N
N

N

HAL

open science

SCORES LEVEL COMPOSITION BASED ON THE

GUIDO MUSIC NOTATION
Dominique Fober, Yann Orlarey, Stéphane Letz

» To cite this version:

Dominique Fober, Yann Orlarey, Stéphane Letz. SCORES LEVEL COMPOSITION BASED ON THE
GUIDO MUSIC NOTATION. International Computer Music Conference, 2012, Ljubljana, Slovenia.

pp.383-386. hal-02158064

HAL Id: hal-02158964
https://hal.science/hal-02158964

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02158964
https://hal.archives-ouvertes.fr

SCORES LEVEL COMPOSITION BASED ON THE GUIDO MUSIC
NOTATION

D. Fober, Y. Orlarey, S. Letz

Grame
Centre national de crétaion musicale, Lyon, France
fober@grame. fr

ABSTRACT

Based on the Guido Music Notation format, we have de-
veloped tools for music score “composition” (in the ety-
mological sense), i.e. operators that take scores both as
target and arguments of high level transformations, appli-
cable for example to the time domain (e.g. cutting the
head or the tail of a score) or to the structural domains
(e.g. putting scores in sequence or in parallel). Provid-
ing these operations at score level is particularly conve-
nient to express music ideas and to compose these ideas
in an homogeneous representation space. However, scores
level composition gives raise to a set of issues related to
the music notation consistency. This paper introduces the
GUIDO Music Notation format, presents the score com-
position operations, the notation issues and a proposal to
solve them.

1. INTRODUCTION

The GUIDO Music Notation format [GMN] [4] has been
designed by H. Hoos and K. Hamel more than ten years
ago. It is a general purpose formal language for represent-
ing score level music in a platform independent plain text
and human readable way. It is based on a conceptually
simple but powerful formalism: its design concentrates on
general musical concepts (as opposed to graphical charac-
teristics). A key feature of the GUIDO design is adequacy
which means that simple musical concepts are represented
in a simple way and only complex notions require com-
plex representations.

Based on the GMN language, the GUIDO Library
[2, 3] provides a powerful score layout engine that dif-
ferentiates from the compiler solutions for music notation
[S, [1] by its ability to be embedded into standalone ap-
plications, and by its fast and efficient rendering engine,
making the system usable in real-time for simple music
scores.

Based on the combination of the GUIDO language and
engine, score level composition operators have been de-
signed, providing time or pitch transformations, composi-
tion in sequence or in parallel, etc. Developing score level
composition operators provides an homogeneous way to
write scores and to manipulate them while remaining at
a high music description level. Moreover, the design al-
lows to use scores both as target and as arguments of the

operations, enforcing the notation level metaphor.

However, applied at score level, these operations raise
a set of issues related to the music notation consistency.
We propose a simple typology of the music notation ele-
ments and a set of rules based on this typology to enforce
the music notation coherence.

The next section introduces the GUIDO Music No-
tation format, followed by a presentation of the score
composition operations, the related notation problems and
the proposed solutions, including a language extension to
handle reversibility issues.

2. THE GUIDO MUSIC NOTATION FORMAT

2.1. Basic concepts

Basic GUIDO notation covers the representation of notes,
rests, accidentals, single and multi-voiced music and the
most common concepts from conventional music notation
such as clefs, meter, key, slurs, ties, beaming, stem direc-
tions, etc. Notes are specified by theirname (a b ¢ d e
f g h), optional accidentals C# and ’&’ for sharp and
flat), an optional octave number and an optional duration.
Duration is specified in one of the forms:

"x’enum’ /' denom dotting

’x’enum dotting

" /’"denom dotting
where enum and denom are positive integers and dotting
is either empty, ’.’, or °..". When enum or denom is omit-
ted, it is assumed to be 1. The duration represents a whole
note fractional.

When omitted, optional note description parts are as-
sumed to be equal to the previous specification before in
the current sequence.

Chords are described using comma separated notes
enclosed in brackets e.g {c, e, g}

2.2. GUIDO tags

Tags are used to represent additional musical information,
such as slurs, clefs, keys, etc. A basic tag has one of the
forms:

\tagname
\tagname<param—-list>

where param-1ist is a list of string or numerical argu-
ments, separated by commas (’,’). In addition, a tag may
have a time range and be applied to a series of notes (e.g.
slurs, ties, etc.); the corresponding forms are:

mailto:fober@grame.fr

\tagname (note-series)

\tagname<param-list> (note—-series)

The following GMN code illustrates the concision of
the notation; figure[I|represents the corresponding GUIDO
engine output.

[\meter<"4/4"> \key<-2> c d e& f/8 g]

eSE=—e

Figure 1. A simple GMN example

2.3. Notes sequences and segments

A note sequence is of the form [tagged-notes]
where tagged-notes is a series of notes, tags, and
tagged ranges separated by spaces. Note sequences repre-
sent single-voiced scores. Note segments represent multi-
voiced scores; they are denoted by {seg-1ist} where
seg-list is a list of note sequences separated by com-
mas as shown by the example below (figure [2):
{legfl, laeal}

— “—
N>

Figure 2. A multi-voices example

2.4. Advanced GUIDO.

The advanced GUIDO specification extends basic GUIDO
with more tags and more tags parameters, giving more
control over the score layout. For example, it introduces
tags parameters like dx and dy for fine positioning of the
score elements, notes and rests format specifications, staff
assignments, etc.

3. COMPOSING MUSIC SCORES

Since GUIDO is a concise textual format, it seems natural
to use operations commonly applied to text, like cut, copy
and paste, text concatenation, etc. Thus the first idea with
the score level operations was based on textual manipula-
tion, extended to music specific operations.

3.1. Operations

Score level operations are given by table These
operations are available as library API calls, as com-
mand line tools, or using a graphic environment named
GuIDOCalculus. Almost all of the operations take a GMN
score and a value parameter as input and produce a GMN
score as output. The value parameter can be taken from
another GMN score: for example, the top operation cuts

the bottom voices of a score after a given voice num-
ber; when using a score as parameter, the voice number
is taken from the score voices count.

All the operations concentrate on the transformed di-
mension (pitch, time), without modifying user defined el-
ements or trying to interfere with the automatic layout of
the GUIDO Engine (that may add notation elements like
clef, barlines). For example, the duration operation re-
computes the notes length but doesn’t affect the time sig-
nature or the barlines. When two scores are put in parallel,
the system preserves each voice time and key signatures,
even when they don’t match. The transposition operation
is the only exception: it adds or modifies the key signa-
ture and selects the simplest enharmonic diatonic transpo-
sition.

The design allows all the operations to take place
consistently at the notation level. Using the command
line tools, series of transformations can be expressed as
pipelining scores through operators e.g.

head sl s2 | par s2 | transpose "[c "

3.2. Notation issues

Actually, the score level composition functions operate on
a memory representation of the music notation. But we’ll
illustrate the notation issues with the textual representa-
tion which is equivalent to the memory representation.

Let’s take an example with the tail operation applied
to the following simple score:

[\clef<"f"> c d e c]

A raw cut of the score after 2 notes would give [e c],
removing the clef information and potentially leading to
unexpected results (figure [3).

->
- £ T o
ﬁt‘:ﬁ‘:‘:ﬂ unexpected
Il |
[\clef<'f'>cdec _> %
expected

Figure 3. Tail operation consistency

Here is another example with the seq operation: a raw
sequence of [\clef<"g"> c d]
and [\clef<"g"> e c]
would give [\clef<"g"> c d \clef<"g"> e c]
where the clef repetition (figured) is useless and blurs the
reading.

H 0

e s

Figure 4. A raw sequence operation

Some operations may also result in syntactically in-
correct results. Consider the following code:
[g \slur(f e) cI

operation args description

puts the scores s1 and s2 in parallel, right aligned

when using a score s2 as parameter, n is taken from s2 voices count

when using a score s2 as parameter, n is taken from s2 voices count

when using a score s2 as parameter, d is taken from s2 duration

id. but on events basis i.e. the cut point is specified in n events count;

when using a score s2 as parameter, n is taken from s2 events count

when using a score s2 as parameter, d is taken from s2 duration

id. but on events basis i.e. the cut point is specified in n events count;

when using a score s2 as parameter, n is taken from s2 events count

when using a score s2 as parameter, i is computed as the difference between

seq sls2 puts the scores s1 and s2 in sequence
par sls2 puts the scores s1 and s2 in parallel
rpar sl s2
top sl [n]s2] takes the n top voices of s1;
bottom sl [n | s2] takes the bottom voices of s1 after the voice n;
head sl [d | s2] takes the head of s1 up to the date d;
evhead sl [n | s2]
tail sl [d] s2] takes the tail of a score after the date d;
evtail sl [n | s2]
transpose sl [i | s2] transposes s to an interval i;
the first voice, first notes of s1 and s2
duration sl [d |r|s2]

stretches s1 to a duration d or using a ratio r;

when using a score s2 as parameter, d is computed from s2 duration

applypitch sl s2
applyrythm sl s2

applies the pitches of s1 to s2 in a loop
applies the rhythm of s1 to s2 in a loop

Table 1. Score level operations

slicing the score in 2 parts after £ would result in
a) [g \slur(f] andb) [e) cI]

i.e. with uncompleted range tags. We’ll use the terms
opened-end tags to refer the a) form and opened-begin
tags for the b) form.

These simple examples illustrate the problem and
there are many more cases where the music notation con-
sistency has to be preserved across score level operations.

4. MUSIC NOTATION CONSISTENCY

In order to solve the notation issues, we propose a simple
typology of the notation elements regarding their time ex-
tent and a set of rules defining adequate consistency poli-
cies according to the operations and the elements type.

4.1. Notation elements time extent

The GMN format makes a distinction between position
tags (e.g. \clef, \meter) and range tags (e.g. \slur,
\beam). Position tags are simple notations marks at a
given time position while range tags have an explicit time
extent: the duration of the enclosed notes. However, this
distinction is not sufficient to cover the time status of the
elements: many of the position tags have an implicit time
duration and generally, they last up to the next similar no-
tation or to the end of the score. For example, a dynamic
lasts to the next dynamic or the end of the score.

Table [2| presents a simple typology of the music no-
tation elements, mainly grounded on their time extent.
Based on this typology, provisions have to be made when:

e computing the beginning of a score:

1) the pending explicit time extent elements must
be properly opened (i.e. opened-begin tags,
see section[3.2)

2) the current implicit time extent elements must
be recalled,

e computing the end of a score:

3) the explicit time extent elements must be prop-
erly closed (i.e. opened-end tags)

e putting scores in sequence:

4) implicit time extent elements starting the second
score must be skipped when they correspond
to current existing elements.

4.2. Structure control issues

Elements relevant to the others / structure control time
extent category may also give rise to inconsistent notation:
a repeat begin bar without repeat end, a dal segno without
segno, a da capo al fine without fine, etc. We introduce
new rules to catch the repeat bar issue. Let’s first define
a pending repeat end as the case of a voice with a repeat
begin tag without matching repeat end.

5) when computing the end of a score, every pending
repeat end must be closed with a repeat end tag.

6) from successive unmatched repeat begin tags, only
the first one must be retained.

time extent description

sample

explicit duration is explicit from the notation
implicit
others structure control

- formatting instructions
- misc. notations

element lasts to the next similar element or to the end of the score

slurs, cresc.

meter, dynamics, key
coda, da capo, repeats
new line, new page
breath mark, bar

Table 2. Typology of notation elements.

7) from successive repeat end tags, only the last one
must be retained.

No additional provision is made for the other structure
control elements: possible inconsistencies are ignored but
this choice preserves the operations reversibility.

4.3. Operations reversibility

The above rules solve most of the notation issues but they
do not permit the operations to be reverted: consider a
score including a slur, sliced in the middle of the slur and
reverted by putting the parts back in sequence. The re-
sult will include two slurs (figure |5) due to the rules 1)
and 3) that enforce opening opened-begin tags and clos-
ing opened-end tags.

fa) IV f | VI fa) | | f |
G oo oo | > G+ o 2
U Q) ——

Figure 5. A score sliced and put back in sequence

To solve the problem, we need the support of the GMN
language and we introduce a new tag parameter, intended
to keep the history of range tags and to denote opened-
end and/or opened-begin ancestors. The parameter has
the form:

open="type"
where type is in [begin, end, begin-end], cor-
responding to opened-begin, opened-end, and opened-
begin-end ancestors.

Next, we introduce a new rule for score level opera-
tions. Let’s first define adjacent tags as tags placed on
the same voice and that are not separated by any note or
chord. Note that range tags are viewed as containers and
thus, notes in the range do not separate tags.

8) adjacent similar tags carrying an open parameter
are mutually cancelled when the first one is opened-
end and the second one opened-begin.

For example, the application of this rule to the following
score:

[\anytag<open="end">(f g)

\anytag<open="begin">(f e)]
will give the score below:

[\anytag(f g f e)]

Note that Advanced GUIDO allows range tags to

be expressed using a Begin and End format (e.g.

\slurBegin, \slurEnd instead \slur (range)). This
format is handled similarly to regular range tags and the
open parameter is also implemented for Begin/End tags.

5. CONCLUSION

Music notation is complex due to the large number of no-
tation elements and to the heterogeneous status of these
elements. The typology proposed in table [2]is actually a
simplification intended to cover the needs of score level
operations but it is not representative of this complexity.
However, it reflects the music notation semantic and could
be reused with other score level music representation lan-
guage. Thus apart for the reversibility rule that requires
the support of the music representation language, all the
other rules are independent from the GMN format and ap-
plicable in other contexts.

Score level operations could be very useful in the con-
text of batch processing (e.g. voices separation from a
conductor, excerpt extraction, etc.). The operations pre-
sented in table [T| support this kind of processing but they
also open the door to a new approach of the music creative
process.

6. REFERENCES

[1] A. E. Daniel Taupin, Ross Mitchell. Musixtex using
tex to write polyphonic or instrumental music.
[Online]. Available: http://icking-music-archive.org/

[2] C. Daudin, D. Fober, S. Letz, and Y. Orlarey, “The
Guido Engine - a toolbox for music scores rendering.”
in Proceedings of the Linux Audio Conference 2009,
2009, pp. 105-111.

[3] D. Fober, S. Letz, and Y. Orlarey, “Open source tools
for music representation and notation.” in Proceed-
ings of the first Sound and Music Computing confer-
ence - SMC’04. IRCAM, 2004, pp. 91-95.

[4] H. Hoos, K. Hamel, K. Renz, and J. Kilian, “The
GUIDO Music Notation Format - a Novel Approach
for Adequately Representing Score-level Music.” in

Proceedings of the International Computer Music
Conference. ICMA, 1998, pp. 451-454.

[5] H.-W. Nienhuys and J. Nieuwenhuizen, “LilyPond, a
system for automated music engraving.” in Proceed-
ings of the XIV Colloquium on Musical Informatics
(XIV CIM 2003), May 2003.

http://icking-music-archive.org/

	1 Introduction
	2 The Guido Music Notation format
	2.1 Basic concepts
	2.2 Guido tags
	2.3 Notes sequences and segments
	2.4 Advanced Guido.

	3 Composing Music Scores
	3.1 Operations
	3.2 Notation issues

	4 Music Notation consistency
	4.1 Notation elements time extent
	4.2 Structure control issues
	4.3 Operations reversibility

	5 Conclusion
	6 References

