N
N

N

HAL

open science

Blender2faust: from drawn 3d objects to physically
based sound models

Smilen Dimitrov, Romain Michon, Stefania Serafin

» To cite this version:

Smilen Dimitrov, Romain Michon, Stefania Serafin. Blender2faust: from drawn 3d objects to phys-

ically based sound models. Sound and Music Computing Conference, 2018, Limassol, Cyprus.

02158954

HAL Id: hal-02158954
https://hal.science/hal-02158954

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02158954
https://hal.archives-ouvertes.fr

Blender2faust: from drawn 3d objects to physically based sound models

Smilen Dimitrov
Aalborg University, Copenhagen
sd@create.aau.dk

ABSTRACT

Faust is a functional programming language for audio ap-
plications, designed for real-time signal processing and syn-
thesis. A part of the Faust source code distribution is the
command line tool mesh2faust [1]. mesh2faust can
process a 3D modelled mesh, and generate the correspond-
ing audio physical model, as well as code to play its sound.
Here we describe an interface for controlling mesh2faust
which is implemented as a plugin for the free and open-
source 3D modelling software, Blender.

1. INTRODUCTION

Faust is a functional programming language specifically
designed for real-time audio processing. To work with
Faust, the user typically writes a Faust language script with
the extension .dsp. This script is then converted using
the Faust interpreter to a wide variety of platforms and
languages. This intermediate code can be compiled using
standard tools on the platform (for example, gcc) to exe-
cutable code that can play and process sound in realtime.
A part of the Faust source distribution is the command-
line tool mesh2faust [1]. mesh2faust is a part of
a collection of tools known as Faust Physical Modeling
Toolkit [2], which facilitate the design of auditory phys-
ical models with the Faust language. The other essential
part of this toolkit is the Faust Physical Modeling Library,
physmodels. lib [3], which spans utilities relevant for

physical modelling, mostly derived from the Synthesis toolkit

[4].

The tool mesh2 faust, as typical when interacting with
command-line applications, can be configured with a va-
riety of command line options. mesh2faust accepts a
file path to a 3D model, with material properties and other
settings. It exports a Faust . 1ib library file, that contains
the corresponding auditory modal physical model. The file
can thereafter be used in a Faust . dsp script, which would
typically render its own GUI, with button elements that can
trigger the sound of the auditory physical model.

Thus, there are at least two command line passes in or-
der to get from a 3D model, to an application that would
play the sound of its corresponding auditory model - a
process that may seem slightly involved for non-technical

Copyright: © 2018 Smilen Dimitrov et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

Romain Michon
CCRMA, Stanford University
rmichon@ccrma.stanford.edu

Stefania Serafin
Aalborg University, Copenhagen
sts@create.aau.dk

users. However, even for technical users, the cognitive
load would arguably be lessened, if there’s a possibility
to choose and edit a 3D model visually, and then upon a
single click of a button, execute the command-line passes
automatically to hear sound - instead of having to deal with
correct filenames and parameters in the command line. This
is exactly what this preliminary GUI for mesh2 faust is
attempting to address.

2. MESH2FAUST

It is important to note that the mesh2faust tool, brings
about an important dependency of its own, unrelated to the
rest of the Faust software. This dependency is the Vega
FEM (Finite Element Method) library [5], a free and open-
source software that allows for the conversion of the 3D
model, and running finite element analysis on it. Vega
FEM in turn depends on the Intel MKL [6] (Math Kernel
Library) - a proprietary, but freely (against a registration
wall) accessible library; and the open-source arpack. Note
that the mesh2 faust repository already includes a light-
weight and modified version of Vega FEM within its source
code.

Out of the command line options of mesh2faust, the
only required argument is ——inf1ile, which specifies the
input 3D model, saved in the . ob J file format (also knows
as Wavefront .ob7j). The Blender UI plugin described
herein exposes all of these to the user interface, mostly as
text field elements.

3. THE BLENDER UI PLUGIN

As mentioned earlier, the mesh2faust tool imposes a
workflow where the user starts from a 3D model, and ends
with an application allowing the user to virtually hit” (or
excite) certain modes in the respective 3D model - and hear
the sound generated in real-time. The real-time applica-
tion generated by the system is a faust2caqgt program.
As 3D interfaces have been widely used in computer soft-
ware in past decades, it can be expected that potential users
of this system would immediately imagine a 3D interface
as the appropriate one for this workflow. In essence, the
workflow from the user’s perspective can be reduced to:

e Draw/import the 3D model

e Apply sonic material properties (i.e., how should the
model sound like - as if it was made of wood, or
metal...) to parts or entirety of the 3D model (in-
cluding finetuning of parameters)

SMC2018 - 400

Figure 1. Normal startup UI of the Blender 3D modelling
application (version 2.79a, running on Ubuntu 14.04),
showing the “Default” screen layout and the cube model.

e Choose a vertex on the 3D model, where the model
will be “hit”/excited

e Click a button to perform the virtual "hit”, and hear
the sound

Currently there are multiple free & open-source options
that could be used as a starting point for such a 3D in-
terface for the mesh2faust workflow. Settling on the
Blender [7] 3D creation suite for this purpose, was imme-
diate: Blender has strong developer momentum behind it,
it is a cross-platform tool, it already includes a user in-
terface for creating and manipulating 3D models, can im-
port and export Wavefront . obj files, and has a Python
API with a portion specifically dedicated to modifying the
Blender graphical user interface itself.

The typical user interface of Blender, after it is started
up, is shown on Fig. 1. Note that Blender has several
so-called ”Screen Layouts”; the vanilla install starts up in
the "Default” screen layout. This layout has a 3D viewer
take up the center of the window, while there is a so-called
”Tool Shelf” on the left, with multiple vertical tabs, such
as "Tools”, ”Create”, ”Animation”, etc (for more details
on the Blender Ul, see [8]). In addition, Blender at startup
instantiates a light, a camera, and a model of a cube.

The approach taken here, was to use Blender’s Python
API, to add another tab to the Tool Shelf, specifically re-
lated to mesh2faust. The Python API of Blender is
documented, but not extensively beside several tutorials
(such as [9]) - for our approach, we found it useful to
consult the autogenerated documentation, starting from
bpy.types.Panel [10]; otherwise, there are scripts al-
ready used in Blender, with names starting with
space_view3d- (on Ubuntu, they might get installed at

the /usr/share/blender/2.79/scripts/addons

path).

Eventually, our implementation resulted with a single Python

file, space_view3d.mesh2faust . py, representing the
addon. When it runs, it simply sets up the extra tab, titled
“Faust”, its corresponding panel, and all the user elements
on it; in principle, it just needs to run once at Blender
startup. The script can either be run/manipulated via the
”Scripting” Screen Layout of Blender, or Blender can be
started through the command line with:

blender —--python
space_view3d _mesh2faust.py
standardBell.blend

A new “Faust” tab is instantiated in the Tool Shelf, shown
on Figure 2. The command line method, however, also
ensures that an actual Blender file is loaded (Blender oth-
erwise starts in a state where there is no defined opened
file), which in the current incarnation of the workflow is
important. The panel has a text field for the physical model
name (with a default of blphysmod), and then several
checkboxes: “Material Properties”, ”Excitation Positions”,
“Limiting the number of modes”, ’Making a transposable
model (freqcontrol)” - activating the checkbox activates
additional elements such as textfields, and adds the corre-
sponding command-line options to the command line. For
instance, ”Material Properties” simply has a textfield, as it
expects the material properties to be entered as a string; for
”Excitation Positions”, there are two buttons: “Random,
limit to” and ”Vertices ID list”, as there are two different
command-line arguments depending on this choice (one of
them expects a number, the other a list).

Finally, there is the "Run mesh2faust” button; when it is
clicked, the following happens:

e The addon script exports the current state of the 3D
model (excluding lights and cameras) of the currently
loaded .blend file, as a Wavefront . ob j file of the
same name

e The addon composes a command line formesh2faust,

with the previously exported .obj file, and then
calls it; the output is a Faust .1ib file, however,
named as per the physical model name textfield in
the addon panel

e The addon patches a template for a Faust . dsp script,
which contains a simple GUI for exciting a physical
model, so it uses the correct filenames from previous
steps - then generates this . dsp script

e The addon composes a command line for faust,
so it transpiles this . dsp into an ALSA/GTK C++
.cpp file

e The addon composes a command line for gcc, so it
compiles the previously generated . cpp file into an
executable

e The addon runs the previously generated executable
as a separate process, which starts the executable’s
GUI as a new window.

This, ultimately, allows the user to edit a 3D model, and
then - provided the mesh2faust addon settings are al-
ready set - simply click the "Run mesh2faust” button, and
be presented with a Faust GUI for auditory inspection of
the corresponding modal physical model soon thereafter.
As the mention of ALSA/GTK implies, this preliminary
incarnation of the addon has only been tested on GNU/Linux
(e.g. Ubuntu) systems; however, there are no serious ob-
stacles to further improvements, where the entire cross-
platform palette of Faust code output can be utilized.

SMC2018 - 401

Figure 2. The UI of the Blender 3D modelling appi-
cation with the mesh2faust UI started, showing the
wineglass model. Notice on the left the new button
called mesh2faust, which allows to run the mesh2faust ap-
plication from Blender.

4. EXAMPLE

In order to show the behaviour of the tool developed, we
used the sonification of a wineglass as example. We im-
ported wineglass.ob7j into Blender, and saved it as a
native Blender 3D file, wineglass.blend (also shown
on Fig. 2); on the other hand wineglass.dsp is used as
the . dsp file template in our addon script. Since our ad-
don necessarily exports back to .ob7j, this tests whether
the roundtrip of . obj through Blender works. As a mat-
ter of fact, our tests resulted with a working, realistically
sounding executable.

However, specifically for the wineglass model, we
cannot really talk of a realtime performance: on an In-
tel i7, 2.70GHz, 4 CPU laptop, it could take up to two
minutes for the entire mesh2faust command pipeline to
complete. In addition, there are certain models where the
mesh2faust process breaks - in particular where the faces
of the default object are rectangular while mesh2faust
might works with triangular mesh segments. However,
there are also simple models where the mesh2 faust pro-
cess completes quickly - for instance, such is the default
”Ico sphere” model mesh in Blender.

After the computation is completed, the result is a GUI
like the one shown in Figure 3.

5. FUTURE IMPROVEMENTS

Here are possible improvements that the addon could ben-
efit from:

e Have a list of materials in a drop-down, insert it in
text field for the “material” argument

e Choose a vertex in the 3D Ul - add its . ob j number
to the list of excitable vertices

e Use more relevant Ul elements - e.g. sliders - instead
of generic textfields in the Blender UI plugin

e Better naming policy: currently, the Blender plugin
uses a textfield for the name of the .1ib file, and
the name of the loaded .blend file for the .dsp
script name and the corresponding executable

blphysmodOO

strikePosition

strikeCutOff

strikeSharpness

Figure 3. The generated physical model.

e Implement network communication between the Blender

plugin and the Faust . dsp script executable, to al-
low for selecting a vertex on the 3D mesh, and hav-
ing it be triggered right from the Blender UI plugin

e Implement a list mapping colors to material proper-
ties in the Blender UI plugin, so that objects with
multiple auditory materials can be created easily in
Blender by coloring their 3D mesh

6. CONCLUSIONS

In this paper we presented blender2faust, an add-on to the
Blender software which allows to create physically based
sound models based on 3D rendered objects in Faust. The
add-on has been tested on both Linux and macOS ma-
chines, with Blender version 2.79 and the latest Faust re-
lease from github (https://github.com/grame-cncm/faust).
In future editions we plan to extend the capabilities of the
tool by improving the interface to select size and material
of the rendered objects.

Acknowledgments

This paper was partially supported by NordForsk’s Nordic
University Hub Nordic Sound and Music Computing Net-
work NordicSMC, project number 86892.

7. REFERENCES

[1] github.com, “mesh2faust,” WWW, Last Ac-
cessed: 12 March, 2018. [Online]. Avail-
able: https://github.com/grame-cncm/faust/tree/

master-dev/tools/physicalModeling/mesh2faust

[2] R. Michon, “Faust physical modeling toolkit,” WWW,
Last Accessed: 12 March, 2018. [Online]. Available:
https://ccrma.stanford.edu/~rmichon/pmFaust/

[3] grame.fr, “Faust physical modeling library - faust
libraries documentation,” WWW, Last Accessed: 12
March, 2018. [Online]. Available: http://faust.grame.
fr/library.html#physmodels.lib

SMC2018 - 402

(4]

(5]

(7]

(8]

(91

[10]

Open Create or import
Blender 3D model

= &

J

run python
script

run
mesh2faust

Play Faust output

Figure 4. Visualization of the process from creating a model in Blender to synthesizing it in Faust.

P. R. Cook and G. P. Scavone, “The synthesis toolkit
(stk).” in ICMC, 1999.

F. S. Sin, D. Schroeder, and J. Barbi¢, “Vega: Non-
linear fem deformable object simulator,” in Computer
Graphics Forum, vol. 32, no. 1. Wiley Online Library,
2013, pp. 36-48.

intel.com, “Intel math kernel library (intel mkl) —
intel software,” WWW, Last Accessed: 12 March,
2018. [Online]. Available: https://software.intel.com/
en-us/mkl

blender.org, “Home of the blender project - free
and open 3d creation software,” Last Accessed:
3/13/2018, 12:03:32 AM. [Online]. Available: https:
//www.blender.org/

——, “Docs user interface introduction blender
manual,” Last Accessed: 3/13/2018, 12:49:23 AM.
[Online]. Available: https://docs.blender.org/manual/
en/dev/interface/window_system/introduction.html

——, “Addon tutorial blender 2.65.5 - api doc-
umentation,” Last Accessed: 3/13/2018, 12:56:31
AM. [Online]. Available: https://docs.blender.org/api/
blender_python_api_2_65_5/info_tutorial_addon.html

, “Panel(bpy_struct) blender 2.70.4 - api
documentation,” Last Accessed: 12:59:01 AM.
[Online]. Available: https://docs.blender.org/api/
blender_python_api_2_70_4/bpy.types.Panel.html

SMC2018 - 403

