primary music score description format is
the Guido Music Notation format [Hoos et al.,
1998] [GMN]. The MusicXML format [Good,
2001] is also supported via conversion to the
GMN format.

The Guido engine provides a set of operators
for scores level composition [Fober et al., 2012b].
These operators consistently take 2 scores as ar-
gument to produce a new score as output. They
allow to put scores in sequence (seq), in par-
allel (par), to cut a score in the time dimen-
sion (head, tail), in the polyphonic dimen-
sion (top, bottom), to transpose (transpose),
to stretch (duration) a score and to apply the

<?javascript

function randpos(address) {
var x = (Math.random() * 2) - 1;

return address + " x " + x + ";";

}
?>

/ITL/scene/javascript run

’randpos("/ITL/scene/obj")’;

Figure 8: The JavaScript section defines a
randpos function that computes an x
message with a random value, addressed to
the object given as parameter. This function
may be next called at initialization or at any
time using the static JavaScript node
embedded into each score.

/ITL/scene/o x ($shift ? $x + 0.5 : $x);

Figure 9: A mathematical expression is used to
compute the position of an object depending
on 2 previously defined variables.

rhythm or the pitch of a score to another one
(rhythm, pitch).

The INScore scripting language includes score
expressions, a simple language providing score
composition operations. The novelty of the pro-
posed approach relies on the dynamic aspects of
the operations, as well as on the persistence of
the score expressions. A score may be composed
as an arbitrary graph of score expressions and
equipped with a fine control over the changes
propagation.

4.1 Score expressions

A score expression is defined as an operator fol-
lowed by two scores (Fig. 10). The leading expr

token is present to disambiguate parenthesis in
the context of INScore scripts.

expr (score scoreoperator)

score

score expression:
1

2

Figure 10: Score expressions syntax.

The score arguments may be:

• a literal score description string (GMN or
MusicXML formats),

• a file (GMN or MusicXML formats),

• an existing score object,

• a score expression.

An example is presented in Fig. 11.

expr(par score.gmn (seq "[c]" score))

Figure 11: A score expression that puts a score
file (score.gmn) in parallel with the
sequence of a literal score and an existing
object (score). Note that the leading expr
token can be omitted inside an expression.

4.2 Dynamic score expression trees

The score expressions language is first trans-
formed into an internal tree representation. In a
second step, this representation is evaluated to
produce GMN strings as output, that are finally
passed to the INScore object as specific data.

Basically, the tree is reduced using a depth
first post-order traversal and the result is stored
in a cache. However, the score expressions lan-
guage provides a mechanism to make arbitrary
parts of a tree variable using an ampersand (&)
as prefix of an argument, preventing the cor-
responding nodes to be reduced at cache level
(Fig. 12).

expr(par score.gmn (seq "[c]" &score))

Figure 12: A score expression that includes a
reference to a score object. Successive
evaluations of the expression may produce
different results, provided that the score
object has changed.

INScore events system (described in section
8.2) provides a way to automatically trigger the
re-evaluation of an expression when one of it’s
variable parts has changed. These mechanisms
open the door to dynamic scores composition
within the INScore environment. More details
about the score expressions language can be
found in [Lepetit-Aimon et al., 2016].

5 Musical processes representation

INScore includes tools for the representation of
musical processes within the music score. In
the context of interactive music and/or when a
computer is involved in a music performance,
it may provide useful information regarding the
state of the musical processes running on the
computer. This feedback can notably be used to
guide the interaction choices of the performer.

On INScore side, a process state is viewed as
a signal. Signals are part of a score components
and can be combined into graphic signals to be-
come first order objects of a score. They may
be notably used for the representation of a per-
formance [Fober et al., 2012a].

Regarding musical processes representation,
a signal can be connected to any attribute of an
object (Fig. 13), which makes the signal varia-
tions visible (and thus the process activity) with
the changes of the corresponding attributes.

/ITL/scene/signal/sig size 100;

/ITL/scene/obj set rect 0.5 0.5;

/ITL/scene/img set img ’file.png’;

/ITL/scene/signal connect sig

"obj:scale" "img:rotatez[0,360]";

Figure 13: A signal sig is connected to the
scale attribute of an object and to the
rotatez attribute of an image. Note that for
the latter, the signal values (expected to be
in [-1,1]) are scaled to the interval [0,360].

6 Network and Web dimensions

INScore supports the aggregation of distributed
resources over Internet, as well as the publica-
tion of a score via the HTTP and/or WebSocket
protocols. In addition, a score can also be used
to control a set of remote scores on the local
network using a forwarding mechanism.

6.1 Distributed score components

Most of the components of a score can be de-
fined in a literal way or using a file. All the file
based resources can be specified as a simple file
path, using absolute or relative path, or as an
HTTP url (Fig 14).

/ITL/scene/obj1 set img ’file.png’;

/ITL/scene/obj2 set img

’http://www.adomain.org/file.png’;

Figure 14: File based resources can refer to local
or to remote files.

When using a relative path, an absolute path
is built using the current path of the score, that
may be set to an arbitrary location using the
rootPath attribute of the score (Fig 15).

The current rootpath can also be set to an
arbitrary HTTP url, so that further use of a
relative path will result in an url (Fig. 16).

/ITL/scene rootPath ’/users/me/inscore’;

/ITL/scene/obj set img ’file.png’;;

Figure 15: The rootPath of a score is equivalent
to the current directory in a shell. With this
example, the system will look for the file at
’/users/me/inscore/file.png’

/ITL/scene rootPath

’http://www.adomain.org’;

/ITL/scene/obj set img ’file.png’;;

Figure 16: The rootPath supports urls. With
this example, the system will look for the file
at ’http://www.adomain.org/file.png’

This mechanism allows to mix local and re-
mote resources in the same music score, but also
to express local and remote scores in a similar
way, just using a rootPath change.

6.2 HTTPd and WebSocket objects

A music score can be published on the Inter-
net using the HTTP or the WebSocket proto-
cols. Specific objects can be embedded in a
score in order to make this score available to
remote clients (Fig. 17).

/ITL/scene/http set httpd 8000;

/ITL/scene/ws set websocket 8100 200;

Figure 17: This example creates an httpd server
listening on the port 8000 and a WebSocket
server listening on the port 8100 with a
maximum notification rate of 200 ms.

The WebSocket server allows bi-directional
communication between the server and the
client. It sends notifications of score changes
each time the graphic appearance of the score
is modified, provided that the notification rate
is lower than the maximum rate set at server
creation time.

The communication scheme between a client
and an INScore Web server relies on a reduced
set of messages. These messages are proto-
col independent and are equally supported over
HTTP or WebSocket :

• get: requests an image of the score.

• version: requests the current version of the
score. The server answers with an integer
value that is increased each time the score
is modified.

• post: intended to send an INScore script to
the server.

• click: intended to allow remote mouse in-
teraction with the score.

More details are available from [Fober et al.,
2015].

6.3 Messages forwarding

Message forwarding is another mechanism pro-
vided to distribute scores over a network. It op-
erates at application and/or score levels when
the forward the message is send to the appli-
cation (/ITL) or to a score (/ITL/scene). The
message takes a list of destination hosts spec-
ified using a host name or an IP number, and
suffixed with a port number. All the OSC mes-
sages may be forwarded, provided they are not
filtered out (Fig. 18). The filtering strategy
is based on OSC adresses and/or on INScore
methods (i.e. messages addressing specific ob-
jects attributes).

/ITL forward 192.168.1.255:7000;

/ITL/filter reject

’/ITL/scene/javascript’;

Figure 18: The application is requested to
forward all messages on INScore port (7000)
to the local network using a broadcast
address. Messages addressed to the
JavaScript engine are filtered out in order to
only forward the result of their evaluation.

7 The sensor objects

INScore runs on the major operating systems
including Android and iOS. Tablet and smart-
phone support have led to integrate gestural in-
teraction with a set of sensor (Table 1).

Sensors can be viewed as objects or as signals.
When created as a signal node, a sensor behaves
like any signal but may provide some additional
features (like calibration). When created as a
score element, a sensor has no graphical appear-
ance but provides specific sensor events and fea-
tures.

All the sensors won’t likely be available on a
given device. In case a sensor is not supported,
an error message is generated at creation re-
quest and the creation process fails.

8 The time model

INScore time model has been recently extended
to support dynamic time. Indeed and with the

name values
accelerometer x, y, z
ambient light light level

compass azimuth
gyroscope x, y, z

light a level in lux
magnetometer x, y, z

orientation device orientation
proximity a boolean value

rotation x, y, z
tilt x, y

Table 1: The set of sensors and associated values

initial design, the time attributes of an object
are fixed and don’t change unless a time mes-
sage (date, duration) is received, which can
only be emitted from an external application or
using the events mechanism. The latter (de-
fined very early) introduced another notion of
time: the events time, which takes place when
an event occurs. The events system has also
been extended for more flexibility.

8.1 The musical time

Regarding the time domain, any object of a
score has a date and a duration. A new tempo
attribute has been added, which has the effect of
moving the object in the time dimension when
non null, according to the tempo value and the
absolute time flow. Let t0 be the time of the last
tempo change of an object, let v be the tempo
value, the object date dt at a time t is given by
a time function f :

f(t)→ dt = dt0 + (t− t0)× v× k, t = t0 (1)

where di is the object date at time ti and k
a constant to convert absolute time in musical
time. In fact, absolute time is expressed in mil-
liseconds and the musical time unit is the whole
note. Therefore, the value of k is 1/1000×60×4.

Each object of a score has an independent
tempo. The tempo value is a signed integer,
which means that an object can move forward
in time but backward as well.

From implementation viewpoint and when its
tempo is not null, an object sends ddate (a rel-
ative displacement in time) to itself at periodic
intervals (Fig. 19).

This design is consistent with the overall sys-
tem design since it is entirely message based. It
is thus compatible with all the INScore mecha-
nisms such as the forwarding system.

/ITL/scene/obj tempo 60

-> /ITL/scene/obj ddate f(ri)

-> /ITL/scene/obj ddate f(ri+1)

-> /ITL/scene/obj ddate f(ri+2)

-> ...

Figure 19: A sequence of messages that activate
the time of an object obj. Messages
prefixed by -> are generated by the object
itself. ri is the value of the absolute time
elapsed between the task i and i− 1.

8.2 The events system

The event-driven approach of time in INScore
preceded the musical time model and has been
presented in [Fober et al., 2013]. The event-
based interaction process relies on messages
that are associated to events and that are sent
when the corresponding event occurs. The gen-
eral format of an interaction message is de-
scribed in Fig. 20.

address watch event messages()

Figure 20: Format of an interaction message: the
watch request installs a messages list
associated to the event event.

Initially, the events typology was limited
to classical user interface events (e.g. mouse
events), extended in the time domain (see Ta-
ble 2).

Graphic domain Time domain
mouseDown timeEnter

mouseUp timeLeave
mouseEnter durEnter
mouseLeave durLeave
mouseMove

Table 2: Main INScore events in the initial
versions.

This typology has been significantly extended
to include:

• touch events (touchBegin, touchEnd,

touchUpdate), available on touch screens
and supporting multi-touch.

• any attribute of an object: modifying an
object attribute may trigger the corre-
sponding event, that carries the name of
the attribute (e.g. x, y date, etc.).

• an object specific data i.e. defined with a
set message. The event name is newData

and has been introduced for the purpose of
the symbolic score composition system.

• user defined events, that have to comply to
a special naming scheme.

Any event can be triggered using the event mes-
sage, followed by the event name and event’s de-
pendent parameters. The event message may
be viewed as a function call that generates OSC
messages on output. This approach is particu-
larly consistent for user events that can take an
arbitrary number of parameters, which are next
available to the associated messages under the
form of variables named $1...$n (Fig. 21).

/ITL/scene/obj watch MYEVENT (

/ITL/scene/t1 set txt $1,

/ITL/scene/t2 set txt $2

);

/ITL/scene/obj event MYEVENT

"This text is for t1"

"This one is for t2";

Figure 21: Definition of a user event named
MYEVENT that expects 2 arguments referenced
as $1 and $2 in the body of the definition.
This event is next triggered with 2 different
strings as arguments.

The time dimension of the events system al-
lows to put functions in the time space un-
der the form of events that trigger messages
that can modify the score state and/or be ad-
dressed to external applications using the ex-
tended OSC addressing scheme (Fig. 22).

Combined with the dynamic musical time,
this events system allows to describe au-
tonomous animated score. The example in Fig.
23 shows how to describe a cursor that moves
forward and backward over a score by watch-
ing the time intervals that precedes and follows
a symbolic score and by inverting the tempo
value.

9 Conclusion

INScore2 is an ongoing open source project that
crystallizes a significant amount of research ad-
dressing the problematics of the music nota-
tion and representation in regard of the con-
temporary music creation. It is used in artistic

2http://inscore.sf.net)

t

d1 d2 d3 d4 d5 d6

Events

/ITL/scene/obj watch

e1 e2 e3 e4 e5 e6

/ITL/scene/obj date d1

Figure 22: Exemple of events placed in the time
space. These events are associated to time
intervals (timeEnter and timeLeave) and
are triggered when entering (in red) of
leaving (in blue) these intervals. The last
event (e6) emits a date message that
creates a loop by putting the object back at
the beginning of the first interval.

first clear the scene

/ITL/scene/* del;

add a simple symbolic score

/ITL/scene/score set gmn ’[c d e f g a h

c2]’;

add a cursor synchronized to the score

/ITL/scene/cursor set ellipse 0.1 0.1;

/ITL/scene/cursor color 0 0 250;

/ITL/scene/sync cursor score syncTop;

watch different time zones

/ITL/scene/cursor watch timeEnter 2 3

(/ITL/scene/cursor tempo -60);

/ITL/scene/cursor watch timeEnter -1 0

(/ITL/scene/cursor tempo 60);

and finally start the cursor time

/ITL/scene/cursor tempo 60;

Figure 23: A cursor that moves forward and
backward over a symbolic score.

projects and many of the concrete experiences
raised new issues that are reflected into some
of the system extensions. The domain is quite
recent and there are still a lot of open questions
that we plan to address in future work and in
particular:

• turning the scripting language into a real
programming language would provide a
more powerful approach to music score de-
scription. The embedded JavaScript en-

http://inscore.sf.net

gine may already be used for an algorith-
mic description of a score, but switching
from one environment (INScore script) to
another one (JavaScript) proved to be a bit
tedious.

• extending the score components to give a
time dimension to any of their attributes
could open a set of new possibilities, includ-
ing arbitrary representations of the passage
of time.

Finally, migrating the INScore native environ-
ment to the Web is part of the current plans
and should also open new perspectives, notably
due to the intrinsic connectivity of Web appli-
cations.

References

Andrea Agostini and Daniele Ghisi. 2012.
Bach: An environment for computer-aided
composition in max. In ICMA, editor, Pro-
ceedings of International Computer Music
Conference, pages 373–378.

C. Daudin, Dominique Fober, Stephane Letz,
and Yann Orlarey. 2009. The guido engine – a
toolbox for music scores rendering. In LAC,
editor, Proceedings of Linux Audio Confer-
ence 2009, pages 105–111.

Nick Didkovsky and Georg Hajdu. 2008.
Maxscore: Music notation in max/msp. In
ICMA, editor, Proceedings of International
Computer Music Conference.

Emile Ellberger, Germán Toro-Perez, Jo-
hannes Schuett, Linda Cavaliero, and Gior-
gio Zoia. 2015. A paradigm for scor-
ing spatialization notation. In Marc Bat-
tier, Jean Bresson, Pierre Couprie, Cécile
Davy-Rigaux, Dominique Fober, Yann Ges-
lin, Hugues Genevois, François Picard, and
Alice Tacaille, editors, Proceedings of the
First International Conference on Technolo-
gies for Music Notation and Representation
- TENOR2015, pages 98–102, Paris, France.
Institut de Recherche en Musicologie.

Warren Enström, Josh Dennis, Brian Lynch,
and Kevin Schlei. 2015. Musical notation
for multi-touch interfaces. In Edgar Berdahl
and Jesse Allison, editors, Proceedings of the
International Conference on New Interfaces
for Musical Expression, pages 83–86, Baton
Rouge, Louisiana, USA, May 31 – June 3.
Louisiana State University.

D. Fober, C. Daudin, Y. Orlarey, and S. Letz.
2010. Interlude - a framework for augmented
music scores. In Proceedings of the Sound
and Music Computing conference - SMC’10,
pages 233–240.

Dominique Fober, Yann Orlarey, and
Stephane Letz. 2012a. Inscore – an environ-
ment for the design of live music scores. In
Proceedings of the Linux Audio Conference –
LAC 2012, pages 47–54.

Dominique Fober, Yann Orlarey, and
Stéphane Letz. 2012b. Scores level compo-
sition based on the guido music notation.
In ICMA, editor, Proceedings of the Inter-
national Computer Music Conference, pages
383–386.

Dominique Fober, Stéphane Letz, Yann Or-
larey, and Frederic Bevilacqua. 2013. Pro-
gramming interactive music scores with in-
score. In Proceedings of the Sound and Music
Computing conference – SMC’13, pages 185–
190.

Dominique Fober, Guillaume Gouilloux,
Yann Orlarey, and Stéphane Letz. 2015. Dis-
tributing music scores to mobile platforms
and to the internet using inscore. In Proceed-
ings of the Sound and Music Computing con-
ference – SMC’15, pages 229–233.

M. Good. 2001. MusicXML for Notation and
Analysis. In W. B. Hewlett and E. Selfridge-
Field, editors, The Virtual Score, pages 113–
124. MIT Press.

Richard Hoadley. 2012. Calder’s violin: Real-
time notation and performance through musi-
cally expressive algorithms. In ICMA, editor,
Proceedings of International Computer Music
Conference, pages 188–193.

Richard Hoadley. 2014. December variation
(on a theme by earle brown). In Proceedings
of the ICMC/SMC 2014, pages 115–120.

H. Hoos, K. Hamel, K. Renz, and J. Kilian.
1998. The GUIDO Music Notation Format - a
Novel Approach for Adequately Representing
Score-level Music. In Proceedings of the Inter-
national Computer Music Conference, pages
451–454. ICMA.

Cat Hope, Lindsay Vickery, Aaron Wy-
att, and Stuart James. 2015. The deci-
bel scoreplayer - a digital tool for read-
ing graphic notation. In Marc Battier, Jean

Bresson, Pierre Couprie, Cécile Davy-Rigaux,
Dominique Fober, Yann Geslin, Hugues
Genevois, François Picard, and Alice Tacaille,
editors, Proceedings of the First International
Conference on Technologies for Music No-
tation and Representation - TENOR2015,
pages 58–69, Paris, France. Institut de
Recherche en Musicologie.

Gabriel Lepetit-Aimon, Dominique Fober,
Yann Orlarey, and Stéphane Letz. 2016.
Inscore expressions to compose symbolic
scores. In Richard Hoadley, Chris Nash,
and Dominique Fober, editors, Proceedings
of the International Conference on Technolo-
gies for Music Notation and Representation
- TENOR2016, pages 137–143, Cambridge,
UK. Anglia Ruskin University.

Tom Mays and Francis Faber. 2014. A nota-
tion system for the karlax controller. In Pro-
ceedings of the International Conference on
New Interfaces for Musical Expression, pages
553–556, London, United Kingdom, June.
Goldsmiths, University of London.

Ryan Ross Smith. 2015. An atomic approach
to animated music notation. In Marc Bat-
tier, Jean Bresson, Pierre Couprie, Cécile
Davy-Rigaux, Dominique Fober, Yann Ges-
lin, Hugues Genevois, François Picard, and
Alice Tacaille, editors, Proceedings of the
First International Conference on Technolo-
gies for Music Notation and Representation
- TENOR2015, pages 39–47, Paris, France.
Institut de Recherche en Musicologie.

	Introduction
	The INScore environment
	The scripting language
	Symbolic scores composition
	Score expressions
	Dynamic score expression trees

	Musical processes representation
	Network and Web dimensions
	Distributed score components
	HTTPd and WebSocket objects
	Messages forwarding

	The sensor objects
	The time model
	The musical time
	The events system

	Conclusion

